

G E T T I N G S T A R T E D W I T H

DB2 application
development

RAUL F. CHONG, XIQIANG JI, PRIYANKA JOSHI,
VINEET MISHRA, MIN WEI YAO

A book for the community by the community

F I R S T E D I T I O N

4 Getting started with DB2 application development

First Edition (October 2010)

© Copyright IBM Corporation 2010. All rights reserved.

IBM Canada
8200 Warden Avenue
Markham, ON
L6G 1C7
Canada

 5

Notices
This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available
in your area. Any reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be used instead.
However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product,
program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
3-2-12, Roppongi, Minato-ku, Tokyo 106-8711

The following paragraph does not apply to the United Kingdom or any other country where
such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new editions of the
publication. IBM may make improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do
not in any manner serve as an endorsement of those Web sites. The materials at those Web sites
are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

6 Getting started with DB2 application development

The licensed program described in this document and all licensed material available for it are
provided by IBM under terms of the IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document should verify the
applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To
illustrate them as completely as possible, the examples include the names of individuals, companies,
brands, and products. All of these names are fictitious and any similarity to the names and addresses
used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using,
marketing or distributing application programs conforming to the application programming interface
for the operating platform for which the sample programs are written. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. The sample programs are provided "AS IS", without
warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample
programs.

References in this publication to IBM products or services do not imply that IBM intends to make
them available in all countries in which IBM operates.

If you are viewing this information softcopy, the photographs and color illustrations may not
appear.

 7

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might
be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States,
other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries,
or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

http://www.ibm.com/legal/copytrade.shtml�
http://www.ibm.com/legal/copytrade.shtml�

Table of Contents
Preface ... 15

Who should read this book? .. 15
How is this book structured? .. 15
A book for the community .. 15
Conventions ... 16
What’s next? .. 16

About the authors ... 19
Contributors .. 20
Acknowledgements .. 21
Chapter 1 – Introduction to DB2 application development .. 23

1.1 DB2 application development: The big picture .. 23
1.2 Server-side development ... 25

1.2.1 Stored procedures .. 25
1.2.2 User-defined functions .. 26
1.2.3 Triggers ... 26

1.3 Client-side development .. 27
1.3.1 Embedded SQL .. 27
1.3.2 Static SQL vs. Dynamic SQL .. 28
1.3.3 CLI and ODBC .. 30
1.3.4 JDBC, SQLJ and pureQuery .. 33
1.3.5 OLE DB ... 35
1.3.6 ADO.NET .. 36
1.3.7 PHP ... 37
1.3.8 Ruby on Rails ... 38
1.3.9 Perl .. 38
1.3.10 Python ... 38

1.4 XML and DB2 pureXML ... 39
1.5 Web services ... 40
1.6 Administrative APIs .. 41
1.7 Development tools ... 41

1.7.1 Visual Studio ... 42
1.7.2 Eclipse .. 42
1.7.3 Access and Excel ... 42

1.8 Development environments ... 43
1.8.1 DB2 Offerings on the Cloud .. 43
1.8.2 DB2 Express-C virtual appliance for VMWare .. 47

1.9 Sample programs ... 47
1.10 Exercises ... 47
1.11 Summary .. 48
1.12 Review questions ... 48

Chapter 2 – DB2 pureXML .. 51
2.1 Using XML with databases .. 52

10 Getting started with DB2 application development

2.2 XML databases .. 52
2.2.1 XML-enabled databases ... 52
2.2.2 Native XML databases .. 53

2.3 XML in DB2 .. 54
2.3.1 pureXML technology advantages ... 55
2.3.2 XPath basics ... 57
2.3.3 XQuery basics .. 60
2.3.4 Inserting XML documents ... 62
2.3.5 Querying XML data ... 65
2.3.6 Joins with SQL/XML ... 72
2.3.7 Joins with XQuery ... 73
2.3.8 Update and delete operations .. 74
2.3.9 XML indexing .. 76

2.4 Working with XML Schemas .. 77
2.4.1 Registering your XML Schemas ... 77
2.4.2 XML Schema validation .. 80
2.4.3 Other XML support ... 81

2.5 Exercises ... 82
2.6 Summary .. 83
2.7 Review questions ... 83

Chapter 3 – Stored procedures, UDFs, triggers, and data Web services 85
3.1 Stored procedures: The big picture ... 85
3.2 Working with IBM Data Studio ... 87

3.2.1 Creating a project ... 88
3.2.2 Creating a stored procedure ... 90

3.3 SQL PL stored procedures basics ... 94
3.3.1 Stored procedure structure ... 94
3.3.2 Optional stored procedure attributes .. 94
3.3.3 Parameters ... 95
3.3.4 Comments in an SQL PL stored procedure .. 96
3.3.5 Compound statements .. 96
3.3.6 Variable declaration .. 96
3.3.7 Assignment statements .. 97
3.3.8 Cursors ... 98
3.3.9 Flow control .. 98
3.3.10 Errors and condition handlers ... 99
3.3.11 Calling stored procedures ... 101
3.3.12 Dynamic SQL .. 102

3.4 Java Stored Procedures .. 103
3.5 User-defined functions: The big picture ... 105

3.5.1 Scalar functions .. 106
3.5.2 Table functions ... 107

3.6 Triggers: The big picture .. 107
3.6.1 Types of triggers ... 108

 11

3.7 Data Web services ... 111
3.8 Exercises ... 121
3.9 Summary .. 123
3.10 Review questions ... 123

Chapter 4 – Application development with Java ... 125
4.1 Java - DB2 applications: The big picture ... 125
4.2 Setting up the environment .. 126

4.2.1 DB2 JDBC and SQLJ drivers .. 126
4.3 JDBC Programming ... 129

4.3.1 Connecting to a DB2 database ... 130
4.3.2 Executing SQL statements ... 132
4.3.3 Receiving results .. 142
4.3.4 Handling SQL errors and warnings .. 144
4.3.5 Closing the connection ... 146
4.3.6 Working with XML ... 146

4.4 SQLJ Programming ... 149
4.4.1 SQLJ Syntax ... 149
4.4.2 Connection contexts ... 150
4.4.3 Execution contexts .. 152
4.4.4 Iterators ... 153
4.4.5 Working with JDBC and SQLJ combined ... 155
4.4.6 Preparing an SQLJ program ... 156

4.5 pureQuery .. 159
4.6 Exercises ... 160
4.7 Summary .. 162
4.8 Review questions ... 162

Chapter 5 – Application development with C/C++ ... 165
5.1 C/C++ DB2 applications: The big picture ... 165
5.2 Setting up the environment .. 166

5.2.1 Supported compilers ... 166
5.2.2 Setting up the C/C++ environment ... 167

5.3 Developing a C/C++ application with embedded SQL .. 170
5.3.1 Source file extensions ... 170
5.3.2 SQL data types in C/C++ .. 171
5.3.3 Steps to develop an embedded SQL C/C++ application 172
5.3.4 Sample embedded SQL C/C++ application .. 174
5.3.5 Building embedded SQL C/C++ applications ... 185

5.5 Developing a C/C++ application with ODBC/CLI ... 191
5.5.1 Additional environment setup for CLI/ODBC applications 192
5.5.2 Handles ... 194
5.5.3 Steps to develop an ODBC/CLI application .. 195
5.5.4 Building ODBC/CLI applications ... 212

5.6 Working with XML in C/C++ applications with DB2 ... 214
5.7 Exercises ... 214

12 Getting started with DB2 application development

5.8 Summary .. 214
5.9 Review questions ... 215

Chapter 6 – Application Development with .NET ... 217
6.1 .NET with DB2 applications: The big picture ... 217
6.2 The ADO.NET data architecture .. 218

6.2.1 Data providers for ADO.NET .. 219
6.2.2 DataSet for ADO.NET ... 226

6.3 Setting up the environment .. 227
6.3.1 IBM Database Add-Ins for Visual Studio .. 228
6.3.2 Using Visual Studio with DB2 ... 231

6.4 Developing .NET - DB2 applications ... 235
6.4.1 Connecting to a DB2 database with the IBM Data Server Provider for .NET238
6.4.2 Connecting to a DB2 database with the OLE DB .NET Data Provider 240

6.5 Data Manipulation using .NET ... 244
6.5.1 Building and Running the sample program .. 245

6.6 Exercises ... 246
6.7 Summary .. 246
6.8 Review questions ... 247

Chapter 7 - Application development with Ruby on Rails .. 249
7.1 Ruby on Rails applications with DB2: The big picture ... 249
7.2 Setting up the RoR environment .. 252

7.2.1 Installing Ruby .. 252
7.2.2 Installing Rails ... 255
7.2.3 Creating your first RoR application and starting the Web server 256
7.2.4 Working with a DB2 database: The ibm_db gem ... 258

7.3 Developing RoR applications ... 263
7.3.1 Developing a sample application: A book catalog .. 263
7.3.2 Customizing the layout ... 276

7.4 Exercises ... 281
7.5 Summary .. 282
7.6 Review questions ... 282

Chapter 8 – Application development with PHP .. 285
8.1 PHP - DB2 Applications: The big picture ... 285
8.2 Setting up the environment .. 286

8.2.1 Setting up the PHP environment manually ... 286
8.3 PHP - DB2 application development ... 289

8.3.1 PHP extensions to use with DB2 .. 289
8.3.2 PHP development with the ibm_db2 extension .. 289
8.3.3 PHP development with PDO_IBM/PDO_ODBC ... 300

8.4 Optimizing DB2 usage with PHP ... 318
8.4.1 Design considerations for increasing the PHP-DB2 performance 318

8.5 Exercises ... 319
8.6 Summary .. 319
8.7 Review questions ... 319

 13

Chapter 9 – Application development with Perl .. 321
9.1 Perl - DB2 applications: The big picture .. 321
9.2 Setting up the environment .. 322

9.2.1 Perl adapters and drivers .. 324
9.3 Developing Perl DB2 applications ... 325

9.3.1 Connecting to a DB2 database ... 325
9.3.2 Retrieving data .. 326
9.3.3 Inserting, updating, and deleting data .. 328
9.3.4 Executing a SQL statement with parameter markers 330
9.3.5 Calling a stored procedure .. 331

9.4 Exercises ... 334
9.5 Summary .. 336
9.6 Review questions ... 336

Chapter 10 –Application development with Python .. 337
10.1 Python - DB2 applications: The big picture ... 337

10.1.1 IBM defined API and ibm_db driver .. 338
10.1.2 Python Database API and ibm_db_dbi driver... 338
10.1.3 SQLAlchemy and ibm_db_sa adapter .. 339
10.1.4 Django framework and ibm_db_django adapter... 339

10.2 Setting up the environment .. 339
10.2.1 Python adapters & drivers .. 340

10.3 Developing Python DB2 applications ... 347
10.3.1 Connecting to a DB2 database ... 347
10.3.2 Retrieving data .. 348
10.3.3 Inserting, updating and deleting data ... 351
10.3.4 Execute a SQL statement with parameter markers 352
10.3.5 Call a stored procedure .. 355

10.4 Exercises ... 358
10.5 Summary .. 358
10.6 Review questions ... 358

Appendix A – Solutions to the review questions .. 361
Appendix B – Troubleshooting .. 369

B.1 Finding more information about error codes ... 370
B.2 SQLCODE and SQLSTATE .. 370
B.3 DB2 Administration Notification Log .. 371
B.4 db2diag.log .. 371
B.5 CLI traces .. 372
B.6 DB2 Defects and Fixes .. 372

References ... 373
Resources .. 373

Web sites ... 373
Books ... 375
Contact emails ... 375

Preface

Keeping your skills current in today's world is becoming increasingly challenging. There are
too many new technologies being developed, and little time to learn them all. The DB2® on
Campus Book Series has been developed to minimize the time and effort required to learn
many of these new technologies.

Who should read this book?
This book is intended for anyone who works with or intends to develop database
applications such as application developers, consultants, software architects, instructors,
and students. It is a good reference as well for database administrators (DBAs) and
product managers.

How is this book structured?
This book is closely related to the eBook Getting Started with DB2 Express-C; it expands
the application development chapters covered in that book. In fact, Chapter 1 and 2 are
taken directly from the application development chapters in that book as they provide a
good overview of DB2 application development. Chapter 3 discusses server-side
programming such as stored procedures, and functions. In this chapter IBM® Data Studio
software is used extensively, therefore this eBook is also closely related to eBook Getting
Started with IBM Data Studio for DB2. Starting with Chapter 4 the book describes in detail
client-side programming for different programming languages such as JavaTM, C/C++,
.NET, Ruby on Rail, PHP, Perl, and Python.

Exercises are provided with most chapters; any input files required are provided in the zip
file Exercise_Files_DB2_Application_Development.zip accompanying this
book.

A book for the community
This book was created by the community; a community consisting of university professors,
students, and professionals (including IBM employees). The online version of this book is
released to the community at no-charge. Numerous members of the community from
around the world have participated in developing this book, which will also be translated to
several languages by the community. If you would like to provide feedback, contribute new
material, improve existing material, or help with translating this book to another language,
please send an email of your planned contribution to db2univ@ca.ibm.com with the subject
“Getting Started with DB2 Application Development book feedback.”

mailto:db2univ@ca.ibm.com�

16 Getting started with DB2 application development

Conventions
Many examples of commands, SQL statements, and code are included throughout the
book. Specific keywords are written in uppercase bold. For example: A NULL value
represents an unknown state. Commands are shown in lowercase bold. For example: The
dir command lists all files and subdirectories on Windows®. SQL statements are shown
in upper case bold. For example: Use the SELECT statement to retrieve information from a
table.

Object names used in our examples are shown in bold italics. For example: The flights
table has five columns.

Italics are also used for variable names in the syntax of a command or statement. If the
variable name has more than one word, it is joined with an underscore. For example:
CREATE TABLE table_name

What’s next?
We recommend you to review the following books in this book series for more details about
related topics:

 Getting started with DB2 Express-C

 Getting started with IBM Data Studio for DB2

 Getting started with Java

 Getting started with C/C++

 Getting started with .NET

 Getting started with Ruby on Rails

 Getting started with PHP

 Getting started with Perl

 Getting started with Python

 Getting started with Open source development

 Getting started with Eclipse

The following figure shows all the different eBooks in the DB2 on Campus book series
available for free at ibm.com/db2/books

http://www.ibm.com/db2/books�

 17

The DB2 on Campus book series

About the authors
Raul F. Chong is the DB2 on Campus program manager and a DB2 technical evangelist
based at the IBM Toronto Laboratory. His main responsibility is to grow the DB2
community around the world. Raul joined IBM in 1997 and has held numerous positions in
the company. As a DB2 consultant, Raul helped IBM business partners with migrations
from other relational database management systems to DB2, as well as with database
performance and application design issues. As a DB2 technical support specialist, Raul
helped resolve DB2 problems on the OS/390®, z/OS®, Linux®, UNIX® and Windows®
platforms. Raul has taught many DB2 workshops, has published numerous articles, and
has contributed to the DB2 Certification exam tutorials. Raul has summarized many of his
DB2 experiences through the years in his book Understanding DB2 - Learning Visually with
Examples 2nd Edition (ISBN-10: 0131580183) for which he is the lead author. He has also
co-authored the book DB2 SQL PL Essential Guide for DB2 UDB on Linux, UNIX,
Windows, i5/OS, and z/OS (ISBN 0131477005), and is the project lead and co-author of
many of the books in the DB2 on Campus book series.

Xiqiang Ji is a DB2 Advanced Support Engineer in IBM AP DB2 Level 2 support team in
Sydney. His main responsibility is to provide technical support for IBM Asia Pacific and
worldwide customers for solving various DB2 problems. During the past 5 years, He has
helped many DB2 customers across various industries solve many critical technical issues.
Before this, He had worked for 5 years as a technical consultant in IBM Software Group
supporting IBM Business Partners and Independent Software Vendors in developing DB2
applications and DB2 Business Intelligence solutions.

Priyanka Joshi is a software engineer with IBM India software labs working as a DB2
advanced technical support specialist. Her primary responsibility is to provide advanced
technical support on DB2 Linux®, UNIX® and Windows (LUW) platforms to IBM worldwide
customers. Priyanka joined IBM in 2006 and has since worked for numerous pre-sales and
post-sales support engagements for DB2 LUW. She specializes in DB2 - Common Client
Technologies and is a certified DB2 professional. Priyanka has been identified as the
Knowledge Champion for Asia-Pacific division as part of the Knowledge Centered support
initiative in IBM and also is a part of the prestigious Technical Leaders group in IBM,
responsible for providing smart solutions to IBM customers in collaboration with other IBM
product teams.

Vineet Mishra is a software engineer with the DB2 LUW team at the India Software Lab.
Vineet Joined IBM in 2007 and specializes in C and C++. His areas of interest are High
Availability and Disaster Recovery (HADR), stored procedures & UDFs, Embedded SQL
and Operating System Kernel. Vineet is a member of IBM Academic Initiative and IBM
University Relationship and actively works towards spreading DB2 (LUW) knowledge in
colleges. He frequently responds to queries in the DB2 forum.

Min Wei Yao is an application developer focusing on Business Intelligence. Min Wei joined
IBM in 2008 and has been working in the IBM Global Business Services area since then.
Besides working as a developer, Min Wei also likes to experiment with Linux, and DB2. Min

20 Getting started with DB2 application development

Wei is an IBM certified DB2 application developer and administrator for Linux, UNIX and
Windows.

Contributors
The following people edited, reviewed, provided content, and contributed significantly to
this book.

Contributor Company /
University

Position / Occupation Contribution

Antonio Cangiano IBM Toronto Lab Software Engineer and
Technical Evangelist

Partial technical
review

Praveen Devarao IBM India Software
Lab

Software Engineer, IBM
Opensource
Technologies for IBM
Data Servers

Partial technical
review

Vinay B.
Ganapavarapu

University of New
Mexico

Student Partial technical
review

Upal Hossain IBM Toronto Lab Software Developer, DB2
Information Development
Infrastructure

Partial technical
review

Leon Katsnelson IBM Toronto Lab Program Director, IBM
Data Servers

Technical review

Anil Mahadev IDUG India IDUG India chairman,
database consultant

Partial technical
review

Leons Petrazickis IBM Toronto Lab Software Developer and
Technical Evangelist

Partial technical
review

Rahul Priyadarshi IBM India Software
Lab

System Software
Engineer, IBM open
source Technologies for
IBM Data Servers

Partial technical
review

 21

Acknowledgements
We greatly thank the following individuals for their assistance in developing materials
referenced in this book:

 Natasha Tolub who designed the cover of this book.

 Susan Visser who assisted with publishing this book.

1
Chapter 1 – Introduction to DB2 application
development
IBM® DB2® is powerful data server software for managing both relational and XML data. It
offers flexibility not only to database administrators, but also to database developers. No
matter which language you use to develop your programs, DB2 software ("DB2") provides
the drivers, adapters, and extensions you need to work with databases as part of your
application. Moreover with DB2 Express-C, you can develop your applications at no cost,
with no database size limits, and with the same level of programming language support as
the other versions of DB2. Develop once using DB2 Express-C, and you can run on any
DB2 edition without any modification required to your application.

In this chapter you will learn about:

 Server-side programming using stored procedures, and user-defined functions

 Client-side programming using different programming languages

1.1 DB2 application development: The big picture
DB2 offers database developers the flexibility to take advantage of server-side
development features such as stored procedures and user-defined functions, while,
application developers can develop client applications using the programming language of
their choice. This flexibility is illustrated in Figure 1.1.

24 Getting started with DB2 application development

Figure 1.1 - DB2 software is for everyone: Database and application developers

In Figure 1.1 the left side represents a client machine where an application programmer
develops and runs his program. In this client machine, in addition to the operating system,
an IBM Data Server Client may be installed depending on the type of application being
developed. An IBM Data Server client includes the required connection drivers such as the
JDBC drivers and the ODBC/CLI drivers. These drivers can also be downloaded
independently by visiting the IBM DB2 Express-C Web site at http://ibm.com/db2/express

Using programming tools such as IBM Data Studio, InfoSphere™ Data Architect (IDA),
Rational® Software Architect (RSA), Rational Application Developer (RAD), and so on, you
can develop your application in your desired programming language. The API libraries
supporting these languages are also included with the IBM Data Server Client, so that
when you connect to a DB2 Server, all the program instructions are translated
appropriately using these APIs into the SQL or XQuery statements understood by DB2.
Table 1.1 provides a short description of the tools mentioned earlier.

Tool name Description

IBM Data Studio

IBM Data Studio is a free Eclipse-based tool
that allows users to manage their data
servers and develop stored procedures,
functions and Data Web services. For more
details, refer to the ebook Getting started
with IBM Data Studio for DB2.

InfoSphere Data Architect (IDA)

IDA is a modeling tool for your data. It helps
you build your database logical design and
physical design. For more details, refer to

http://www.ibm.com/db2/express/download.html?S_CMP=ECDDWW01&S_TACT=DOCBOOK07�

Chapter 1 - Introduction to DB2 application development 25

the ebook Getting started with InfoSphere
Data Architect.

Rational Software Architect (RSA) RSA is an Eclipse-based tool for software
engineering to help you develop UML
diagrams

Rational Application Developer (RAD) RAD is an Eclipse-based rapid application
development tool for software developers

Visual Studio Microsoft® Visual Studio is an IDE that
allows you to develop applications in the
Windows® platform using Microsoft's
technology.

Aptana Studio This is a free IDE for developing PHP
applications.

Table 1.1 - Tools that can help you develop applications with DB2 software

On the right side of Figure 1.1 a DB2 server is illustrated containing one database. Within
this database there are stored procedures, user-defined functions and triggers. We
describe all of these objects in more detail in the next sections.

It is noteworthy to mention that IBM offers DB2 on the Amazon cloud, as well as on the
IBM Development and Test Cloud. If you or your company does not have the budget to
acquire a server for your development or production needs, the Cloud is a perfect
alternative as it allows you to "rent" compute capacity per minute. DB2 on the Cloud
offerings are discussed in more detail in a later section.

1.2 Server-side development
Server-side development in DB2 software implies that application objects are developed
and stored on the DB2 database. The following application objects will be discussed briefly
in this section:

 Stored Procedures

 User-defined Functions (UDFs)

 Triggers

1.2.1 Stored procedures

A stored procedure is a database application object that can encapsulate SQL statements
and business logic. Keeping part of the application logic in the database provides
performance improvements as the amount of network traffic between the application and
the database is reduced. In addition, stored procedures provide a centralized location to

26 Getting started with DB2 application development

store your code, so other applications can reuse the same stored procedures. To call a
stored procedure, use the CALL statement. In DB2 you can develop stored procedures in
several languages including SQL PL, PL/SQL, Java, C/C++, CLR, OLE, and COBOL. A
simple example of how to create and call a SQL PL stored procedure from the DB2
Command Window or Linux® shell is shown below:

db2 create procedure P1 begin end

db2 call P1

In the example, procedure P1 is an empty stored procedure which is not doing anything.
The example illustrates how easy you can create a stored procedure. To develop stored
procedures with more complex logic, we recommend you use IBM Data Studio which
includes a debugger.

1.2.2 User-defined functions

A user-defined function (UDF) is a database application object that allows users to
extend the SQL language with their own logic. A function always returns a value or values
normally as a result of the business logic included in the function. To invoke a function, use
it within a SQL statement, or with the values function. In DB2 you can develop UDFs in
several languages including SQL PL, PL/SQL, Java, C/C++, OLE DB, CLR.

This simple example shows how to create and call a SQL PL UDF from the DB2 Command
Window or Linux shell:

db2 create function F1() returns integer begin return 1000; end

db2 values F1

In the example, function F1 is a function returning an integer value of 1000. The VALUES
statement can be used to invoke the function. Like in the case of stored procedures, we
recommend you create functions using IBM Data Studio.

1.2.3 Triggers

A trigger is an object that automatically performs an operation on a table or view. A
triggering action on the object where the trigger is defined causes the trigger to be fired. A
trigger is normally not considered an application object; therefore, database developers
normally don't code triggers, but database administrators do. Because some coding is
required, we have included triggers in this section. Below is an example of a trigger:

create trigger myvalidate no cascade before insert on T1

 referencing NEW as N

 for each row

 begin atomic

 set (N.myxmlcol) = XMLVALIDATE(N.myxmlcol

 according to xmlschema id myxmlschema);

Chapter 1 - Introduction to DB2 application development 27

 end

In this example, the trigger is fired before an INSERT operation on table T1. The trigger will
insert the value (which is an XML document), but will invoke the XMLVALIDATE function to
validate this XML document with a given schema. Chapter 15, DB2 pureXML talks more
about XML and XML schemas.

1.3 Client-side development
As the name suggests, in client-side development, the application developers code their
programs on a client and then connect and access the DB2 database using the application
program interfaces (APIs) that are provided with DB2. In this section we discuss:

 Embedded SQL

 Static SQL vs Dynamic SQL

 CLI and ODBC

 JDBC, SQLJ and pureQuery

 OLE DB

 ADO.NET

 PHP

 Ruby on Rails

 Perl

 Python

1.3.1 Embedded SQL

Embedded SQL applications are applications where SQL is embedded into a host
language such as C, C++, or COBOL. The embedded SQL application can include static
or dynamic SQL as described in the next section. Figure 1.2 shows how an embedded
SQL application is built.

28 Getting started with DB2 application development

Figure 1.2 - Building embedded SQL applications

In the figure, the C program hello.sqc contains embedded SQL. The embedded SQL
API for the C language uses EXEC SQL (highlighted in Figure 1.2) to allow a
precompilation process to distinguish between the embedded SQL statements and the
actual C code. You may also note in the hello.sqc listing that some variables are
prefixed with a colon, as in :dbname, :userID, and :psw. These are called host
variables. Host variables are variables from the host language that are referenced in the
embedded SQL statements.

Issuing the precompile command (also known as the prep command) with the
bindfile option generates two files, the hello.bnd bind file containing only SQL
statements and the hello.c file containing only C code. The bind file will be compiled
using the bind command to obtain a package that is stored in the database. A package
includes the compiled/executable SQL and the access path DB2 will follow to retrieve the
data. To issue the bind command, a connection to the database must exist. At the bottom
of the figure, the hello.c file is compiled and linked like any regular C program. The
resulting executable file hello.exe has to match the package stored in the database to
successfully execute.

1.3.2 Static SQL vs. Dynamic SQL

Static SQL statements are the ones where the SQL structure is fully known at precompile
time. For example:

SELECT lastname, salary FROM employee

Chapter 1 - Introduction to DB2 application development 29

In this example, the names for the columns (lastname, salary) and table (employee)
referenced in a statement are fully known at precompile time. The following example is also
a static SQL statement:

SELECT lastname, salary FROM employee WHERE firstnme = :fname

In this second example, a host variable :fname is used as part of an embedded SQL
statement. Though the value of the host variable is unknown until runtime, its data type is
known from the program, and all the other objects (column names, table names) are fully
known ahead of time. DB2 software uses estimates for these host variables to calculate the
access plan ahead of time; therefore, this case is still considered static SQL.

You precompile, bind, and compile statically executed SQL statements before you run your
application. Static SQL is best used on databases whose statistics do not change a great
deal. Now let's take a look at one more example:

SELECT ?, ? FROM ?

In this example, the names for the columns and table referenced by the statement are not
known until runtime. Therefore the access plan is calculated only at runtime and using the
statistics available at the time. These types of statements are considered Dynamic SQL
statements.

Some programming APIs, like JDBC and ODBC, always use dynamic SQL regardless of
whether the SQL statement includes known objects or not. For example, the statement
SELECT lastname, salary FROM employee has all the columns and table names
known ahead of time, but through JDBC or ODBC, you do not precompile the statements.
All the access plans for the statements are calculated at runtime.

In general, two statements are used to treat a SQL statement as dynamic:

 PREPARE: This statement prepares or compiles the SQL statement calculating the
access plan to use to retrieve the data

 EXECUTE: This statement executes the SQL

Alternatively you can execute a PREPARE and EXECUTE in one single statement: EXECUTE
IMMEDIATELY

Listing 1.1 shows an example on an embedded C dynamic SQL statement that is prepared
and executed.

strcpy(hVStmtDyn, “SELECT name FROM emp WHERE dept = ?");

PREPARE StmtDyn FROM :hVStmtDyn;
EXECUTE StmtDyn USING 1;

EXECUTE StmtDyn USING 2;

Listing 1.1 - An embedded C dynamic SQL statement using PREPARE and EXECUTE

Listing 1.2 shows the same example as Listing 1.1, but using the EXECUTE
IMMEDIATELY statement

30 Getting started with DB2 application development

EXECUTE IMMEDIATELY SELECT name from EMP where dept = 1

EXECUTE IMMEDIATELY SELECT name from EMP where dept = 2

Listing 1.2 - An embedded C dynamic SQL statement using EXECUTE IMMEDIATELY

In many dynamic programming languages such as PHP or Ruby on Rails, where SQL is
run dynamically, programmers tend to write the same SQL statements with different field
values as follows:

SELECT lastname, salary FROM employee where firstnme = 'Raul'

SELECT lastname, salary FROM employee where firstnme = 'Jin'

...

In this example, the statements are identical except for the value of the column
firstnme. DB2 considers these two dynamic SQL statements as different ones, and
therefore at runtime, it prepares and then executes each statement independently. The
overhead of preparing the same statement several times can cause performance
degradation, therefore prior to DB2 9.7, the recommendation was to code statements as
follows:

SELECT lastname, salary FROM employee where firstnme = ?

The question mark (?) in the statement is known as a parameter marker. Using parameter
markers, the program could prepare the statement only once, and then issue EXECUTE
statements providing the different values for the parameter marker.

In DB2 9.7, DB2 introduced a technology called statement concentrator where all the
statements that are the same except for the field values are automatically lumped together
into one single statement with parameter markers, and then EXECUTE statements are
performed with the different values. The statement concentrator does have the intelligence
to determine when not to lump some statements together; for example, when you
purposely add some clauses to influence the DB2 optimizer.

With respect to performance, static SQL will normally perform better than dynamic SQL
since the access plan in static SQL is performed at precompile time and not at runtime.
However, for environments where there is a lot of activity such as INSERTs and DELETEs,
the statistics calculated at precompile time may not be up-to-date, and therefore, the
access plan of the static SQL may not be optimal. In this case, dynamic SQL may be a
better choice, assuming a RUNSTATS command is frequently executed to collect current
statistics.

Note:

Many users think embedded SQL is only static. In reality, it can be both, static or dynamic.

1.3.3 CLI and ODBC

Call Level Interface (CLI) was originally developed by the X/Open Company and the SQL
Access Group. It was a specification for a callable SQL interface with the purpose of

Chapter 1 - Introduction to DB2 application development 31

developing portable C/C++ applications regardless of the RDBMS vendor. Based on a
preliminary draft of X/Open Call Level Interface, Microsoft developed Open Database
Connectivity (ODBC), and later on, the ISO CLI International Standard accepted most of
the X/Open Call Level Interface specification. DB2 CLI is based on both: ODBC and the
International Standard for SQL/CLI as shown in Figure 1.3.

Figure 1.3 - DB2 CLI is based on ODBC and ISO CLI International standard

DB2 CLI conforms to ODBC 3.51 and can be used as the ODBC Driver when loaded by an
ODBC Driver Manager. Figure 1.4 can help you picture DB2 CLI support for ODBC.

Figure 1.4 - DB2 CLI conforms to ODBC 3.51

CLI/ODBC has the following characteristics:

 The code is easily portable between several RDBMS vendors

 Unlike embedded SQL, there is no need for a precompiler or host variables

 It runs dynamic SQL

 It is very popular

32 Getting started with DB2 application development

To run a CLI/ODBC application all you need is the DB2 CLI driver. This driver is installed
from either of the following clients and drivers which can be downloaded and used for free
from www.ibm.com/db2/express:

 IBM Data Server Client

 IBM Data Server Runtime Client

 IBM Data Server Driver for ODBC and CLI

To develop a CLI/ODBC application you need the DB2 CLI driver and also the appropriate
libraries. These can be found only on the IBM Data Server Client.

Let's take a look at the following example so you understand better how you can set up the
DB2 CLI driver for your applications. Figure 1.5 depicts three different machines, one in
Indonesia, the other one in Brazil, and the other one in Canada.

Figure 1.5 - DB2 CLI/ODBC sample scenario

The figure shows two cases:

On the left let’s say the machine in Indonesia is running an ODBC application which could
work with any RDBMS such as Oracle®, Microsoft® SQL Server® or DB2 database server.
An ODBC Driver Manager will load the appropriate ODBC driver depending on the
database that is being accessed. In the case where the application accesses a DB2
database in Canada, the connection needs to go through a DB2 Client which has the
components to connect remotely.

http://www.ibm.com/db2/express/download.html?S_CMP=ECDDWW01&S_TACT=DOCBOOK07�

Chapter 1 - Introduction to DB2 application development 33

On the right side, let’s say a CLI application is running in a machine in Brazil. It’s a CLI
application because it may be using some specific functions not available in ODBC, and
also because the application will only work for a DB2 database. The CLI application will go
through the DB2 CLI Driver. The application can connect to the local DB2 database in
Brazil. When it needs to connect to the remote database in Canada, it will go through a
DB2 client.

One last point to be made in this section is a comparison between a CLI/ODBC application
and an embedded SQL C dynamic application. Figure 1.6 illustrates this comparison.

Figure 1.6 - CLI/ODBC application versus Embedded SQL C dynamic application

As shown in Figure 1.6, the only difference between CLI/ODBC vs. Embedded SQL C
dynamic SQL is that for CLI/ODBC your code is portable and can access other RDBMS
simply by changing the connection string, while in the embedded SQL C dynamic version,
you may be coding specific elements for DB2. Of course the other difference is the way the
different functions for PREPARE, and EXECUTE are invoked.

1.3.4 JDBC, SQLJ and pureQuery

Java Database Connectivity (JDBC) is a Java programming API that standardizes the
means to work and access databases. In JDBC the code is easily portable between
several RDBMS vendors. The only changes required to the code are normally which JDBC
driver to load and the connection string. JDBC uses only dynamic SQL and it is very
popular.

SQLJ is the standard for embedding SQL in Java programs. It is mainly used with static
SQL, though it can inter-operate with JDBC as shown in Figure 1.7. Though it is normally
more compact than JDBC programs and provides better performance, it has not been

34 Getting started with DB2 application development

widely accepted. SQLJ programs must be run through a preprocessor (the SQLJ
translator) before they can be compiled.

Figure 1.7 - Relationship between SQLJ and JDBC applications

In Figure 1.7, a DB2 client may or may not be required depending on the type of JDBC
driver used as discussed later on this section.

pureQuery is an IBM Eclipse-based plug-in to manage relational data as objects.
Available since 2007, pureQuery can automatically generate the code to establish an
object-relational mapping (ORM) between your object oriented code and the relational
database objects. You start by creating a Java project with OptimTM Development Studio
(ODS), connect to a DB2 database, and then have ODS discover all the database objects.
Through the ODS GUI you can pick a table and then choose to generate the pureQuery
code which would transform any of the underlying relational table entities into a Java
object. Code is generated to create the relevant SQL statements and parent Java objects
that encapsulate those statements. The generated Java objects and the contained SQL
statements can be further customized. With pureQuery, you can decide at runtime whether
you want to run your SQL in static or dynamic mode. pureQuery supports both Java and
.NET.

1.3.4.1 JDBC and SQLJ drivers

Though there are several types of JDBC drivers such as type 1, 2, 3 and 4; type 1 and 3
are not commonly used, and DB2's support of these types has been deprecated. For type
2, there are two drivers as we will describe shortly, but one of them is also deprecated.

Type 2 and type 4 are supported with DB2 software, as shown in Table 1.2. Type 2 drivers
need to have a DB2 client installed, as the driver uses it to establish communication to the
database. Type 4 is a pure Java client, so there is no need for a DB2 client, but the driver
must be installed on the machine where the JDBC application is running.

Chapter 1 - Introduction to DB2 application development 35

Driver
Type

Driver Name Packaged
as

Supports Minimum level of SDK for
Java required

Type 2 DB2 JDBC Type 2 Driver
for Linux, UNIX® and
Windows (Deprecated*)

db2java.zip JDBC 1.2
and JDBC
2.0

1.4.2

Type 2
and
Type 4

IBM Data Server Driver
for JDBC and SQLJ

db2jcc.jar
and sqlj.zip

JDBC 3.0
compliant

1.4.2

db2jcc4.jar
and
sqlj4.zip

JDBC 4.0
and earlier

6

Table 1.2 - DB2 JDBC and SQLJ drivers

* Deprecated means it is still supported, but no longer enhanced

As mentioned earlier and shown also in Table 1.2, Type 2 is provided with two different
drivers; however the DB2 JDBC Type 2 Driver for Linux, UNIX and Windows, with filename
db2java.zip is deprecated.

When you install a DB2 server, a DB2 client or the IBM Data Server Driver for JDBC and
SQLJ, the db2jcc.jar and sqlj.zip files compliant with JDBC 3.0 are automatically added to
your classpath.

1.3.5 OLE DB

Object Linking and Embedding, Database (OLE DB) is a set of interfaces that provides
access to data stored in diverse sources. It was designed as a replacement to ODBC, but
extended to support a wider variety of sources, including non-relational databases, such as
object oriented databases and spreadsheets. OLE DB is implemented using the
Component Object Model (COM) technology.

OLE DB consumers can access a DB2 database with the IBM OLE DB Provider for DB2.
This provider has the following characteristics:

 Provider name: IBMDADB2

 Supports level 0 of the OLE DB provider specification, including some additional
level 1 interfaces

 Complies with Version 2.7 or later of the Microsoft OLE DB specification

 An IBM Data Server Client with the Microsoft Data Access Components (MDAC)
must be installed

36 Getting started with DB2 application development

 If IBMDADB2 is not explicitly specified, Microsoft’s OLE DB driver (MSDASQL) will
be utilized by default. MSDASQL allows clients utilizing OLE DB to access non-
Microsoft SQL server data sources using the ODBC driver but does not guarantee
full functionality of the OLE DB driver.

1.3.6 ADO.NET

The .NET Framework is the Microsoft replacement for Component Object Model (COM)
technology. Using the .NET Framework, you can code .NET applications in over forty
different programming languages; the most popular ones being C# and Visual Basic .NET.

The .NET Framework class library provides the building blocks with which you build .NET
applications. This class library is language agnostic and provides interfaces to operating
system and application services. Your .NET application (regardless of language) compiles
into Intermediate Language (IL), a type of bytecode.

The Common Language Runtime (CLR) is the heart of the .NET Framework, compiling the
IL code on the fly, and then running it. In running the compiled IL code, the CLR activates
objects, verifies their security clearance, allocates their memory, executes them, and
cleans up their memory once execution is finished.

As an analogy to how Java works, in Java, a program can run in multiple platforms with
minimal or no modification: one language, but multiple platforms. In .NET, a program
written in any of the forty supported languages can run in one platform, Windows, with
minimal or no modification: multiple languages, but one platform.

ADO.NET is how data access support is provided in the .NET Framework. ADO.NET
supports both connected and disconnected access. The key component of disconnected
data access in ADO.NET is the DataSet class, instances of which act as a database
cache that resides in your application's memory.

For both connected and disconnected access, your applications use databases through
what is known as a data provider. Various database products include their own .NET data
providers, including DB2 for Windows.

A .NET data provider features implementations of the following basic classes:

 Connection: establishes and manages a database connection.

 Command: executes an SQL statement against a database.

 DataReader: reads and returns result set data from a database.

 DataAdapter: links a DataSet instance to a database. Through a DataAdapter
instance, the DataSet can read and write database table data.

Three data providers that can work with DB2 software are shown in Table 1.3

Data Provider Characteristics

Chapter 1 - Introduction to DB2 application development 37

ODBC .NET Data provider

(not recommended)

 Makes ODBC calls to a DB2 data source using the
DB2 CLI driver.

 It has same keyword support and restrictions as that
of DB2 CLI driver

 Can be used with .NET Framework Version 1.1, 2.0,
or 3.0.

OLE DB .NET Data provider

(not recommended)

 Uses IBM DB2 OLE DB Driver (IBMDADB2).

 It has same keyword support and restrictions as that
of DB2 OLE DB driver

 Can be used only with .NET Framework Version 1.1,
2.0, or 3.0.

DB2 .NET Data provider

(recommended)

 Extends DB2 support for the ADO.NET interface.

 The DB2 managed provider implements the same
set of standard ADO.NET classes and methods

 It is defined under IBM.DATA.DB2 namespace.

 Can be obtained by downloading any of:

- Data Server Driver for ODBC, CLI, and .NET

- IBM Data Server Runtime Client

- DB2 Data Server

Table 1.3 - ADO.NET data providers

1.3.7 PHP

PHP Hypertext Preprocessor (PHP) is an open source, platform independent scripting
language designed for Web application development. It can be embedded within HTML,
and generally runs on a Web server which takes the PHP code and creates Web pages as
output.

PHP is a modular language. You can use extensions to customize the available
functionality. Some of the most popular PHP extensions are those used to access
databases. IBM supports access to DB2 databases through two extensions:

 ibm_db2: The ibm_db2 extension offers a procedural application programming
interface to create, read, update and write database operations in addition to

38 Getting started with DB2 application development

extensive access to the database metadata. It can be compiled with either PHP 4 or
PHP 5.

 pdo_ibm: The pdo_ibm is a driver for the PHP Data Objects (PDO) extension that
offers access to DB2 database through the standard object-oriented database
interface introduced in PHP 5.1. It can be compiled directly against DB2 libraries.

The PHP extensions and drivers are available for free from the PECL repository at
http://pecl.php.net/ Windows builds of the extensions and drivers are available at
http://sourceforge.net/projects/db2mc/files/

You will need the IBM Data Server Driver for ODBC and CLI to install the PHP extensions
on Linux and UNIX. Both, ibm_db2 and pdo_ibm are based on the IBM DB2 CLI Layer.

1.3.8 Ruby on Rails

Ruby is an open source object oriented language. Rails is a Web framework created using
Ruby. Ruby on Rails (RoR) is an ideal means to develop database backed web-based
applications. This hot new technology is based on the Model, View, Controller (MVC)
architecture and follows the principles of agile software development.

Rails requires no special file formats or integrated development environments (IDEs); you
can get started with a text editor. However, various IDEs are available with Rails support,
such as RadRails, which is a Rails environment for Eclipse. For more information about
RadRails, visit http://www.radrails.org/.

DB2 supports Ruby 1.8.5 and later and Ruby on Rails 1.2.1 and later. The IBM_DB gem
includes the IBM_DB Ruby driver and Rails adapter which allows you to work with DB2 and is
based on the CLI layer. This gem must be installed along with an IBM Data Server Client.
To install the IBM_DB driver and adapter you can use Ruby gem or as a Rails plug-in.

1.3.9 Perl

Perl is a popular interpreted programming language that is freely available for many
operating systems. It uses dynamic SQL, and it is ideal for prototyping applications.

Perl provides a standard module called the Database Interface (DBI) module for accessing
different databases. It is available from http://www.perl.com. This module "talks" to drivers
from different database vendors. In the case of DB2, this is the DBD::DB2 driver which is
available from http://www.ibm.com/software/data/db2/perl.

1.3.10 Python

Python is a dynamic language often used for scripting. It emphasizes code readability and
supports a variety of programming paradigms, including procedural, object-oriented,
aspect-oriented, meta, and functional programming. Python is ideal for rapid application
development.

http://pecl.php.net/�
http://www.radrails.org/�
http://www.perl.com/�

Chapter 1 - Introduction to DB2 application development 39

Table 1.4 shows the extensions that are available for accessing DB2 databases from a
Python application.

Extension Description

ibm_db Defined by IBM
Provides the best support for advanced
features.
Allows you to issue SQL queries, call stored
procedures, use pureXML®, and access
metadata information.

ibm_db_dbi Implements the Python Database API
Specification v2.0.
It does not offer some of the advanced
features that the ibm_db API supports.

If you have an application with a driver that
supports Python Database API Specification
v2.0, you can easily switch to ibm_db. The
ibm_db and ibm_db_dbi APIs are packaged
together.

ibm_db_sa Supports SQLAlchemy, a popular open
source Python SQL toolkit and object-to-
relational mapper (ORM).

Table 1.4 - IBM Data Server - Python extensions

1.4 XML and DB2 pureXML
Extensible Markup Language (XML) is the underlying technology for Web 2.0 tools and
techniques, as well as for Service Oriented Architecture (SOA). IBM recognized early on
the importance of XML, and large investments were made to deliver pureXML® technology
-- a technology that provides for better storage support XML documents in DB2 software.

Introduced in 2006, DB2 9 is a hybrid data server: it allows native storage of relational data,
as well as hierarchical data. While previous versions of DB2 and other data servers in the
marketplace could store XML documents, the storage method used in DB2 9 has improved
performance and flexibility. With DB2 9's pureXML technology, XML documents are stored
internally in a parsed hierarchical manner, as a tree; therefore, working with XML
documents is greatly enhanced. Newer releases of DB2 such as DB2 9.5 and DB2 9.7
have further improved the support for pureXML. Chapter 15, DB2 pureXML is devoted to
this subject in detail.

40 Getting started with DB2 application development

1.5 Web services
As a simple definition, think of a Web service as a function you can invoke through the
network, where you don't need to know the programming language used to develop it, you
don't need to know the operating system where the function will run, and you don't need to
know the location where it will run. Web services allow one application to exchange data
with another application using extensible industry standard protocols based on XML. This
is illustrated in Figure 1.8.

Figure 1.8 – How an example Web service works

In the figure, let's say the left side represents the system of a fictitious airline, Air Atlantis
which is using DB2 on Linux, and stores its flight information in XML format in the DB2
database. On the right side we have a system from another fictitious airline, Air Discovery
which is using SQL Server running on Windows. Now let's say that Air Atlantis and Air
Discovery sign a partnership agreement where the two companies want to share
scheduling and pricing information in order to coordinate their flights. Sharing information
between the two may be a challenge given that the two companies are using different
operating systems (Linux, Windows), and different data servers (DB2, SQL Server). When
Air Atlantis changes its flight schedule for a trip going from Toronto to Beijing, how can Air
Discovery automatically adjust its own flight schedule for a connecting flight from Beijing to
Shanghai? The answer lies on Web services. Air Atlantis can expose some of its flight
information by creating a Data Web service that returns the output of a stored procedure

Chapter 1 - Introduction to DB2 application development 41

(the getFlightInfo stored procedure) with flight information from the DB2 database. A
Data Web service is a Web service based on database information. When this Data Web
service is deployed to an application server such as WebSphere Application Server; then a
client or partner like Air Discovery can use a browser to access Air Atlantis' flight
information very easily. In this example, Air Atlantis behaves as the Web service provider
as it developed and made available the Web service, while Air Discovery behaves as the
Web service consumer since it consumes or uses the Web service.

Air Discovery can also invoke the Web service from its own JDBC application so that it can
perform calculations that use data from its SQL Server database. For example, if a flight
from Toronto to Beijing takes an average of 12 hours, Air Discovery can compute the
connecting flight from Beijing to Shanghai by adding the departure time the Air Atlantis
flight left Toronto, and adding the flight duration plus a few buffer hours. The amount of
hours to use as buffer may be stored in the SQL Server database at Air Discovery's
system, and the simple equation to use in the JDBC application would look like this:

If Air Atlantis changes its flight departure time, this information is automatically
communicated to the Air Discovery system when it invokes the Web service.

1.6 Administrative APIs
DB2 software ("DB2") provides a large amount of administrative APIs that developers can
use to build their own utilities or tools. For example, to create a database you can invoke
the sqlecrea API; to start an instance, use the db2InstanceStart API; or to import
data into a table, use the db2Import API. The complete list is available from the DB2
Information Center. See the Resources section for the DB2 Information Center URL.

1.7 Development tools
Microsoft Visual Studio and Eclipse are two of the most popular Integrated Development
Environments (IDEs) used by developers today. Both IDEs work well with DB2 software
("DB2").

Some users of DB2 also interact with third party products such as MS Excel and MS
Access to create simple forms that connect to DB2. In this section we describe how to work
with these products and DB2 Express-C.

DB2 Express-C is available also on Mac OS X, so you can use DB2 natively to develop
database applications on a Mac. This may be especially appealing to the RoR community
who has embraced the Mac platform.

42 Getting started with DB2 application development

1.7.1 Visual Studio

For Microsoft Visual Studio, DB2 provides the IBM Database Add-ins for Visual Studio.
This free separate installable add-in integrates DB2 tools menus into Visual Studio after
installed. This way, a developer does not need to switch to other tools to work with DB2
databases. You can download the Add-ins from the DB2 Express-C Web site at
http://ibm.com/db2/express. More information is provided in Chapter 6, Application
development with .NET.

1.7.2 Eclipse

With respect to Eclipse, IBM offers IBM Data Studio, a free Eclipse-based tool that allows
you to administer your DB2 instances and databases, and to develop SQL and XQuery
scripts, stored procedures, UDFs, and data Web services. Because it is based on the
Eclipse platform, many developers can leverage their existing knowledge to work with this
tool.

To learn more about IBM Data Studio, refer to the eBook Getting started with IBM Data
Studio for DB2.

1.7.3 Access and Excel

Microsoft Excel and Microsoft Access are popular tools to generate reports, create forms,
and develop simple applications that provide some business intelligence to your data. DB2
interacts very easily with these tools. A DBA can store the company data in a secure DB2
server, and regular users with Access or Excel can access this data and generate reports.
This is illustrated in Figure 1.9

Figure 1.9 - Working with Excel, Access and DB2

In the figure, Excel and Access can be used to develop a front-end application, while DB2
takes care of data security, reliability and performance as the back-end of the application.
Having all the data centralized in DB2 creates a simplified data storage model.

http://www.ibm.com/db2/express/download.html?S_CMP=ECDDWW01&S_TACT=DOCBOOK07�
http://www.ibm.com/db2/books�
http://www.ibm.com/db2/books�

Chapter 1 - Introduction to DB2 application development 43

In the case of Excel, the easiest way to get access to the DB2 data is to use an OLE DB
driver such as the IBM OLE DB Provider for DB2. This is included when you install the free
IBM Data Server Client which can be downloaded from the DB2 Express-C web site at
http://ibm.com/db2/express. Once installed, you need to select your data source with the
appropriate OLE DB provider to use from the MS Excel menu. Choose Data Import
External Data Import Data. The next steps are documented in the article IBM® DB2®
Universal Database™ and the Microsoft® Excel Application Developer… for Beginners [1].
See the References section for details.

In the case of Microsoft Access, you should also have either of the following installed:

 IBM Data Server client, or

 IBM Data Server Driver for ODBC, CLI and .Net, or

 IBM Data Server Driver for ODBC and CLI

The IBM Data Server Driver for ODBC, CLI and .Net, and the IBM Data Server Driver for
ODBC and CLI is also known as the IBM DB2 ODBC Driver, which is the same as the DB2
CLI driver. This is the driver to use to connect from Access to DB2. After the driver is
installed, create an Access 2007 project, and choose the ODBC Database option available
within the External Data tab in the Table Tools ribbon. The next steps are documented in
the article DB2 9 and Microsoft Access 2007 Part 1: Getting the Data...[2]. When using
linked tables in Microsoft Access, the data is available to Access 2007 users, but the data
resides on the DB2 data server.

For versions of Access prior to 2007, the setup is a bit different, but you can review the
article Use Microsoft Access to interact with your DB2 data [3]. See the References section
for details.

1.8 Development environments
Developing applications using DB2 is not restricted to installing the software on your
laptop, or company computer. Today you can take advantage of Cloud Computing to
provision a DB2 server for a specified time. You can also develop DB2 applications using
virtual appliances available for DB2. These development environments are discussed in
this section.

1.8.1 DB2 Offerings on the Cloud

DB2 has offerings on the Cloud with:

 Amazon Web Services

 IBM development and test cloud

 IBM CloudBurst™ and IBM WebSphere CloudBurst appliance

 RightscaleTM

http://www.ibm.com/db2/express/download.html?S_CMP=ECDDWW01&S_TACT=DOCBOOK07�

44 Getting started with DB2 application development

These are discussed in the next sections in more detail.

1.8.1.1 Amazon Web Services

IBM has entered into a partnership agreement with Amazon Web Services (AWS) for
running DB2 on Amazon’s Elastic Compute Cloud (EC2). AWS delivers a set of integrated
services that form a computing platform “in the cloud”, and is available on a pay-as-you-go
model. That is, AWS lets you ‘rent’ compute capacity (virtual servers and storage), and you
only pay for the capacity that you utilize. For example, let's say you provision one EC2
virtual server for normal database operations, and during peak times or for seasonal needs
you provision an extra database server for a few hours. In this example you would pay
AWS only for the extra database server only for the few hours that you have it running.

IBM offers three different deployment options for DB2 on Amazon’s cloud platform:

 DB2 Express-C Amazon Machine Images (AMIs) for evaluation and development

 Pay-as-you-go Production-ready AMIs with DB2 Express and DB2 Workgroup

 Ability to create your own AMIs using DB2 licenses you own

For more information and how to get started with DB2 on Amazon EC2, visit:
http://www.ibm.com/db2/cloud

1.8.1.2 IBM development and test cloud

IBM Smart Business Development and Test on the IBM Cloud (IBM Developer Cloud for
short) provides similar services to AWS, but it focuses on development and test. It allows
for flexible provisioning of resources, on demand, at a predetermined cost.

At the time of writing, DB2 images on the IBM Developer Cloud include:

 DB2 Express-C 9.7.1 PAYG (Pay as you go).

This image uses DB2 Express-C 9.7.1 built on 32-bit SUSE Linux Enterprise Server
(SLES). Note that using DB2 Express-C is free; however, you need to pay for the
infrastructure.

 DB2 Enterprise Developer 9.7.1 - BYOL (Bring your own license).

This image uses DB2 Enterprise built on 32-bit SLES with the IBM Database
Enterprise Developer Edition (DEDE) license.

 DB2 Enterprise Developer 9.7.1 64-bit - BYOL.

This image uses DB2 Enterprise on 64-bit Red Hat Enterprise Linux (RHEL) with
the IBM Database Enterprise Developer Edition (DEDE) license.

For more information about the IBM Developer Cloud, visit http://ibm.com/cloud/enterprise

http://www.ibm.com/db2/cloud�
http://ibm.com/cloud/enterprise�

Chapter 1 - Introduction to DB2 application development 45

1.8.1.3 IBM CloudBurst for development and test

IBM CloudBurst allows you to build your own private cloud in your company. It provides
pre-installed, fully integrated service management capabilities across hardware,
middleware and applications using the IBM System x® BladeCenter® platform. It includes
services from IBM to implement it. Use IBM CloudBurst with the IBM WebSphere
CloudBurst appliance. These two critical offerings complement each other to help your
clients more easily, quickly and cost-effectively.

For more information, visit http://www-01.ibm.com/software/tivoli/products/cloudburst/

1.8.1.4 IBM WebSphere CloudBurst

IBM WebSphere CloudBurst is an appliance that helps developers establish and deploy
software images and patterns into a cloud environment. WebSphere Cloudburst Appliance
is like the “dispenser” of software environments into a private cloud, and IBM CloudBurst is
the “recipient” private cloud environment.

At the time of writing the DB2 images available on the IBM Websphere CloudBurst are:

 DB2 Enterprise 9.7.0 32-bit trial with 90-day evaluation period

This image uses DB2 Enterprise built on 32-bit SLES

For more information, visit http://www-01.ibm.com/software/webservers/cloudburst/

1.8.1.4 Rightscale

RightScale is a Cloud Management Platform. It allows you to more easily deploy and
manage business-critical applications on the cloud with automation, control, and portability.
Rightscale provides server templates and scripts (called RightScripts) that are published on
their site and allow you to automate, clone and repeat operations easily.

At the time of writing, the templates and Rightscripts listed in Table 1.5 are available for
DB2.

Type Name Description

ServerTemplate IBM DB2 Express-C 9.7
(CentOS 5.2)

Install and configure DB2 Express-C
9.7

ServerTemplate IBM DB2 Express-C 9.7 (Ubuntu
8.04)

Install and configure DB2 Express-C
9.7

RightScript VPN Cubed Client Connect Add server to existing VPN

RightScript Add Users to Group Add users to the group

http://www-01.ibm.com/software/tivoli/products/cloudburst/�
http://www-01.ibm.com/software/webservers/cloudburst/�

46 Getting started with DB2 application development

RightScript Backup DB2 Database Run a DB2 backup on your running
instance

RightScript Create database Create a database

RightScript Create Group Create a new group

RightScript Create sample database Run db2sampl

RightScript Create User Create a user

RightScript Delete Group Delete a system group

RightScript Delete User Delete a system user

RightScript Drop a database Drop a database

RightScript Install DB2 Express-C Install DB2 Express-C 9.7

RightScript Remove Users from a Group Remove users from group

RightScript Run command within db2 Run command from db2
commandline

RightScript Set DB2 parameter Use the db2set command

RightScript Start DB2 Start DB2 by running db2start

RightScript Start DB2 Administration Server Start DAS server by running
db2admin start

RightScript Stop DB2 Run "db2stop" command to stop db2

RightScript Stop DB2 Administration Server Stop DAS server by running
db2admin stop

 Table 1.5 - Rightscale templates and RightScripts for DB2

For more information about Rightscale and DB2, visit

http://support.rightscale.com/27-Partners/IBM_DB2

http://support.rightscale.com/27-Partners/IBM_DB2�

Chapter 1 - Introduction to DB2 application development 47

1.8.2 DB2 Express-C virtual appliance for VMWare

If you work with VMWare in your company, you can use the DB2 Express-C virtual
appliances for both, Linux and Windows on 32-bit or 64-bit. Download these appliances
from http://www.ibm.com/db2/express/download.html

1.9 Sample programs
To help you learn how to program in different languages using DB2 as the data server, you
can review the sample applications that come with the DB2 server installation in the
SQLLIB\samples directory. Figure 1.10 below shows some sample programs provided with
DB2 on a Windows platform.

Figure 1.10 - Sample programs that come with DB2

1.10 Exercises
1. Using IBM Data Studio, create a stored procedure P2 that does nothing. Call this

stored procedure from the DB2 Command Window or Linux shell.

2. Using IBM Data Studio, create a function F2 that takes no parameters and returns
the value 2000. Invoke this function from the DB2 Command Window or Linux
shell.

3. Modify P2 so it now invokes F2. Test it out!

http://www.ibm.com/db2/express/download.html?S_CMP=ECDDWW01&S_TACT=DOCBOOK07�

48 Getting started with DB2 application development

1.11 Summary
In this chapter, we looked at how DB2 provides the flexibility to program database
applications either inside the database on the server, or via client side applications with
connections to the DB2 data server.

The server side application coverage included stored procedures, user-defined functions
and triggers.

On the client side, we discussed the myriad of programming interfaces and methods
permitted by DB2 application development, once again displaying the remarkable flexibility
and capacity of DB2 as a database server.

1.12 Review questions
1. List one advantage of using stored procedures

2. How can a user extend the SQL language?

3. What is the difference between CLI and ODBC?

4. What is the difference between static SQL and dynamic SQL?

5. Mention one difference between a JDBC Type 2 and a JDBC Type 4 driver?

6. Which of the following objects are stored in a DB2 database?

A. Tables

B. Stored procedures

C. User-defined functions

D. All of the above

E. None of the above

7. Which of the following languages can be used to code stored procedures in DB2?

A. SQL PL

B. PL/SQL

C. Cobol

D. Java

E. All of the above

8. Choose the statements that are correct:

A. Static SQL is normally faster than dynamic SQL when the database is constantly
changed with many updates, deletes and inserts.

B. Embedded SQL must be static SQL

Chapter 1 - Introduction to DB2 application development 49

C. ODBC and JDBC always use dynamic SQL

D. All of the above

E. None of the above

9. Which of the following is the recommended ADO.NET provider to use with DB2?

A. ODBC .NET Data provider

B. OLE DB .NET Data provider

C. DB2 .NET Data provider

D. All of the above

E. None of the above

10. Which of the following is not an IBM Data Server Python extension?

A. ibm_db

B. ibm_db_dbi

C. ibm_db_sa

D. ibm_db_python

E. All of the above

2
Chapter 2 – DB2 pureXML
In this chapter we discuss pureXML, the new technology introduced in DB2 9 to support
XML native storage. Many of the examples and concepts discussed in this chapter have
been taken from the IBM Redbook®: DB2 9: pureXML overview and fast start. See the
Resources section for more information on this title. Figure 2.1 outlines which section of the
DB2 “Big Picture” we discuss in this chapter.

Figure 2.1 – The DB2 big picture: DB2 commands, SQL/XML and XQuery

52 Getting started with DB2 application development

Note:

For more information about pureXML, watch this video:
http://www.channeldb2.com/video/video/show?id=807741:Video:4382

2.1 Using XML with databases
XML documents can be stored in text files, XML repositories, or databases. There are two
main reasons why many companies opt to store them in databases:

 Managing large volumes of XML data is a database problem. XML is data like other
data, just in a different overall format. The same reasons to store relational data on
databases apply to XML data: Databases provide efficient search and retrieval,
robust support for persistence of data, backup and recovery, transaction support,
performance and scalability.

 Integration: By storing relational and XML documents together, you can integrate
new XML data with existing relational data, and combine SQL with XPath or XQuery
in one query. Moreover, relational data can be published as XML, and vice versa.
Through integration, databases can better support Web applications, SOA, and
Web services.

2.2 XML databases
There are two types of databases for storing XML data:

 XML-enabled databases

 Native XML databases

2.2.1 XML-enabled databases

An XML-enabled database uses the relational model as its core data storage model to
store XML. This requires either a mapping between the XML (hierarchical) data model and
the relational data model, or else storing the XML data as a character large object. While
this can be considered as “old” technology, it is still being used by many database vendors.
Figure 2.2 explains in more detail the two options for XML-enabled databases.

http://www.channeldb2.com/video/video/show?id=807741:Video:4382%20%20�

Chapter 2 - DB2 pureXML 53

Figure 2.2 – Two options to store XML in XML-enabled databases

The left side of Figure 2.2 shows the CLOB and varchar method of storing XML
documents in a database. Using this method, an XML document is stored as an unparsed
string in either a CLOB or a varchar column in the database. If the XML document is stored
as a string, when you want to retrieve part of the XML document, your program will have to
retrieve the entire string, and parse it to find what you want. Think of parsing as building the
XML document tree in memory so you can navigate through this tree. This method is
memory-intensive and not very flexible.

The other option for XML-enabled databases is called shredding or decomposition and
is illustrated on the right hand side of Figure 2.2. Using this method, an entire XML
document is shredded into smaller parts which are stored in tables. Using this method, you
are literally forcing an XML document, which is based on the hierarchical model, into the
relational model. This method is not flexible because if the XML document is changed, this
change is not easily propagated into the corresponding tables and many other tables may
need to be created. This method is also not good for performance: if you need to get the
original XML document back, you need to perform an expensive SQL join operation, which
can become even more expensive when more tables are involved.

2.2.2 Native XML databases

Native XML databases use the hierarchical XML data model to store and process XML
internally. The storage format is the same as the processing format: there is no mapping to
the relational model, and XML documents are not stored as unparsed strings (CLOBs or
varchars). When XPath or XQuery statements are used, they are processed natively by
the engine, and not converted to SQL. This is why these databases are known as “native”
XML databases. DB2 is currently the only commercial data server providing this support.

54 Getting started with DB2 application development

2.3 XML in DB2
Figure 2.3 below outlines how relational data and hierarchical data (XML documents) are
both stored in a DB2 hybrid database. The figure also shows the CREATE TABLE
statement that was used to create the table dept.

Figure 2.3 – XML in DB2

Note that the table definition uses a new data type, XML, for the deptdoc column. The
left arrow in the figure indicates the relational column deptID stored in relational format
(tables), while the XML column deptdoc is stored in parsed hierarchical format.

Figure 2.4 illustrates that in DB2 9, there are now four ways to access data:

 Use SQL to access relational data

 Use SQL with XML extensions (SQL/XML) to access XML data

 Use XQuery to access XML data

 Use XQuery to access relational data

Figure 2.4 – Four ways to access data in DB2

Chapter 2 - DB2 pureXML 55

Thus, depending on your background, if you are an SQL person you may see DB2 as a
world class RDBMS that also supports XML. If you are an XML person, you would see DB2
as a world class XML repository that also supports SQL.

Note that IBM uses the term pureXML instead of native XML to describe this technology.
While other vendors still use the old technologies of CLOB/varchar or shredding to store
XML documents, they call those old technologies “native XML”. To avoid confusion, IBM
decided to use the new term pureXML, and to trademark this name so that no other
database or XML vendor could use this same term to denote some differing technology.
pureXML support is provided for databases created as Unicode or non-Unicode.

2.3.1 pureXML technology advantages

Many advantages are provided by pureXML technology.

1. You can seamlessly leverage your relational investment, given that XML
documents are stored in columns of tables using the new XML data type.

2. You can reduce code complexity. For example, Figure 2.5 illustrates a PHP script
written with and without using pureXML. Using pureXML (the smaller box on the
left side) the lines of code are reduced. This not only means that the code is less
complex, but the overall performance is improved as there are fewer lines to parse
and maintain in the code.

Figure 2.5 – Code complexity with and without pureXML

56 Getting started with DB2 application development

3. Changes to your schema are easier using XML and pureXML technology. Figure
2.6 illustrates an example of this increased flexibility. In the figure, assume that you
had a database consisting of the tables Employee and Department. Typically
with a non-XML database, if your manager asked you to store not only one phone
number per employee (the home phone number), but also a second phone number
(a cell phone number), then you could add an extra column to the Employee table
and store the cell phone number in that new column. However, this method would
be against the normalization rules of relational databases. If you want to preserve
these rules, you should instead create a new Phone side table, and move all phone
information to this table. You could then also add the cell phone numbers as well.
Creating a new Phone table is costly, not only because large amounts of pre-
existing data needs to be moved, but also because all the SQL in your applications
would have to change to point to the new table.

Instead, on the left side of the figure, we show how this could be done using XML.
If employee Christine also has a cell phone number, a new tag can be added to
put this information. If employee Michael does not have a cell phone number, we
just leave it as is.

Figure 2.6 – Increased data flexibility using XML

4. You can improve your XML application performance. Tests performed using
pureXML technology showed huge improvements in performance for XML
applications. Table 2.1 shows the test results for a company that switched to
pureXML from older technologies. The second column shows the results using the
old method of working with XML using another relational database, and the third
column shows the results using DB2 with pureXML.

Chapter 2 - DB2 pureXML 57

Task Other relational DB DB2 with pureXML
Development of search and
retrieval business processes

CLOB: 8 hrs
Shred: 2 hrs

30 min.

Relative lines of I/O code 100 35 (65% reduction)

Add field to schema 1 week 5 min.

Queries 24 - 36 hrs 20 sec - 10 min

Table 2.1 – Increased performance using pureXML technology

2.3.2 XPath basics

XPath is a language that can be used to query XML documents. Listing 2.1 shows an XML
document, and Figure 2.7 illustrates the same document represented in parsed-
hierarchical (also called “node” or “leaf”) format. We will use the parsed-hierarchical format
to explain how XPath works.

<dept bldg=“101”>
 <employee id=“901”>
 <name>John Doe</name>
<phone>408 555 1212</phone>
<office>344</office>

</employee>

<employee id=“902”>
<name>Peter Pan</name>
<phone>408 555 9918</phone>
<office>216</office>

</employee>

</dept>

Listing 2.1 – An XML document

58 Getting started with DB2 application development

Figure 2.7 – Parsed-hierarchical representation of the XML document in Listing 2.1

A quick way to learn XPath is to compare it to the change directory (cd) command
in MS-DOS or Linux/UNIX. Using the cd command, you traverse a directory tree as
follows:

cd /directory1/directory2/…

Similarly, in XPath you use slashes to go from one element to another within the XML
document. For example, using the document in Listing 2.1 in XPath you could retrieve the
names of all employees using this query:

/dept/employee/name

2.3.2.1 XPath expressions

XPath expressions use fully qualified paths to specify elements and attributes. An “@” sign
is used to specify an attribute. To retrieve only the value (text node) of an element, use the
text() function. Table 2.2 shows XPath queries and the corresponding results using the
XML document from Listing 2.1.

XPath Result

/dept/@bldg 101

/dept/employee/@id 901

902

/dept/employee/name <name>Peter Pan</name>

<name>John Doe</name>

dept

name

employee

phone id=901

John Doe

office

408-555-1212 344

name

employee

phone id=902

Peter Pan

office

408-555-9918 216

Chapter 2 - DB2 pureXML 59

/dept/employee/name/text() Peter Pan

John Doe

Table 2.2 – XPath expression examples

2.3.2.2 XPath wildcards

There are two main wildcards in XPath:

 “*” matches any tag name

 “//” is the “descendent-or-self” wildcard

Table 2.3 provides more examples using the XML document from Listing 2.1

XPath Result

/dept/employee/*/text() John Doe

408 555 1212

344

Peter Pan

408 555 9918

216

/dept/*/@id 901

902

//name/text() Peter Pan

John Doe

/dept//phone <phone>408 555 1212</phone>

<phone>408 555 9918</phone>

Table 2.3 – XPath wildcard examples

2.3.2.3 XPath predicates

Predicates are enclosed in square brackets []. As an analogy, you can think of them as
the equivalent to the WHERE clause in SQL. For example [@id=”902”] can be read as:
“WHERE attribute id is equal to 902”. There can be multiple predicates in one XPath
expression. To specify a positional predicate, use [n] which means the nth child would be
selected. For Example, employee[2] means that the second employee should be selected.
Table 2.4 provides more examples.

XPath Result

/dept/employee[@id=“902”]/name <name>Peter Pan</name>

/dept[@bldg=“101”]/employee[office
>“300”]/name

<name>John Doe</name>

60 Getting started with DB2 application development

//employee[office=“344” OR
office=“216”]/@id

901

902

/dept/employee[2]/@id 902

Table 2.4 – XPath predicate examples

2.3.2.4 The parent axis

Similar to MS-DOS or Linux/UNIX, you can use a “.” (dot) to indicate in the expression that
you are referring to the current context, and a “..” (dot dot) to refer to the parent context.
Table 2.5 provides more examples.

XPath Result

/dept/employee/name[../@id=“902”] <name>Peter Pan</name>

/dept/employee/office[.>“300”] <office>344</office>

/dept/employee[office > “300”]/office <office>344</office>

/dept/employee[name=“John Doe”]/../@bldg 101

/dept/employee/name[.=“John Doe”]/../../@bldg 101

Table 2.5 – XPath parent axis

2.3.3 XQuery basics

XQuery is a query language created for XML. XQuery supports path expressions to
navigate the XML hierarchical structure. In fact, XPath is a subset of XQuery; therefore,
everything we learned earlier about XPath applies to XQuery too. XQuery supports both
typed and untyped data. XQuery lacks null values because XML documents omit missing
or unknown data. XQuery and XPath expressions are case sensitive, and XQuery returns
sequences of XML data.

XQuery supports the FLWOR expression. If we use SQL for an analogy, it is equivalent to
a SELECT-FROM-WHERE expression. The next section describes FLWOR in more detail.

2.3.3.1 XQuery: FLWOR expression

FLWOR stands for:

 FOR: iterates through a sequence, binds a variable to items

 LET: binds a variable to a sequence

 WHERE: eliminates items of the iteration

 ORDER: reorders items of the iteration

Chapter 2 - DB2 pureXML 61

 RETURN: constructs query results

It is an expression that allows manipulation of XML documents, enabling you to return
another expression. For example, assume you have a table with this definition:

CREATE TABLE dept(deptID CHAR(8),deptdoc XML);

And the XML document in Listing 2.2 is inserted in the deptdoc column

<dept bldg=”101”>
 <employee id=”901”>
 <name>John Doe</name>
 <phone>408 555 1212</phone>
 <office>344</office>

 </employee>

 <employee id=”902”>
 <name>Peter Pan</name>
 <phone>408 555 9918</phone>
 <office>216</office>

 </employee>

</dept>

Listing 2.2 - A sample XML document

Then the XQuery statement in Listing 2.3 using the FLWOR expression could be run:

xquery

for $d in db2-fn:xmlcolumn('dept.deptdoc')/dept

let $emp := $d//employee/name

where $d/@bldg > 95

order by $d/@bldg

return

 <EmpList>

 {$d/@bldg, $emp}

 </EmpList>

Listing 2.3 - A sample XQuery statement with the FLWOR expression

This would return the output shown in Listing 2.4

<EmpList bldg="101">

 <name>

 John Doe

 </name>

 <name>

 Peter Pan

 </name>

</EmpList>

Listing 2.4 - Output after running the XQuery statement in Listing 2.3

62 Getting started with DB2 application development

2.3.4 Inserting XML documents

Inserting XML documents into a DB2 database can be performed using the SQL INSERT
statement, or the IMPORT utility. XQuery cannot be used for this purpose as this has not
yet been defined in the standard.

Let’s examine the script table_creation.txt shown in Listing 2.5 below, which can be
run from the DB2 Command Window or Linux shell using this statement:

db2 –tvf table_creation.txt

-- (1)

drop database mydb

;

-- (2)

create database mydb using codeset UTF-8 territory US

;

-- (3)

connect to mydb

;

-- (4)

create table items (

 id int primary key not null,

 brandname varchar(30),

 itemname varchar(30),

 sku int,

 srp decimal(7,2),

 comments xml

);

-- (5)

create table clients(

 id int primary key not null,

 name varchar(50),

 status varchar(10),

 contact xml

);

-- (6)

insert into clients values (77, 'John Smith', 'Gold',

 '<addr>111 Main St., Dallas, TX, 00112</addr>')

;

Chapter 2 - DB2 pureXML 63

-- (7)

IMPORT FROM "D:\Raul\clients.del" of del xml from "D:\Raul" INSERT INTO
CLIENTS (ID, NAME, STATUS, CONTACT)

;

-- (8)

IMPORT FROM "D:\Raul\items.del" of del xml from "D:\Raul" INSERT INTO
ITEMS (ID, BRANDNAME, ITEMNAME, SKU, SRP, COMMENTS)

;

Listing 2.5 - Contents of the file table_creation.txt

Note that this script file and related files are provided in the compressed file
Exercise_Files_DB2_Application_Development.zip that accompanies this
book. Follow along as we describe each line in the script of Listing 2.5.

1. Drop the database mydb. This is normally done in script files to perform cleanup.
If mydb didn’t exist before, you will receive an error message, but this is OK.

2. Create the database mydb using the codeset UTF-8. This creates a Unicode
database. pureXML is supported in both Unicode and non-Unicode databases.

3. Connect to the newly created database mydb. This is necessary to create objects
within the database.

4. Create the table items. Note that the last column in the table (column comments)
is defined as an XML column using the new XML data type.

5. We create the table clients. Note that the last column in the table (column
contact) is also defined with the new XML data type.

6. Using this SQL INSERT statement, you can insert an XML document into an XML
column. In the INSERT statement you pass the XML document as a string
enclosed in single quotes.

7. Using an IMPORT command, you can insert or import several XML documents
along relational data into the database. In (7) you are importing the data from the
clients.del file (a delimited ascii file), and you also indicate where the XML
data referenced by that clients.del file is located (for this example, in
D:\Raul).

We will take a more careful look at file clients.del, but first, let’s see the contents of
directory D:\Raul first. Figure 2.8 provides this information.

64 Getting started with DB2 application development

Figure 2.8 - Contents of D:\Raul directory with XML documents

Listing 2.6 shows the contents of the text file clients.del.

3227,Ella Kimpton,Gold,<XDS FIL='Client3227.xml' />,

8877,Chris Bontempo,Gold,<XDS FIL='Client8877.xml'/>,

9077,Lisa Hansen,Silver,<XDS FIL='Client9077.xml' />

9177,Rita Gomez,Standard,<XDS FIL='Client9177.xml'/>,

5681,Paula Lipenski,Standard,<XDS FIL='Client5681.xml' />,

4309,Tina Wang,Standard,<XDS FIL='Client4309.xml'/>

Listing 2.6 - Contents of the file clients.del

In the clients.del file, “XDS FIL=” is used to point to a specific XML document file.

Figure 2.9 shows the Control Center after running the above script.

Chapter 2 - DB2 pureXML 65

Figure 2.9 – The Control Center after running the table_creation.txt script

Note that in the figure, we show the contents of the CLIENTS table. The last column
contact is an XML column. When you click on the button with three dots, another
window opens showing you the XML document contents. This is shown in the bottom right
corner of the Figure 2.9.

2.3.5 Querying XML data

There are two ways to query XML data in DB2 software:

 Using SQL with XML extensions (SQL/XML)

 Using XQuery

In both cases, DB2 follows international XML standards.

2.3.5.1 Querying XML data with SQL/XML

Using regular SQL statements allows you to work with rows and columns. An SQL
statement can be used to work with full XML documents; however, it would not help when
attempting to retrieve only part of the document. In such cases, you need to use SQL with
XML extensions (SQL/XML).

66 Getting started with DB2 application development

Table 2.6 describes some of the SQL/XML functions available with the SQL 2006 standard

Function name Description

XMLPARSE Parses character or large object binary data, produces
XML value

XMLSERIALIZE Converts an XML value into character or large object
binary data

XMLVALIDATE Validates XML value against an XML schema and
type-annotates the XML value

XMLEXISTS Determines if an XQuery returns a results (i.e. a
sequence of one or more items)

XMLQUERY Executes an XQuery and returns the result sequence

XMLTABLE Executes an XQuery, returns the result sequence as a
relational table (if possible)

XMLCAST Cast to or from an XML type

Table 2.6 – SQL/XML Functions

The following examples can be tested using the mydb database created earlier.

Example 1

Imagine that you need to locate the names of all clients who live in a specific zip code. The
clients table stores customer addresses, including zip codes, in an XML column. Using
XMLEXISTS, you can search the XML column for the target zip code and then restrict the
return result set accordingly. Listing 2.7 below illustrates the query required.

SELECT name FROM clients

 WHERE xmlexists(

 '$c/Client/Address[zip="95116"]'

 passing clients.contact as "c"

)

Listing 2.7 - An example using XMLEXISTS

In Listing 2.7, the first line is an SQL clause specifying that you want to retrieve information
in the name column of the clients table.

The WHERE clause invokes the XMLEXISTS function, specifying the XPath expression
that prompts DB2 to navigate to the zip element and check for a value of 95116

The $c/Client/Address clause indicates the path inside the XML document hierarchy
where DB2 can locate the zip element. A dollar sign ($) is used to specify a variable;

Chapter 2 - DB2 pureXML 67

therefore “c” is a variable. This variable is then defined by this line: passing
clients.contact as "c". Here, clients is the name of the table and contact is the
name of the column with an XML data type. In other words, we are passing the XML
document to the variable “c”.

DB2 inspects the XML data contained in the contact column, navigates from the root
Client node down to the Address node, then to the zip node and finally determines if
the customer lives in the target zip code. The XMLEXISTS function evaluates to “true” and
DB2 returns the name of the client associated with that row.

Starting with DB2 9.5, the above query could be simplified as shown in Listing 2.8 below.

SELECT name FROM clients

 WHERE xmlexists(

 '$CONTACT/Client/Address[zip="95116"]'

)

Listing 2.8 - Simplified version of the query shown in Listing 2.7

A variable with the same name as an XML column is created automatically by DB2. In the
above example, the variable CONTACT is created automatically by DB2. Its name matches
the name of the XML column CONTACT.

Example 2

Let’s consider how to solve the problem of how to create a report listing the e-mail
addresses of “Gold” status customers. The query in Listing 2.9 below could be run for this
purpose.

SELECT xmlquery('$c/Client/email' passing contact as "c")

 FROM clients

 WHERE status = 'Gold'

Listing 2.9 - An example using XMLQUERY

The first line indicates we want to return the email address which is an element of the XML
document (not a relational column). As in the previous example, “$c” is a variable that
contains the XML document. In this example we use the XMLQUERY function which can
be used after a SELECT, while the XMLEXISTS function can be used after a WHERE
clause.

Example 3

There may be situations when you would like to present XML data as tables. This is
possible with the XMLTABLE function as shown in Listing 2.10 below.

SELECT t.comment#, i.itemname, t.customerID, Message

 FROM items i,

 xmltable('$c/Comments/Comment' passing i.comments as "c"

68 Getting started with DB2 application development

 columns Comment# integer path 'CommentID',

 CustomerID integer path 'CustomerID',

 Message varchar(100) path 'Message') AS t

Listing 2.10 - An example using XMLTABLE

The first line specifies the columns to be included in your results set. Columns prefixed with
the “t” variable are based on XML element values.

The third line invokes the XMLTABLE function to specify the DB2 XML column containing
the target data (i.comments) and the path within the column's XML documents where the
elements of interest are located.

The columns clause, spanning lines 4 to 6, identifies the specific XML elements that will
be mapped to output columns in the SQL result set specified on line 1. Part of this mapping
involves specifying the data types to which the XML element values will be converted. In
this example all XML data is converted to traditional SQL data types.

Example 4

Now let’s explore a simple example in which you include an XQuery FLWOR expression
inside an XMLQUERY SQL/XML function. This is illustrated in Listing 2.11.

SELECT name, xmlquery(

 ‘for $e in $c/Client/email[1] return $e’

 passing contact as “c”

)

 FROM clients

 WHERE status = ‘Gold’

Listing 2.11 - An example using XMLQUERY and FLWOR

The first line specifies that the customer names and the output from the XMLQUERY
function will be included in the result set. The second line indicates the first email sub-
element of the Client element is to be returned. The third line identifies the source of our
XML data (contact column). The fourth line tells us that this column is coming from the
clients table; and the fifth line indicates that only Gold customers are of interest.

Example 5

The example illustrated in Listing 2.12 demonstrates again the XMLQUERY function which
takes an XQuery FLWOR expression; however, note that this time we are returning not
only XML, but also HTML.

SELECT xmlquery('for $e in $c/Client/email[1]/text()

 return <p>{$e}</p>'

 passing contact as "c")

 FROM clients

Chapter 2 - DB2 pureXML 69

 WHERE status = 'Gold'

Listing 2.12 - An example returning XML and HTML

The return clause of XQuery enables you to transform XML output as needed. Using the
text()function in the first line indicates that only the text representation of the first email
address of qualifying customers is of interest. The second line specifies that this
information is to be surrounded by HTML paragraph tags.

Example 6

The following example uses the XMLELEMENT function to create a series of item
elements, each of which contain sub-elements for the ID, brand name, and stock keeping
unit (SKU) values obtained from corresponding columns in the items table. Basically, you
can use the XMLELEMENT function when you want to convert relational data to XML data.
This is illustrated in Listing 2.13.

SELECT

 xmlelement (name "item", itemname),

 xmlelement (name "id", id),

 xmlelement (name "brand", brandname),

 xmlelement (name "sku", sku)

 FROM items

 WHERE srp < 100

Listing 2.13 - An example using XMLELEMENT

The query in Listing 2.13 would return the output as shown in Listing 2.14

<item>

 <id>4272</id>

 <brand>Classy</brand>

 <sku>981140</sku>

</item>

…

<item>

 <id>1193</id>

 <brand>Natural</brand

 <sku>557813</sku>

</item>

Listing 2.14 - Output of the query in Listing 2.13

2.3.5.2 Querying XML data with XQuery

In the previous section, we looked at how to query XML data using SQL with XML
extensions. SQL was always the primary query method, and XPath or XQuery was
embedded inside SQL. In this section, we discuss how to query XML data using XQuery.

70 Getting started with DB2 application development

This time, XQuery will be the primary query method, and in some cases, we will use SQL
embedded inside XQuery (using the db2-fn:sqlquery function). When using XQuery,
we will invoke a few functions, and will also use the FLWOR expression.

Example 1

This is a simple XQuery to return customer contact data. In the example, CONTACT is the
name of the XML column, and CLIENTS is the name of the table.

xquery db2-fn:xmlcolumn(‘CLIENTS.CONTACT’)

Always prefix any XQuery expression with the xquery command so that DB2 knows it has
to use the XQuery parser, otherwise DB2 will assume you are trying to run an SQL
expression. The db2-fn:xmlcolumn function is a function that retrieves the XML
documents from the column specified as the parameter. It is equivalent to the following
SQL statement, as it is retrieving the entire column contents:

SELECT contact FROM clients

Example 2

In this example shown in Listing 2.15, we use the FLWOR expression to retrieve client fax
data

xquery

 for $y in db2-fn:xmlcolumn(‘CLIENTS.CONTACT’)/Client/fax

 return $y

Listing 2.15 - XQuery and the FLWOR expression

The first line invokes the XQuery parser. The second line instructs DB2 to iterate through
the fax sub-elements contained in the CLIENTS.CONTACT column. Each fax element is
bound to the variable $y. The third line indicates that for each iteration, the value “$y” is
returned.

The output of this query is illustrated in Listing 2.16 (We omitted the namespace in the
output, otherwise it would be harder to read as it may span several lines):

<fax>4081112222</fax>

<fax>5559998888</fax>

Listing 2.16 - Output of the query show in Listing 2.15

Example 3

The example in Listing 2.17 queries XML data and returns the results as HTML.

xquery

 {

 for $y in db2-fn:xmlcolumn(‘CLIENTS.CONTACT’)/Client/Address

Chapter 2 - DB2 pureXML 71

 order by $y/zip

 return {$y}

 }

Listing 2.17 - XQuery statement with the FLWOR expression returning HTML

The sample HTML returned would look as shown in Listing 2.18.

<address>

 <street>9407 Los Gatos Blvd.</street>

 <city>Los Gatos</city>

 <state>ca</state>

 <zip>95302</zip>

</address>

<address>

<street>4209 El Camino Real</street>

 <city>Mountain View</city>

 <state>CA</state>

 <zip>95302</zip>

</address>

...

Listing 2.18 - Output of the query ran in Listing 2.17

Example 4

The following example shows how to embed SQL within XQuery by using the db2-
fn:sqlquery function. The db2-fn:sqlquery function executes an SQL query and
returns only the selected XML data. The SQL query passed to db2-fn:sqlquery must
only return XML data. This XML data can then be further processed by XQuery. This is
illustrated in Listing 2.19.

xquery

 for $y in

 db2-fn:sqlquery(

 ‘select comments from items where srp > 100’

)/Comments/Comment

 where $y/ResponseRequested=‘Yes’

 return (

72 Getting started with DB2 application development

 <action>

 {$y/ProductID

 $y/CustomerID

 $y/Message}

 </action>

)
Listing 2.19 - An example of the db2-fn:sqlquery function embedding SQL within
XQuery

In the example, the SQL query filters rows based on the condition that the srp column has
a value greater than 100. From those rows filtered, it will pick the comments column,
which is the XML column. Next XQuery (or XPath) is applied to go to sub-elements.

Note:

SQL is case insensitive and DB2 software stores all table and column names in
uppercase by default. XQuery on the other hand, is case sensitive. The above functions
are XQuery interface functions so all the table names and column names should be
passed to these functions in uppercase. Passing the object names in lowercase may
result in an undefined object name error.

2.3.6 Joins with SQL/XML

This section describes how to perform JOIN operations between two XML columns of
different tables, or between one XML column and one relational column. Assume you have
created two tables with the statements shown in Listing 2.20

CREATE TABLE dept (unitID CHAR(8), deptdoc XML)

CREATE TABLE unit (unitID CHAR(8) primary key not null,

 name CHAR(20),

 manager VARCHAR(20),

 ...

)

Listing 2.20 - DDL of tables to use in the JOIN examples

You can perform a JOIN operation in either of two ways. The first method is shown in
Listing 2.21.

SELECT u.unitID

 FROM dept d, unit u

 WHERE XMLEXISTS (

 ‘$e//employee[name = $m]’

 passing d.deptdoc as “e”, u.manager as “m”)

Listing 2.21 - First method to perform a JOIN with SQL/XML

Line 4 of the statement in the above listing shows that the JOIN operation occurs between
the element name, which is a sub-element of the deptdoc XML column in table dept, and
the manager relational column in the table unit.

Chapter 2 - DB2 pureXML 73

Listing 2.22 shows the second method to perform the JOIN.

SELECT u.unitID

 FROM dept d, unit u

 WHERE u.manager = XMLCAST(

 XMLQUERY(‘$e//employee/name ‘

 passing d.deptdoc as “e”)

 AS char(20))

Listing 2.22 - Second method to perform a JOIN with SQL/XML

In this second method, the relational column is on the left side of the JOIN. If the relational
column is on the left side of the equation, a relational index may be used instead of an XML
index.

2.3.7 Joins with XQuery

Assume the following tables have been created:

CREATE TABLE dept(unitID CHAR(8), deptdoc XML)

CREATE TABLE project(projectDoc XML)

If we use SQL/XML, a JOIN would look as shown in Listing 2.23.

SELECT XMLQUERY (

 ‘$d/dept/employee’ passing d.deptdoc as “d”)

 FROM dept d, project p

 WHERE XMLEXISTS (

 ‘$e/dept[@deptID=$p/project/deptID]‘

 passing d.deptdoc as “e”, p.projectDoc as “p”)

Listing 2.23 - A JOIN with SQL/XML

The equivalent JOIN using XQuery is shown in Listing 2.24.

xquery

 for $dept in db2-fn:xmlcolumn(“DEPT.DEPTDOC”)/dept

 for $proj in db2-fn:xmlcolumn(“PROJECT.PROJECTDOC”)/project

 where $dept/@deptID = $proj/deptID

 return $dept/employee

Listing 2.24 - A JOIN with XQuery

This second method is easier to interpret -- variable $dept holds the XML document of the
XML column deptdoc in table dept. The variable $proj holds the XML document of the
XML column projectdoc in table project. Then line 4 performs the JOIN operation
between an attribute of the first XML document and an element of the second XML
document.

74 Getting started with DB2 application development

2.3.8 Update and delete operations

Update and delete operations on XML data can be performed in one of two ways:

 Using SQL UPDATE and DELETE statements

 Using the TRANSFORM expression

For the first way using SQL UPDATE and DELETE statements, the update or delete occurs
at the document level; that is, the entire XML document is replaced with the updated one.
For example, in the UPDATE statement in Listing 2.25 below, if you’d only like to change
the <state> element, the entire XML document is actually replaced.

UPDATE clients SET contact=(

 xmlparse(document

 ‘<Client>

 <address>

 <street>5401 Julio ave.</street>

 <city>San Jose</city>

 <state>CA</state>

 <zip>95116</zip>

 </address>

 <phone>

 <work>4084633000</work>

 <home>4081111111</home>

 <cell>4082222222</cell>

 </phone>

 <fax>4087776666</fax>

 <email>newemail@someplace.com</email>

 </Client>')

)

 WHERE id = 3227

Listing 2.25 - An example of an SQL UPDATE

For the second way, you can perform sub-document updates using the TRANSFORM
expression, which is a lot more efficient. This allows you to replace, insert, delete or
rename nodes in an XML document. You can also change the value of a node without
replacing the node itself, typically to change an element or attribute value–which is a very
common type of update. This support was added in DB2 9.5.

The TRANSFORM expression is part of the XQuery language, you can use it anywhere
you normally use XQuery, for example in a FLWOR expression or in the XMLQUERY
function in an SQL/XML statement. The most typical use is in an SQL UPDATE statement
to modify an XML document in an XML column.

Listing 2.26 shows the syntax of the TRANSFORM expression.

>>-transform--| copy clause |--| modify clause |--| return clause |-><

Chapter 2 - DB2 pureXML 75

copy clause

 .-,---------------------------------------.

 V |

|--copy----$VariableName--:=--CopySourceExpression-+------------|

modify clause

|--modify--ModifyExpression-------------------------------------|

return clause

|--return--ReturnExpression-------------------------------------|

Listing 2.26 - The syntax of the TRANSFORM expression

The copy clause is used to assign to a variable the XML documents you want to process.

In the modify clause, you can invoke an insert, delete, rename, or replace
expression. These expressions allow you to perform updates to your XML document.

For example:

• If you want to add new nodes to the document, you would use the insert
expression

• To delete nodes from an XML document, use the delete expression

• To rename an element or attribute in the XML document, use the rename
expression

• To replace an existing node with a new node or sequence of nodes, use the
replace expression. The replace value of the expression can only be used to
change the value of an element or attribute.

The return clause returns the result of the transform expression.

Listing 2.27 shows an example of an UPDATE statement using the TRANSFORM
expression.

(1)-- UPDATE customers

(2)-- SET contactinfo = xmlquery('declare default element namespace

(3)-- "http://posample.org";

(4)-- transform

(5)-- copy $newinfo := $c

(6)-- modify do insert <email2>my2email.gm.com</email2>

(7)-- as last into $newinfo/customerinfo

(8)-- return $newinfo' passing contactinfo as "c")

76 Getting started with DB2 application development

(9)-- WHERE id = 100

Listing 2.27 - An UPDATE using the TRANSFORM expression

In the above example, lines (1), (2), and (9) are part of the SQL UPDATE syntax. In Line
(2) the XMLQUERY function is invoked, which calls the transform expression in line (4).
The transform expression block goes from line (4) to line (8), and it is used to insert a new
node into the XML document containing the email2 element. Note that updating the
elements in an XML document through a view is not supported.

Deleting entire XML documents from tables is as straightforward as when using the
SELECT statement in SQL/XML. Use the SQL DELETE statement and specify any
necessary WHERE predicates.

2.3.9 XML indexing

In an XML document, indexes can be created for elements, attributes, or for values (text
nodes). Below are some examples. Assume the table below was created:

CREATE TABLE customer(info XML)

And assume the XML document in Listing 2.28 is one of the documents stored in the table.

<customerinfo Cid="1004">

 <name>Matt Foreman</name>

 <addr country="Canada">

 <street>1596 Baseline</street>

 <city>Toronto</city>

 <state>Ontario</state>

 <pcode>M3Z-5H9</pcode>

 </addr>

 <phone type="work">905-555-4789</phone>

 <phone type="home">416-555-3376</phone>

 <assistant>

 <name>Peter Smith</name>

 <phone type="home">416-555-3426</phone>

 </assistant>

</customerinfo>

Listing 2.28 - The XML document to use in the examples related to XML indexes

The statement shown in Listing 2.29 creates an index on the attribute Cid

CREATE UNIQUE INDEX idx1 ON customer(info)

 GENERATE KEY USING

 xmlpattern '/customerinfo/@Cid'

 AS sql DOUBLE

Listing 2.29 - An index on attribute Cid

The statement shown in Listing 2.30 creates an index on the element name

Chapter 2 - DB2 pureXML 77

CREATE INDEX idx2 ON customer(info)

 GENERATE KEY USING

 xmlpattern '/customerinfo/name'

 AS sql VARCHAR(40)

Listing 2.30 - An index on element name

The statement in Listing 2.31 creates an index on all elements name

CREATE INDEX idx3 ON customer(info)

 GENERATE KEY USING

 xmlpattern '//name'

 AS sql VARCHAR(40);

Listing 2.31 - An index on all elements name

The statement in Listing 2.32 creates an index on all text nodes (all values). This is not
recommended, as it would be too expensive to maintain the index for update, delete and
insert operations, and the index would be too large.

CREATE INDEX idx4 ON customer(info)

 GENERATE KEY USING

 xmlpattern '//text()'

 AS sql VARCHAR(40);

Listing 2.32 - An index on all text nodes (Not recommended)

2.4 Working with XML Schemas
DB2 allows you to insert an XML document into the database if it is well-formed. If it's not,
you will receive an error at insertion time. On the other hand, DB2 does not force you to
validate a XML document. If you wish to have an XML document validated, you have
several alternatives as we will discuss in this section.

2.4.1 Registering your XML Schemas

XML Schemas are stored in the DB2 databases in what is called an XML Schema
repository. To add an XML Schema to a repository, you use the REGISTER XMLSCHEMA
command.

For example, let's say you have an XML document stored in file order.xml as shown in
Figure 2.10

78 Getting started with DB2 application development

Figure 2.10 - The order.xml file containing an XML document

Now, let's say you have an XML Schema document stored in file order.xsd as shown in
Figure 2.11

Chapter 2 - DB2 pureXML 79

Figure 2.11 - The order.xsd file containing an XML schema

In this XML Schema document we highlight with an ellipse the following:

 <xsd:schema ….>: Indicates it’s a XML Schema document

 <xsd:import …>: We import other xsd files (other XML Schemas) that would be part
of this bigger XML Schema.

 minOccurs=“1”: An example of an XML Schema “rule”, where for element Item we
say that it should occur at least one time, or in other words, there should be at least
one Item element.

Next, in order to register the XML Schema to the database, a script similar to the one
shown in Listing 2.33 below could be used. The script includes comments that make it self-
explanatory.

-- CONNECT TO THE DATABASE

CONNECT TO SAMPLE;

-- REGISTER THE MAIN XML SCHEMA

REGISTER XMLSCHEMA http://www.test.com/order FROM D:\example3\order.xsd AS

80 Getting started with DB2 application development

order;

-- ADD XML SCHEMA DOCUMENT TO MAIN SCHEMA

ADD XMLSCHEMA DOCUMENT TO order ADD http://www.test.com/header FROM
D:\example3\header.xsd;

-- ADD XML SCHEMA DOCUMENT TO MAIN SCHEMA

ADD XMLSCHEMA DOCUMENT TO order ADD http://www.test.com/product FROM
D:\example3\product.xsd;

-- ADD XML SCHEMA DOCUMENT TO MAIN SCHEMA

ADD XMLSCHEMA DOCUMENT TO order ADD http://www.test.com/customer FROM
D:\example3\customer.xsd;

-- COMPLETE THE SCHEMA REGISTRATION

COMPLETE XMLSCHEMA order;

Listing 2.33 - A sample script showing the steps to register an XML schema

To review this information later you can SELECT the information from the Catalog tables
as shown in Listing 2.34 below.

SELECT CAST(OBJECTSCHEMA AS VARCHAR(15)), CAST(OBJECTNAME AS VARCHAR(15))

 FROM syscat.xsrobjects

 WHERE OBJECTNAME='ORDER‘;

Listing 2.34 - Retrieving XML schema information from the DB2 Catalog tables

2.4.2 XML Schema validation

Once your XML Schemas have been registered in DB2, you can validate your XML
documents in two ways:

 Use the XMLVALIDATE function during an INSERT

 Use a BEFORE Trigger

Figure 2.12 shows an example where the XML document shown in Figure 2.10 is validated
according to the XML Schema shown in Figure 2.11.

Chapter 2 - DB2 pureXML 81

Figure 2.12 - XML Schema validation using XMLVALIDATE

To test if an XML document has been validated, you can use the “IS VALIDATED”
predicate on a CHECK constraint.

You can validate XML documents in a column using different XML schemas. This is
important for easy migration from version 1 to version 2 of an XML schema. In the same
XML column, you may also find XML documents with no validation at all. This is useful if
documents are received from trusted and non-trusted sources where only the later require
schema validation.

2.4.3 Other XML support

Small XML documents can now be in-lined with the base table. This means that the XML
data is stored in the same place as the relational data, and can take advantage of the
same compression mechanisms as regular relational data. Larger XML documents are
stored in a separate internal object, which can also be compressed.

82 Getting started with DB2 application development

DB2 software also supports XML Schema evolution. This means that if your XML Schema
changes, you can update the XML Schema easily with the UPDATE XMLSCHEMA
command. If the changes to the XML Schema are too drastic, you are likely to get some
errors.

In DB2 XML decomposition or “shredding” is also supported. This is the “old” method to
store XML in databases, and is what other vendors use to store XML. DB2 still supports
this method if you wish to use it; but we recommend pureXML. DB2 also supports the XML
Extender, also using the old method to store XML, but this extender will no longer be
enhanced.

With DB2 9.7 all the benefits of pureXML has been extended to database partitions
commonly used for data warehouses. Database Partitioning Feature (DPF) is offered with
DB2 Enterprise Edition.

2.5 Exercises
Throughout this chapter, you have seen several examples of SQL/XML and XQuery syntax
and have been introduced to the DB2 Command Editor and IBM Data Studio. In this
exercise, you will test your SQL/XML and XQuery knowledge while gaining experience with
these tools. We will use the mydb database created using the table_creation.txt script file
which was explained earlier in this chapter (Listing 2.5).

Procedure

1. Create the mydb database and load the XML data, as discussed earlier in the
chapter. The file table_creation.txt is included in the accompanying file
Exercise_Files_DB2_Application_Development.zip under the Chapter
2 folder. Run the table_creation.txt script file from a DB2 Command Window
or Linux shell as follows:

db2 –tvf table_creation.txt

2. If the script fails in any of the steps, try to figure out the problem by reviewing the
error messages. A typical problem when running the script is that you may need to
change the paths of the files as they may be located in different directories. You
can always drop the database and start again issuing this command from the DB2
Command Window or Linux shell:

db2 drop database mydb

3. If you receive an error while trying to drop the database because of active
connections, issue this command first:

db2 force applications all

Chapter 2 - DB2 pureXML 83

4. After successfully running the script, use the DB2 Control Center, or IBM Data
Studio to verify that the items and clients tables are created and that they contain
4 and 7 rows respectively.

5. With the mydb database created and with the two tables loaded, you can now
connect to it, and perform the queries shown in Listings 2.7 through 2.19

2.6 Summary
This chapter introduced you to XML and pureXML technology. XML document usage is
growing exponentially due to Web 2.0 tools and techniques as well as SOA. By storing
XML documents in a DB2 database you can take advantage of security, performance, and
coding flexibility using pureXML. pureXML is a technology that allows you to store the XML
documents in parsed-hierarchical format, as a tree, and this is done at database insertion
time. At query time, there is no need to parse the XML document in order to build a tree
before processing. The tree for the XML document was already built and stored in the
database. In addition, pureXML technology uses a native XML engine that understands
XQuery; therefore, there is no need to map XQuery to SQL which is what is done in other
RDBMS products.

The chapter also talked about how to insert, delete, update and query XML documents
using SQL/XML and XQuery. It also discussed XML indexes, XML Schema, and other
features such as compression and XML Schema evolution.

2.7 Review questions
1. Why is it a good idea to store XML documents in a database as opposed to files?

2. What are the two types of databases for storing XML data?

3. What are the two main characteristics of pureXML?

4. Why would using pureXML be better for application performance?

5. How can you insert an XML document into a DB2 database?

6. Which of the following can be used to retrieve XML data in DB2?

A. SQL

B. SQL/XML

C. XQuery

D. B and C

E. All of the above

7. Which of the following is not a SQL/XML function?

A. XMLQUERY

84 Getting started with DB2 application development

B. XMLTABLE

C. XMLCAST

D. XMLVALIDATE

E. XMLNAVIGATE

8. Which of the following is not an XQuery function

A. db2-fn:xmlcolumn

B. db2-fn:sqlquery

C. XMLQUERY

D. All of the above

E. None of the above

9. How can you update an XML document?

A. Use the SQL INSERT statement

B. Use the TREEUPDATE expression

C. Use the TRANSFORM expression

D. All of the above

E. None of the above

10. Which of the following statements is true?

A. XML Indexes can be created for elements, and attributes, but not values

B. XML Schemas are stored in the XML Schema repository, a separate internal
file not related to the database.

C. You can validate an XML document with an AFTER trigger

D. All of the above

E. None of the above

3
Chapter 3 – Stored procedures, UDFs, triggers,
and data Web services
This chapter focuses on data server-side development using stored procedures, user-
defined functions (UDFs) and triggers.

A stored procedure is a database application object that can encapsulate SQL statements
and business logic. Keeping part of the application logic in the database provides
performance improvements as the amount of network traffic between the application and
the database is considerably reduced. In addition, stored procedures provide a centralized
location to store your code, so other applications can reuse the same stored procedures.

A UDF allows you to extend the SQL language and encapsulate your business logic.

Triggers are database objects that allow database administrators to have the data server
automatically verify the validity of data before insertion, or to audit data after it has been
modified.

Data Web services externalize information from a DB2 database by converting SQL scripts
or stored procedures into a Web service. This provides a flexible, inexpensive, and
convenient solution to companies that need to share information stored in their databases.

In this chapter you will learn about:

 The basics of SQL PL and Java stored procedures

 Developing User-defined functions

 Creating Data Web Services

 Working with IBM Data Studio

 Creating BEFORE, AFTER and INSTEAD OF triggers.

3.1 Stored procedures: The big picture
DB2 stored procedures can be written using SQL PL (SQL Procedural Language), C/C++,
Java, COBOL, CLR (Common Language Runtime) supported languages, and OLE. In this
chapter, we focus on SQL PL procedures because of their popularity, good performance

86 Getting started with DB2 application development

and simplicity. The SQL PL language is based on the SQL/PSM (SQL Persisted Stored
Modules) standard. We also discuss briefly how to create a Stored Procedure using the
Java language.

Note:

New with DB2 9.7 is the support for PL/SQL (Procedural Language / SQL) which is
Oracle's data server proprietary procedural language extension to SQL/PSM and is used
with stored procedures. The DB2 Express-C edition does not currently support PL/SQL.

Figure 3.1 illustrates how stored procedures work.

Figure 3.1 – Network traffic reduction with stored procedures

At the top left corner of the figure, you see several SQL statements executed one after the
other. Each SQL is sent from the client to the data server, and the data server returns the
result back to the client. If many SQL statements are executed like this, network traffic
increases. On the other hand, at the bottom, you see an alternate method that incurs less
network traffic. This second method calls a stored procedure myproc stored on the server,
which contains the same SQL; and then at the client (on the left side), the CALL statement
is used to call the stored procedure. This second method is more efficient, as there is only
one call statement that goes through the network, and one result set returned to the client.

Stored procedures can also be helpful for security purposes in your database. For
example, you can let users access tables or views only through stored procedures; this

Chapter 3 - Stored procedures, UDFs, triggers, and data Web services 87

helps lock down the server and keep users from accessing information they are not
supposed to access. This is possible because users do not require explicit privileges on the
tables or views they access through stored procedures; they just need to be granted
sufficient privilege to invoke the stored procedures.

Note:

For more information about SQL PL stored procedures, watch this video:
http://www.channeldb2.com/video/video/show?id=807741:Video:4343

3.2 Working with IBM Data Studio
IBM Data Studio 2.2 will be used in this chapter to develop stored procedures, UDFs, and
data Web services. IBM Data Studio 2.2 is free. It is not included with DB2, but provided as
a separate image; and it comes in two flavors:

 IDE: Allows you to share the same Eclipse (shell sharing) with other products such
as InfoSphere Data Architect and Rational products. It also provides support for
Data Web services.

 Stand-alone: This version provides almost the same functionality as the IDE version
but without support for Data Web services and without shell sharing. The footprint
for this version is a lot smaller.

Note:

For a thorough coverage about IBM Data Studio, refer to the free eBook Getting started
with IBM Data Studio for DB2 which is part of this DB2 on Campus free book series.

In this chapter we use the IDE version because we demonstrate how to work with Data
Web services. The Data Studio images can be downloaded from
www.ibm.com/db2/express. Figure 3.2 shows IBM Data Studio 2.2.

http://www.channeldb2.com/video/video/show?id=807741:Video:4343�
http://www.ibm.com/db2/books�
http://www.ibm.com/db2/books�
http://www.ibm.com/db2/express/download.html?S_CMP=ECDDWW01&S_TACT=DOCBOOK07�

88 Getting started with DB2 application development

Figure 3.2 – IBM Data Studio 2.2

In this chapter we focus on the Data Project Explorer view highlighted at the top right
corner of the figure. This view focuses on data server-side development.

3.2.1 Creating a project

Before you can develop stored procedures, UDFs or Data Web services in Data Studio,
you need to create a project. From the Data Studio menu, choose File -> New -> Project
and choose Data Development Project. This is shown in Figure 3.3.

Chapter 3 - Stored procedures, UDFs, triggers, and data Web services 89

Figure 3.3 – Creating a data development project

Follow the steps from the wizard to input a name for your project, and indicate which
database you want your project associated with. If you do not have any existing database
connection, click on the New button in the Select Connection panel, and a window as
shown in Figure 3.4 will appear.

90 Getting started with DB2 application development

Figure 3.4 – New connection parameters

In Figure 3.4, make sure to choose DB2 for Linux, UNIX and Windows in the Select a
database manager field on the left side of the figure. For the JDBC driver drop down menu,
the default after choosing DB2 for Linux, UNIX and Windows is the JDBC type 4 driver
listed as IBM Data Server Driver for JDBC and SQLJ (JDBC 4.0) Default. Use this default
driver and complete the specified fields. For the host field, you can input an IP address or a
hostname. In the example IBM Data Studio and the DB2 database reside on the same
computer, so localhost was chosen. Ensure to test that your connection to the database
is working by clicking on the Test Connection button shown on the lower left corner of the
figure. If the connection test was successful, click Finish and the database name will be
added to the list of connections you can associate your project to. Select the database,
then click Finish and your project should be displayed on the Data Project Explorer view. In
this view, if you click on the "+" symbol, you can drill down the project to see different
folders such as PL/SQL packages, SQL scripts, stored procedures, etc.

3.2.2 Creating a stored procedure

To create a Java, PL/SQL or SQL PL stored procedure in Data Studio, follow the steps
below. Note that stored procedures in other languages cannot be created from Data
Studio. In the following steps, we choose SQL (representing SQL PL) as the language for
the stored procedure, however similar steps apply to Java and PL/SQL languages.

Chapter 3 - Stored procedures, UDFs, triggers, and data Web services 91

Step 1: Write or generate the stored procedure code

When you want to create a stored procedure, right-click on the Stored Procedures folder
and choose New -> Stored Procedure. Complete the information requested in the New
Stored Procedure wizard such as the project to associate the procedure with, the name
and language of the procedure, and the SQL statements to use in the procedure. By
default, Data Studio gives you an example SQL statement. Take all the defaults for all the
other panels, or at this point, you can click Finish and a stored procedure is created using
some template code and the SQL statement provided before as an example. This is shown
in Figure 3.5.

Figure 3.5 – A sample stored procedure

In Figure 3.5, the code for the sample stored procedure MYPROCEDURE was generated.
You can replace all of this code with your own code. For simplicity, we will continue in this
book using the above sample stored procedure as if we had written it.

Step 2: Deploy a stored procedure

Once the stored procedure is created, to deploy it, select it from the Data Project Explorer
view, right-click on it, and then choose Deploy. Deploying a stored procedure is basically
executing the CREATE PROCEDURE statement, compiling the procedure and storing it in
the database. Figure 3.6 illustrates this step.

92 Getting started with DB2 application development

Figure 3.6 – Deploying a stored procedure

After clicking Deploy, in the Deploy options panel, taking the defaults and clicking on Finish
is normally good enough.

Step 4: Run a stored procedure

Once the stored procedure has been deployed, you can run it by right-clicking on it and
choosing Run. The results would appear in the Results tab at the bottom right corner of the
Data Studio workbench window as shown in Figure 3.7.

Chapter 3 - Stored procedures, UDFs, triggers, and data Web services 93

Figure 3.7 – Output after running a stored procedure

To run a stored procedure from the DB2 Command Window or the Command Editor, you
can use the CALL <procedure name> statement. Remember you first need to connect
to the database since this is where the stored procedure resides. Figure 3.8 illustrates this.

94 Getting started with DB2 application development

Figure 3.8 – Calling a stored procedure from the DB2 Command Window

Just like you can call a stored procedure from the DB2 Command Window, you can also do
so from a Java program, a C program, a Visual Basic program, and so on. You just need to
use the correct syntax for the given language.

3.3 SQL PL stored procedures basics
SQL PL stored procedures are easy to create and learn. They have the best performance
in DB2. SQL PL stored procedures (or simply “SQL stored procedures”) are the focus of
this chapter.

3.3.1 Stored procedure structure

The basic store procedure syntax is shown below.

CREATE PROCEDURE proc_name [({optional parameters})]

 [optional procedure attributes]

 <statement>

Where <statement> is a single statement, or a set of statements grouped by BEGIN
[ATOMIC] ... END

3.3.2 Optional stored procedure attributes

The following describes some of the optional stored procedure attributes:

Chapter 3 - Stored procedures, UDFs, triggers, and data Web services 95

 LANGUAGE SQL
This attribute indicates the language the stored procedure will use. LANGUAGE SQL
is the default value. For other languages, such as Java or C use LANGUAGE JAVA or
LANGUAGE C, respectively.

 RESULT SETS <n>
This is required if your stored procedure will be returning n result sets.

 SPECIFIC my_unique_name
This is a unique name that can be given to a procedure. A stored procedure can be
overloaded, that is, several stored procedures can have the same name, but with
different number of parameters. By using the SPECIFIC keyword you can provide one
unique name for each of these stored procedures, and this can ease stored procedure
management. For example, to drop a stored procedure using the SPECIFIC keyword,
you can issue this statement: DROP SPECIFIC PROCEDURE. If the SPECIFIC
keyword had not been used you would have had to use a DROP PROCEDURE
statement and put the name of the procedure with all the parameters so DB2 would
know which of the overloaded procedures you wanted to drop.

3.3.3 Parameters

There are three types of parameters in an SQL PL stored procedure:

 IN - Input parameter

 OUT - Output parameter

 INOUT - Input and Output parameter

For example:

CREATE PROCEDURE proc(IN p1 INT, OUT p2 INT, INOUT p3 INT)

To call the procedure use the CALL statement. For example, to call the above stored
procedure you could specify:

CALL proc (10,?,4)

The question mark (?) is used for OUT parameters in the CALL statement. Listing 3.1
provides another example of a stored procedure with parameters that you can try.

CREATE PROCEDURE P2 (IN v_p1 INT,

 INOUT v_p2 INT,

 OUT v_p3 INT)

LANGUAGE SQL

SPECIFIC myP2

BEGIN

 -- my second SQL procedure

 SET v_p2 = v_p2 + v_p1;

 SET v_p3 = v_p1;

END

96 Getting started with DB2 application development

Listing 3.1 - A stored procedure with parameters

To call the procedure from the Command Editor you can use:

call P2 (3, 4, ?)

3.3.4 Comments in an SQL PL stored procedure

There are two ways to specify comments in an SQL PL stored procedure:

 Using two dashes. For example:
-- This is an SQL-style comment

 Using a format similar to the C language. For example:
/* This is a C-style coment */

3.3.5 Compound statements

A compound statement in a stored procedure is a statement consisting of several
procedural instructions and SQL statements encapsulated by the keywords BEGIN and
END. When the ATOMIC keyword follows the BEGIN keyword, the compound statement is
treated as one unit, that is, all of the instructions or statements in the compound statement
must be successful in order for the entire compound statement to be successful. If one of
the statements is not, then everything is rolled back. Figure 3.9 shows a compound
statement structure.

Figure 3.9 – Compound statements

3.3.6 Variable declaration

To declare a variable, use the DECLARE statement as shown below.

DECLARE var_name <data type> [DEFAULT value];

Listing 3.2 provides some examples.

Chapter 3 - Stored procedures, UDFs, triggers, and data Web services 97

 DECLARE temp1 SMALLINT DEFAULT 0;

 DECLARE temp2 INTEGER DEFAULT 10;

 DECLARE temp3 DECIMAL(10,2) DEFAULT 100.10;

 DECLARE temp4 REAL DEFAULT 10.1;

 DECLARE temp5 DOUBLE DEFAULT 10000.1001;

 DECLARE temp6 BIGINT DEFAULT 10000;

 DECLARE temp7 CHAR(10) DEFAULT 'yes';

 DECLARE temp8 VARCHAR(10) DEFAULT 'hello';

 DECLARE temp9 DATE DEFAULT '1998-12-25';

 DECLARE temp10 TIME DEFAULT '1:50 PM';

 DECLARE temp11 TIMESTAMP DEFAULT '2001-01-05-12.00.00';

 DECLARE temp12 CLOB(2G);

 DECLARE temp13 BLOB(2G);

Listing 3.2 - Variable declaration examples

3.3.7 Assignment statements

To assign a value to a variable, use the SET statement. For example:

SET total = 100;

The above statement is equivalent to

VALUES(100) INTO total;

Additionally, any variable can be set to NULL. For example:

SET total = NULL;

You can assign a value to a variable based on the output of a SELECT statement. For
example:

SET total = (select sum(c1) from T1);

SET first_val = (select c1 from T1 fetch first 1 row only)

An error condition is raised if more than one value is fetched from a table and you are
trying to assign it to a single variable. If you need to store more information than a single
value, use arrays, or cursors.

You can also set variables according to external database properties or special DB2
register variables. For example:

SET sch = CURRENT SCHEMA;

98 Getting started with DB2 application development

3.3.8 Cursors

A cursor is a result set holding the result of a SELECT statement. The syntax to declare,
open, fetch, and close a cursor is shown in Listing 3.3.

DECLARE <cursor name> CURSOR [WITH RETURN <return target>]

 <SELECT statement>;

OPEN <cursor name>;

FETCH <cursor name> INTO <variables>;

CLOSE <cursor name>;

Listing 3.3 - Syntax to work with cursors

When a cursor is declared, the WITH RETURN clause can be used with these values:

 CLIENT: the result set will return to client application

 CALLER: the result set is returned to client or stored procedure that made the call

Listing 3.4 below provides an example of a stored procedure using a cursor.

CREATE PROCEDURE set()

DYNAMIC RESULT SETS 1

LANGUAGE SQL

BEGIN

DECLARE cur CURSOR WITH RETURN TO CLIENT

 FOR SELECT name, dept, job

 FROM staff

 WHERE salary > 20000;

OPEN cur;

END
Listing 3.4 - A stored procedure using a cursor

3.3.9 Flow control

Like in many other languages, SQL PL has several statements that can be used to control
the flow of the logic. Below we list some of the flow control statements supported:

 CASE (selects an execution path, simple search)

 IF

 FOR (executes body for each row of table)

 WHILE

 ITERATE (forces next iteration. Similar to CONTINUE in C)

 LEAVE (leaves a block or loop. "Structured Goto")

 LOOP (infinite loop)

 REPEAT

Chapter 3 - Stored procedures, UDFs, triggers, and data Web services 99

 GOTO

 RETURN

 CALL (procedure call)

3.3.10 Errors and condition handlers

In DB2, the SQLCODE and SQLSTATE keywords are used to determine the successful or
unsuccessful execution of an SQL statement. These keywords need to be explicitly
declared in the outermost scope of the procedure as follows:

DECLARE SQLSTATE CHAR(5);

DECLARE SQLCODE INT;

DB2 will set the values of the above keywords automatically after each SQL operation. For
the SQLCODE, the values are set as follows:

 = 0, successful.

 > 0, successful with warning

 < 0, unsuccessful

 = 100, no data was found. (i.e.: FETCH statement returned no data)

For the SQLSTATE, the values are set as follows:

 success: SQLSTATE '00000'

 not found: SQLSTATE '02000'

 warning: SQLSTATE '01XXX'

 exception: all other values

The SQLCODE is RDBMS specific, and more detailed than the SQLSTATE. The
SQLSTATE is standard among RDBMSs but is very general in nature. Several SQLCODEs
may match one SQLSTATE.

A condition can be raised by any SQL statement and would match an SQLSTATE. For
example, a specific condition like SQLSTATE '01004' is raised when a value is truncated
during an SQL operation. Rather than using SQLSTATE '01004' to test for this condition,
names can be assigned. In this particular example, the name trunc can be assigned to
condition SQLSTATE ‘01004’as shown below.

DECLARE trunc CONDITION FOR SQLSTATE '01004'

Other predefined general conditions are:

 SQLWARNING

100 Getting started with DB2 application development

 SQLEXCEPTION

 NOT FOUND

3.3.10.1 Condition handling

To handle a condition, you can create a condition handler which must specify:

 Which conditions it handles

 Where to resume execution (based on the type of the handler: CONTINUE, EXIT or
UNDO)

 Which actions to perform to handle the condition. These actions can be any
statement, including control structures.

If an SQLEXCEPTION condition is raised, and there is no handler, the procedure
terminates and returns to the client with an error.

3.3.10.2 Types of handlers

There are three types of handlers:

 CONTINUE – This handler is used to indicate that after an exception is raised, and
the handler handles the condition, the flow will CONTINUE to the next statement
after the statement that raised the condition.

 EXIT – This handler is used to indicate that, after an exception is raised, and the
handler handles the condition, the flow will go to the end of the procedure.

 UNDO – This handler is used to indicate that after an exception is raised, and the
handler handles the condition, the flow will go to the end of the procedure, and will
undo or roll back any statements performed.

Figure 3.10 illustrates the different condition handlers and their behavior.

Figure 3.10 – Type of condition handlers

Chapter 3 - Stored procedures, UDFs, triggers, and data Web services 101

3.3.11 Calling stored procedures

The following code snippets illustrated in Listings 3.5, 3.6 and 3.7 show how to CALL
stored procedures from a CLI/ODBC, VB.NET, and Java program respectively.

SQLCHAR *stmt = (SQLCHAR *)

"CALL MEDIAN_RESULT_SET(?)" ;

 SQLDOUBLE sal = 20000.0; /* Bound to parameter marker in stmt */

 SQLINTEGER salind = 0; /* Indicator variable for sal */

 sqlrc = SQLPrepare(hstmt, stmt, SQL_NTS);

 sqlrc = SQLBindParameter(hstmt, 1, SQL_PARAM_OUTPUT,

 SQL_C_DOUBLE, SQL_DOUBLE, 0, 0, &sal, 0, &salind);

 SQLExecute(hstmt);

 if (salind == SQL_NULL_DATA)

 printf("Median Salary = NULL\n");

 else

 printf("Median Salary = %.2f\n\n", sal);

/* Get first result set */

 sqlrc = StmtResultPrint(hstmt);

/* Check for another result set */

 sqlrc = SQLMoreResults(hstmt);

 if (sqlrc == SQL_SUCCESS) {

 /* There is another result set */

 sqlrc = StmtResultPrint(hstmt);

 }

Listing 3.5 - Example calling a stored procedure from a CLI/ODBC application

For more details, see the DB2 sample file: sqllib/samples/sqlproc/rsultset.c

Try

 ‘ Create a DB2Command to run the stored procedure

 Dim procName As String = “TRUNC_DEMO”

 Dim cmd As DB2Command = conn.CreateCommand()

 Dim parm As DB2Parameter

 cmd.CommandType = CommandType.StoredProcedure

 cmd.CommandText = procName

 ‘ Register the output parameters for the DB2Command

 parm = cmd.Parameters.Add(“v_lastname”, DB2Type.VarChar)

 parm.Direction = ParameterDirection.Output

102 Getting started with DB2 application development

 parm = cmd.Parameters.Add(“v_msg”, DB2Type.VarChar)

 parm.Direction = ParameterDirection.Output

 ‘ Call the stored procedure

 Dim reader As DB2DataReader = cmd.ExecuteReader

Catch myException As DB2Exception

 DB2ExceptionHandler(myException)

Catch

 UnhandledExceptionHandler()

End Try

Listing 3.6 - Example calling a stored procedure from a VB.NET application

try

{

 // Connect to sample database

 String url = “jdbc:db2:sample”;

 con = DriverManager.getConnection(url);

 CallableStatement cs = con.prepareCall(“CALL trunc_demo(?, ?)”);

 // register the output parameters

 callStmt.registerOutParameter(1, Types.VARCHAR);

 callStmt.registerOutParameter(2, Types.VARCHAR);

 cs.execute();

 con.close();

}

catch (Exception e)

{

 /* exception handling logic goes here */

}

Listing 3.7 - Example calling a stored procedure from a Java application

3.3.12 Dynamic SQL

In dynamic SQL, as opposed to static SQL, the entire SQL statement is not known at run
time. For example if col1 and tabname are variables in this statement, then we are
dealing with dynamic SQL:

'SELECT ' || col1 || ' FROM ' || tabname;

Chapter 3 - Stored procedures, UDFs, triggers, and data Web services 103

Dynamic SQL is recommended for DDL to avoid dependency problems and package
invalidation. It is also required to implement recursion.

Dynamic SQL can be executed using two approaches:

 Using the EXECUTE IMMEDIATE statement – This is ideal for single execution
SQL

 Using the PREPARE statement along with the EXECUTE statement - This is ideal
for multiple execution SQL

The code snippet illustrated in Listing 3.8 provides an example of Dynamic SQL using the
two approaches. The example assumes a table T2 has been created with this definition:

CREATE TABLE T2 (c1 INT, c2 INT)

CREATE PROCEDURE dyn1 (IN value1 INT, IN value2 INT)

 SPECIFIC dyn1

 BEGIN

 DECLARE stmt varchar(255);

 DECLARE st STATEMENT;

 SET stmt = 'INSERT INTO T2 VALUES (?, ?)';

 PREPARE st FROM stmt;

 EXECUTE st USING value1, value1;

 EXECUTE st USING value2, value2;

 SET stmt = INSERT INTO T2 VALUES (9,9)';

 EXECUTE IMMEDIATE stmt;

END

Listing 3.8 - An example of a stored procedures using dynamic SQL

3.4 Java Stored Procedures
A Java stored procedure in DB2 is created using the CREATE PROCEDURE statement
which provides the definition for the procedure, and points to an external Java application.
Java stored procedures can be easily created using IBM Data Studio. You can follow the
same steps as discussed in section 3.2, choosing Java for the language. IBM Data Studio
will also let you choose between JDBC or SQLJ for the procedure. If you take all the
defaults when creating the Java stored procedure, a corresponding Java application will be
generated for you. Figure 3.11 illustrates IBM Data Studio with a Java stored procedure
created. Figure 3.12 shows the corresponding Java source code.

104 Getting started with DB2 application development

Figure 3.11 - CREATE PROCEDURE definition for a Java stored procedure

Chapter 3 - Stored procedures, UDFs, triggers, and data Web services 105

Figure 3.12 - Java source code for a Java stored procedure

3.5 User-defined functions: The big picture
A user-defined function (UDF) is a database application object that maps a set of input
data values into a set of output values. For example, a function may take a measurement
in inches as input, and return the result in centimeters.

DB2 supports creating functions using SQL PL, PL/SQL, C/C++, Java, CLR (Common
Language Runtime), and OLE (Object Linking and Embedding). In this book, we focus on
SQL PL functions because of their simplicity, popularity, and performance.

Note:

Prior to DB2 9.7, UDFs only supported a subset of SQL PL statements known as inline
SQL PL. With DB2 9.7, All SQL PL statements are fully supported.

Note:

For more information about UDFs watch this video:
http://www.channeldb2.com/video/video/show?id=807741:Video:4362

http://www.channeldb2.com/video/video/show?id=807741:Video:4362�

106 Getting started with DB2 application development

There are four types of functions: scalar, table, row, and column functions. In this book, we
focus only on scalar and table functions.

3.5.1 Scalar functions

Scalar functions return a single value. Scalar functions cannot include SQL statements that
will change the database state; that is, INSERT, UPDATE, and DELETE statements are
not allowed. Some built-in scalar functions are SUM(), AVG(), DIGITS(), COALESCE(), and
SUBSTR().

DB2 allows you to build customized user-defined functions where you can encapsulate
frequently used logic. Listing 3.9 provides an example of a scalar function.

CREATE FUNCTION deptname(p_empid VARCHAR(6))

RETURNS VARCHAR(30)

SPECIFIC deptname

BEGIN ATOMIC

 DECLARE v_department_name VARCHAR(30);

 DECLARE v_err VARCHAR(70);

 SET v_department_name = (

 SELECT d.deptname FROM department d, employee e

 WHERE e.workdept=d.deptno AND e.empno= p_empid);

 SET v_err = 'Error: employee ' || p_empid || ' was not found';

 IF v_department_name IS NULL THEN

 SIGNAL SQLSTATE '80000' SET MESSAGE_TEXT=v_err;

 END IF;

RETURN v_department_name;

END

Listing 3.9 - An example of a scalar function

In the above listing, the function name is deptname and it returns the department number
of an employee based on the employee id. A scalar UDF can be invoked using the
VALUES statement. It can also be invoked from a SQL statement wherever a scalar value
is expected. For example, try the following from the DB2 Command Window or from a
Linux or UNIX terminal:

db2 "values (deptname ('000300'))"

or

db2 "select (deptname ('000300')) from sysibm.sysdummy1"

Note in the second example that the SYSIBM.SYSDUMMY1 is used. This is a special
dummy table with one row and one column. It is used to ensure that only one value is
returned. If you try the same SELECT statement with any other table that had more rows,
the function would be invoked as many times as the table has.

Chapter 3 - Stored procedures, UDFs, triggers, and data Web services 107

3.5.2 Table functions

Table functions return a table of rows. You can call them using the FROM clause of a
query. Table functions, as opposed to scalar functions, can change the database state;
therefore, INSERT, UPDATE, and DELETE statements are allowed. Some built-in table
functions are SNAPSHOT_DYN_SQL() and MQREADALL(). Table functions are similar to
views, but since they allow for data modification statements (INSERT, UPDATE, and
DELETE) they are more powerful. Typically they are used to return a table and keep an
audit record.

Listing 3.10 provides an example of a table function that enumerates a set of department
employees:

CREATE FUNCTION getEnumEmployee(p_dept VARCHAR(3))

RETURNS TABLE

 (empno CHAR(6),

 lastname VARCHAR(15),

 firstnme VARCHAR(12))

SPECIFIC getEnumEmployee

RETURN

 SELECT e.empno, e.lastname, e.firstnme

 FROM employee e

 WHERE e.workdept=p_dept

Listing 3.10 - An example of a scalar function

To test the above function, try the SELECT statement shown in Figure 3.13 below.

Figure 3.13 – Invoking a table function.

As shown in the above figure, a table UDF has to be invoked in the FROM clause of an
SQL statement since it returns a table. The special TABLE() function must be applied and
an alias must be provide after its invocation.

3.6 Triggers: The big picture
Triggers are database objects associated with a table that define operations to occur when
an INSERT, UPDATE, or DELETE operation is performed on the table. Triggers are

108 Getting started with DB2 application development

activated automatically. The operations that cause triggers to fire are called triggering SQL
statements.

Note:

For more information about triggers watch this video:
http://www.channeldb2.com/video/video/show?id=807741:Video:4367

Note:

Prior to DB2 9.7, triggers only supported a subset of SQL PL statements known as inline
SQL PL. With DB2 9.7, All SQL PL statements are fully supported.

3.6.1 Types of triggers

There are three types of triggers: “before” triggers, “after” triggers, and “instead of” triggers.

3.6.1.1 Before triggers

Before triggers are activated before a row is inserted, updated or deleted. The operations
performed by this trigger cannot activate other triggers; therefore an INSERT, UPDATE, or
DELETE operations are not permitted. An example of a simple before trigger with
explanation of some of its syntax is shown in Figure 3.14.

Figure 3.14 – Example of a before trigger

In the above figure the trigger default_class_end will be triggered before an INSERT
SQL statement is performed on the table CL_SCHED. This table is part of the SAMPLE
database, so you can create and test this trigger yourself while connected to this database.

http://www.channeldb2.com/video/video/show?id=807741:Video:4367�

Chapter 3 - Stored procedures, UDFs, triggers, and data Web services 109

The variable n in the trigger definition represents the new value in an INSERT, that is, the
value being inserted. The trigger will check the validity of what is being inserted into the
table. If the column ENDING has no value during an INSERT, the trigger will ensure it has
the value of the column STARTING plus 1 hour.

Listing 3.11 shows the statements you can try to test the trigger, and the corresponding
output.

C:\Program Files\IBM\SQLLIB\BIN>db2 insert into cl_sched (class_code, day,
starting) values ('abc',1,current time)

DB20000I The SQL command completed successfully.

C:\Program Files\IBM\SQLLIB\BIN>db2 select * from cl_sched

CLASS_CODE DAY STARTING ENDING

---------- ------ -------- --------

042:BF 4 12:10:00 14:00:00

553:MJA 1 10:30:00 11:00:00

543:CWM 3 09:10:00 10:30:00

778:RES 2 12:10:00 14:00:00

044:HD 3 17:12:30 18:00:00

abc 1 11:06:53 12:06:53

6 record(s) selected.

Listing 3.11 - Testing the before trigger created earlier

In the above listing you can see that there was no value passed for the ENDING column in
the INSERT statement; therefore its value is NULL. Also the CURRENT TIME is a special
DB2 register returning the time it was invoked. In the example, the current time is 11:06:53,
therefore this value is assigned to the STARTING column, while the ENDING column gets
what the trigger logic assigns to it, which is 11:06:53 plus 1 hour.

The trigger validate_sched shown below extends the functionality of the
default_class_end trigger previously described to add additional conditions.

CREATE TRIGGER validate_sched

NO CASCADE BEFORE INSERT ON cl_sched

REFERENCING NEW AS n

FOR EACH ROW

MODE DB2SQL

BEGIN ATOMIC

-- supply default value for ending time if null

IF (n.ending IS NULL) THEN

 SET n.ending = n.starting + 1 HOUR;

END IF;

110 Getting started with DB2 application development

-- ensure that class does not end beyond 9pm

IF (n.ending > '21:00') THEN

 SIGNAL SQLSTATE '80000'

 SET MESSAGE_TEXT='class ending time is beyond 9pm';

ELSEIF (n.DAY=1 or n.DAY=7) THEN

 SIGNAL SQLSTATE '80001'

 SET MESSAGE_TEXT='class cannot be scheduled on a weekend';

END IF;

END

Listing 3.12 - Extending the before trigger created earlier

3.6.1.2 After triggers

After triggers are activated after the triggering SQL statement has executed to successful
completion. The operations performed by this trigger may activate other triggers (cascading
is permitted up to 16 levels). After triggers support INSERT, UPDATE and DELETE
operations. Listing 3.13 is an example of an after trigger.

CREATE TRIGGER audit_emp_sal

AFTER UPDATE OF salary ON employee

REFERENCING OLD AS o NEW AS n

FOR EACH ROW

MODE DB2SQL

 INSERT INTO audit VALUES (

 CURRENT TIMESTAMP, ' Employee ' || o.empno || ' salary changed from '
|| CHAR(o.salary) || ' to ' || CHAR(n.salary) || ' by ' || USER)

Listing 3.13 - An example of an after trigger

In the above listing, the trigger audit_emp_sal is used to perform auditing on the column
SALARY of the EMPLOYEE table. When someone makes a change to this column, the
trigger will be activated to write the information about the changed made to the salary into
another table called AUDIT. The OLD as o NEW as n line indicates that the prefix o will be
used to represent the old or existing value in the table, and the prefix n will be used to
represent the new value coming from the UPDATE statement. Thus, o.salary represents
the old or existing value of the salary, and n.salary represents the updated value for the
column salary data.

3.6.1.3 “Instead of” triggers

Instead of triggers are defined on views. Since views are defined dynamically using a
SELECT statement that accesses one or more tables, views cannot be updated. However,
using this type of trigger, you can give users the illusion that a view can be updated
because the logic defined in the trigger is executed instead of the triggering SQL
statement. For example, if you perform an update operation on a view, the instead of

Chapter 3 - Stored procedures, UDFs, triggers, and data Web services 111

trigger will be activated to actually perform the update on the base tables that form the
view.

Triggers cannot be created from IBM Data Studio. They can be created from the Control
Center or from the Command line tools (DB2 Command Window, Command Line
Processor, or the Command Editor).

3.7 Data Web services
Data Web services are web services based on database information. Using IBM Data
Studio it is very easy to create Data Web services. A web service is like a JEE application
(formerly known as J2EE); therefore the Web service needs to be deployed to an
application server. In this book we use WebSphere Application Server Community Edition
(WAS CE) version 2.1 which is a free application server built on top of Apache Geronimo.
WAS CE can be downloaded from this site:

http://www.ibm.com/developerworks/downloads/ws/wasce/

WAS CE has a small footprint, and is very easy to install. Ensure WAS CE is installed prior
to working with data web services.

Note:

For more information about WAS CE, refer to the eBook Getting started with WAS CE that
is part of this DB2 on Campus free book series.

To create a Data Web Service from Data Studio, open or create a new project, and select
the Web Services folder. Right-click on this folder and choose New Web Service. Give a
name to the Web service, and click on Finish. Figure 3.15 shows the MyWebService
created using the steps just explained.

http://www.ibm.com/developerworks/downloads/ws/wasce/�

112 Getting started with DB2 application development

Figure 3.15 – Creating a data web service

Though you created a Web service, it currently has no methods or operations. To add
operations to the Web service you simply have to drag and drop stored procedures or SQL
scripts previously created in Data Studio. For example, take a look at Figure 3.16 below.

Chapter 3 - Stored procedures, UDFs, triggers, and data Web services 113

Figure 3.16 – Dragging and dropping to create a data web service operation

The above figure shows the stored procedure GETALLEMP which returns a cursor based
on the statement SELECT * FROM EMPLOYEE. After this procedure has been deployed and
tested, it is added as an operation to the Web service simply by dragging and dropping it
into the web service MyWebService as highlighted in the figure. A similar procedure can
be done with SQL scripts previously created, or even stored procedures already deployed
to the database and found from the Data Source Explorer view.

Once the web service has at least one operation, you can build and deploy it by selecting
the Web service, right-clicking on it and choosing Build and Deploy as shown in Figure
3.17 below.

114 Getting started with DB2 application development

Figure 3.17 – Building and deploying a data web service

After choosing Build and Deploy, the Deploy Web Service window will appear as illustrated
in Figure 3.18.

Chapter 3 - Stored procedures, UDFs, triggers, and data Web services 115

Figure 3.18 – The Deploy Web Service window

In the Deploy Web Service window, within the Web Server section, we chose WAS CE 2.1
for the type field. Other supported application servers are Apache Tomcat and WebSphere
Application Server (WAS). Since we have WAS CE already installed on the same computer
as the DB2 data server, we choose the option Server rather than Build deployable files
only, do not deploy to a Web server. This second option creates WAR files you can later
transfer to the application server where you want to deploy the Web service. In Figure 3.20

116 Getting started with DB2 application development

above, the application server has already been added to IBM Data Studio. If it had not
been added, you need to click the New button and take all defaults for most panels. The
one thing you do need to specify is where you installed WAS CE. The default installation
path on Windows is:

C:\Program Files\IBM\WebSphere\AppServerCommunityEdition

Back in the Deploy Web Service window, ensure to click on the Launch Web Services
Explorer after deployment checkbox. Then click Finish. At this point, WAS CE will started,
and then the Data Web Service is deployed. This may take approximately 10 to 20
seconds. Once finished the Web Services Explorer will be launched. Figure 3.19 illustrates
the Web Services Explorer.

Figure 3.19 – The Web Services Explorer

In the above figure, on the left panel of the Web Services Explorer we have a tree which
starts with the URL where we can find the Web Services Description Language (WSDL)
document. For this particular example, the WSDL is located at:

http://localhost:8080/MyProjectmyWebService/wsdl

The tree also shows the items:

 myWebServiceHTTPGET

 myWebServiceHTTPGET

http://localhost:8080/MyProjectmyWebService/wsdl�
http://localhost:8080/MyProjectmyWebService/wsdl�

Chapter 3 - Stored procedures, UDFs, triggers, and data Web services 117

 myWebServiceSOAP

The first two items correspond to the REST protocol, and the last one to the SOAP
protocol. In Figure 3.18 under Message protocols section, we checked both the REST and
SOAP protocols, that's why both type of web services were generated. REST and SOAP
are two standards that can be used with Web Services, and it is your choice which want
you want to use. IBM Data Studio can generate web services using either or both of them.
In Figure 3.19 the GETALLEMP method under the SOAP version is highlighted, and when
you click on Go in the right panel you will test this method providing you the output at the
bottom of the right panel, and showing you the output as a Form. In Figure 3.19, we are
actually displaying the output as Source.

If you would like to invoke the REST version of the GETALLEMP method from a browser,
first take a look at the WSDL to see how to invoke the method. If you scroll down the
WSDL you will see how to invoke the method. This is illustrated in Figure 3.20.

Figure 3.20 – The WSDL

In the above figure, we highlighted the URL to use to invoke the Web service. To this URL
we need to append the name of the method you wish to execute. The full URL for our
example would be:

http://localhost:8080/MyProjectmyWebService/rest/myWebService/GETALLEMP

http://localhost:8080/MyProjectmyWebService/rest/myWebService/GETALLEMP�

118 Getting started with DB2 application development

Note that the method name is case sensitive. Figure 3.21 illustrates the output of inputing
the above URL in a browser.

Figure 3.21 – Invoking the GETALLEMP method from myWebService

If you wish, you can also apply an XSLT to this XML output. This can be done from Data
Studio by right-clicking on the method in the data Web service and choosing Manage XSLT
as shown in Figure 3.22.

Chapter 3 - Stored procedures, UDFs, triggers, and data Web services 119

Figure 3.22 – Applying an XSLT to the output of a Web service method

In the Configure XSL Transformations window, click on Browse and look for an XSL file
previously created. For example, Listing 3.14 shows part of the XSL file used in this
example.

120 Getting started with DB2 application development

Listing 3.14 - XSL file used in the data Web services example

Figure 3.23 shows how this XSL file is specified.

Figure 3.23 – Specifying the XSL file to use

After clicking on Finish, you need to build and deploy the Web service again, and after
refreshing the browser with the same URL as in Figure 3.21, you will see an output as
illustrated in Figure 3.24.

Chapter 3 - Stored procedures, UDFs, triggers, and data Web services 121

Figure 3.24 – Output after invoking the GETALLEMP method with an XSLT

Note:

For a complete demo of this same Data Web Services example, watch this video:
http://www.channeldb2.com/video/video/show?id=807741%3AVideo%3A1482

3.8 Exercises
In this exercise, you will create a scalar UDF using IBM Data Studio. This will give you
more experience with Data Studio, as well as improving your familiarity with the SQL PL
language for user-defined functions.

Procedure

1. Open IBM Data Studio (Hint: it is available through the Start menu).

2. Create a new project as described earlier in the chapter that is associated to the
EXPRESS database created in the exercises of Chapter 5. Then drill down until
you find the User-Defined Functions folder.

3. Right-click the User-Defined Functions folder. Select New -> User-defined
functions.

http://www.channeldb2.com/video/video/show?id=807741%3AVideo%3A1482�

122 Getting started with DB2 application development

4. For the name of the function use booktitle, for the language choose SQL which
means you will create an SQL PL user-defined function.

5. At this point, you can click the NEXT button several times taking all the defaults
until you finish creating the UDF. Alternatively, just click on the Finish button now.

6. An editor window will be displayed with some sample code. Delete all these code,
and replace it with the following.

CREATE FUNCTION booktitle(p_bid INTEGER)

RETURNS VARCHAR(300)

--

SQL UDF (Scalar)

--

SPECIFIC booktitle

F1: BEGIN ATOMIC

 DECLARE v_book_title VARCHAR(300);

 DECLARE v_err VARCHAR(70);

 SET v_book_title = (SELECT title FROM books WHERE p_bid = book_id);

 SET v_err = 'Error: The book with ID ' || CHAR(p_bid) || '

 was not found.';

 IF v_book_title IS NULL THEN SIGNAL SQLSTATE '80000' SET

 MESSAGE_TEXT=v_err;

 END IF;

RETURN v_book_title;

END

7. Build the function by right-clicking on the function name and choosing Deploy
followed by Finish from the Deploy options panel.

8. Run the function by right-clicking on the function name and choosing Run.

9. Since the function accepts one input parameter, a dialog window appears asking
you to fill in a value for the parameter.

Enter the value: 80002

 What is the result?

Try again with the value: 1002

What happens this time? (Hint: Look in the SQL Results tab).

10. Close IBM Data Studio when you are finished.

Chapter 3 - Stored procedures, UDFs, triggers, and data Web services 123

3.9 Summary
This chapter provided an introduction to data server-side development. We discussed how
to create stored procedures, UDFs, and triggers. The discussion was centered on the SQL
PL language, and the use of the IBM Data Studio tool. The chapter also discussed how to
create Data Web Services based on SQL scripts or stored procedures.

3.10 Review questions
1. What are the benefits of stored procedures?

2. Can scalar UDFs be used to write audit information to a table?

3. How can you invoke a scalar UDF?

4. Can a BEFORE trigger be used to UPDATE tables?

5. What is the SPECIFIC keyword used for in a stored procedure?

6. Which of the following is not a valid type of a trigger?

A. BEFORE

B. PRESENT

C. AFTER

D. INSTEAD OF

E. None of the above

7. Which of the following tools can be used to create a trigger?

A. Control Center

B. Command Editor

C. DB2 Command Window

D. IBM Data Studio

E. None of the above

8. Why of the following statements correctly invokes the table function getFlights?

A. SELECT * FROM GETFLIGHTS()

B. SELECT * FROM GETFLIGHTS

C. SELECT * FROM TABLE (GETFLIGHTS) A

D. SELECT * FROM TABLE (GETFLIGHTS) AS A

E. C and D

9. Which of the following statements is true?

A. WSDL stands for Web Services Descriptor List

124 Getting started with DB2 application development

B. SOAP and REST Web services both use XML behind the scenes

C. Deployed stored procedures cannot be dragged and dropped to a web service
in Data Studio to create a new method for that web service

D. A and C

E. None of the above

10. Which of the following statements is false?

A. Stored procedures in DB2 can be developed using the C/C++ language

B. UDFs only support a subset of the SQL PL language known as inline SQL PL

C. A stored procedure can call a UDF

D. A trigger can call a stored procedure

E. None of the above

4
Chapter 4 – Application development with Java
This chapter discusses the basics of application development with Java and DB2. Most
Java applications use Java Database Connectivity (JDBC) to access databases using
dynamic SQL; or SQLJ to access databases using static SQL. These are a set of classes
and interfaces written in Java that are vendor-neutral.

In this chapter you will learn about:

 Programming using JDBC

 Programming using SQLJ

 Programming using pureQuery

4.1 Java - DB2 applications: The big picture
Developing Java applications that access a database uses the JDBC or SQLJ standard.
Support for this standard is provided through a JDBC or SQLJ driver provided by the
database vendor as illustrated in Figure 4.1 where a DB2 data server is used.

Figure 4.1 - Java applications accessing a DB2 database

In the figure, a Java application connects to a DB2 data server through the JDBC/SQLJ
driver. After a successful connection, SQL or XQuery statements issued from the Java
application are passed to the DB2 data server for processing, and then result is returned to
the Java application.

JDBC and SQLJ applications can work with minimal modification on data servers that are
compliant to the JDBC/SQLJ specifications such as DB2, Informix®, Oracle®, SQL
Server®, and so on. DB2 9.7 has support for the JDBC 4.0 specification and earlier.

126 Getting started with DB2 application development

In the case of DB2, its JDBC and SQLJ driver is included in either of the following:

 Any DB2 data server edition

 IBM Data Server Client

 IBM Data Server Runtime Client

 IBM Data Server Driver for JDBC and SQLJ

Data server editions, clients and drivers were described in Chapter 1 - What is DB2
Express-C? Clients and drivers are free of charge. Depending on the type of JDBC driver
you use in your application, you may require a client to be installed or not. The different
types of JDBC drivers are explained in the next section.

4.2 Setting up the environment
Before you can run or develop JDBC or SQLJ applications ensure your environment is
correctly set up.

If you would like to develop Java stored procedures and Java user-defined functions which
reside on the DB2 server, ensure a JDK is installed in the DB2 server. Fortunately, when
you install DB2 Version 9.7, the IBM SDK for Java 6 (also known as JDK 6) is installed by
default on all platforms. The location where it is installed is indicated in the database
manager configuration (dbm cfg) parameter JDK_PATH. For example, on Windows the
default location is C:\Program Files\IBM\SQLLIB\java\jdk. The Java compiler
(javac) at this location will be used to compile Java stored procedures and Java user-
defined functions. The JVM that is part of this JDK is used to start the DB2 GUI tools such
as the Control Center.

If you would like to develop JDBC/SQLJ applications from the DB2 server; in addition to the
JDK, ensure the JDBC/SQLJ driver is setup correctly by adding the correct jar files to the
CLASSPATH. Similarly, if you would like to develop JDBC/SQLJ application from a client
machine, ensure you have installed and setup the JDBC/SQLJ driver correctly. If you are
using the JDBC type 2 driver, you also need to install a DB2 client (either the IBM Data
Server Client or the IBM Data Server Runtime Client). More details are provided in the next
section.

4.2.1 DB2 JDBC and SQLJ drivers

Table 4.1 describes the different types of JDBC drivers available in the industry today.

Type Driver name Description Provided with
DB2?

Type 1 The JDBC-ODBC
bridge driver

Through this driver, JDBC access
is performed via an ODBC driver.

No

Chapter 4 - Application development with Java 127

Type 2 The Native-API driver This driver requires a DB2 client to
be installed in the same machine
were the JDBC application is
running. DB2 provides two type 2
drivers as we will describe later.

Yes

Type 3 The JDBC net pure-
java driver

This driver uses a pure Java client
and communicates with a net
server using a database-
independent protocol. The net
server then communicates the
client's requests to the database.
This driver is no longer supported
in DB2 in favor of Type 4 drivers.

No

Type 4 The native-protocol
pure-java driver.

This is the most flexible JDBC API.
This driver converts JDBC calls
into the network protocol used by
DB2 directly. This allows a direct
call from the client machine to the
DB2 server without having to
install a DB2 client.

Yes

Table 4.1 - JDBC driver types

Though there are several types of JDBC drivers, type 2 and type 4 drivers are the most
popular and best for performance; therefore, in DB2 9.7, support for other types has been
dropped in favor of these two types. Type 2 drivers need to have a DB2 client installed on
the machine where the Java application is running. The type 2 driver uses the DB2 client to
establish communication to the database as depicted in Figure 4.2.

Figure 4.2 - A Java application using the JDBC type 2 driver

Type 4 is a pure java client, so there is no need for a DB2 client, but the driver must be
installed on the machine where the JDBC application is running. Figure 4.3 illustrates a
JDBC application using the type 4 driver.

128 Getting started with DB2 application development

Figure 4.3 – A JDBC application using the type 4 driver

Table 4.2 provides more details about the DB2 JDBC and SQLJ drivers.

Driver
Type

Driver Name Packaged
as

JDBC
specification

supported

Minimum level of
SDK for Java

required

Type 2 DB2 JDBC Type 2 Driver
for Linux, UNIX and
Windows (Deprecated*)

db2java.zip JDBC 1.2 and
JDBC 2.0

1.4.2

Type 2
and
Type 4

IBM Data Server Driver
for JDBC and SQLJ

db2jcc.jar
and sqlj.zip

JDBC 3.0
compliant

1.4.2

db2jcc4.jar
and
sqlj4.zip

JDBC 4.0 and
earlier

6

Table 4.2 - DB2 JDBC and SQLJ drivers

* Deprecated means it is still supported, but no longer enhanced

As you can see from Table 4.2, Type 2 is provided with two different drivers; however the
DB2 JDBC Type 2 Driver for Linux, UNIX and Windows, packaged as db2java.zip, is
deprecated.

The IBM Data Server Driver for JDBC and SQLJ packaged as db2jcc.jar
(com.ibm.db2.jcc) includes support for both, the type 2 and type 4 drivers. The choice of
driver is determined based on the syntax used to connect to the database in your Java
program: If a hostname or IP address, and a port are included in the connection string,
then type 4 is used, otherwise, type 2 is used. This is discussed in more detail in a later
section of this chapter. The IBM Data Server Driver for JDBC and SQLJ has been
optimized to access all DB2 servers in all platforms including the mainframe.

When you install a DB2 server, a DB2 client or the IBM Data Server Driver for JDBC and
SQLJ, the db2jcc.jar and sqlj.zip files compliant with JDBC 3.0 are automatically
added to your CLASSPATH. If you would like to use the JDBC 4.0 specification, make sure
to replace db2jcc.jar and sqlj.zip with db2jcc4.jar and sqlj4.zip respectively
in the CLASSPATH.

Note:

Chapter 4 - Application development with Java 129

If you are new to the Java programming language and the concepts of JVM, JRE, or JDK;
review the free e-book Getting Started with Java that is part of this book series.

4.3 JDBC Programming
Developing a JDBC program consists of the following steps:

1. Connect to the database using either JDBC type 2 or type 4

2. Execute SQL statements

3. Receive results

4. Handle SQL errors and warnings

5. Close the connection

We discuss each of these steps in more detail in the next sections. Figure 4.4 provides a
summary about the steps, interfaces, classes and methods that are used in a JDBC
program. These are also discussed in more detail in the next sections.

Figure 4.4 - The JDBC Programming steps, objects and methods

130 Getting started with DB2 application development

Note:

Several examples and figures used in this section are taken from the IBM redbook DB2
Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET (SG24-7301-
00). See the Resources section in this book for more information.

4.3.1 Connecting to a DB2 database

This section shows you how to connect to a database using JDBC Type 2, and JDBC Type
4. Let's examine the code snippet shown in Listing 4.1 below for a connection using JDBC
Type 2.

(1) import java.sql.*;

 class myprg {
 public static void main (String argv[]){
 try {
 Connection con = null;
(2) Class.forName("com.ibm.db2.jcc.DB2Driver");
(3) String url = "jdbc:db2:SAMPLE";
 if (argv.length == 2){
 String userID = argv[0];
 String passwd = argv[1];
(4) con = DriverManager.getConnection(url,userID,passwd);
 }
 else
 {throw new Exception
 ("\n Usage: java myprg userID password\n");
 }
…

Listing 4.1 - Connecting to a DB2 Database using JDBC Type 2

Let's review each of the items shown in Listing 4.1:

(1) This statement imports the java.sql package, which contains the JDBC core
API.

(2) This statement loads the driver classes from the IBM Data Server Driver for JDBC
and SQLJ (db2jcc.jar/db2jcc4.jar/sqlj.zip/sqlj4.zip). The forName
method takes a string argument whose value is the name of the class which
implements the interfaces defined in java.sql package. In this case the class
name is "com.ibm.db2.jcc.DB2Driver". If you expand the db2jcc.jar file,
you’ll see on Windows:

Chapter 4 - Application development with Java 131

C:\Program
Files\IBM\SQLLIB\java\db2jcc\com\ibm\db2\jcc\DB2Driver.class

In the case of the deprecated DB2 JDBC Type 2 Driver for Linux, UNIX and
Windows, the class name to use in the forName method would be
"COM.ibm.db2.jdbc.app.DB2Driver". If you unzip db2java.zip on Windows
you’ll see:

C:\Program
Files\IBM\SQLLIB\java\db2java\COM\ibm\db2\jdbc\app\DB2Driver.
class

(3) In this line, we initialize the URL and choose to connect to the SAMPLE database. In
the syntax of the URL we are not including the host name or the port number;
therefore, this means Type 2 is being used. Type 2 needs a DB2 client to be
installed, and use it to configure the connectivity to the SAMPLE database.

(4) In the case two arguments are passed to the program (userID and password),
these will be used to get the connection; otherwise the program throws an
exception. DriverManager.getConnection(url,userID,passwd) can also be
called without a userID and passwd as follows:
DriverManager.getConnection(url). In this case the user ID logged on to the
system would be used. For Type 4, as we will see next, this will not work, as this
connection is taken as a remote TCPIP connection and DB2 needs a user ID and
password for all remote connections.

Now let's take a look at the same code snippet as in Listing 4.1, but using a JDBC Type 4
connection. This is illustrated in Listing 4.2

 import java.sql.*;

 class myprg {
 public static void main (String argv[]){
 try {
 Connection con = null;
 Class.forName("com.ibm.db2.jcc.DB2Driver");
(1) String url = "jdbc:db2://168.100.10.1:50000/SAMPLE";
 if (argv.length == 2){
 String userID = argv[0];
 String passwd = argv[1];
 con = DriverManager.getConnection(url,userID,passwd);
 }
 else
 { throw new Exception
 ("\n Usage: java myprg userID password\n");
 }

132 Getting started with DB2 application development

 …

Listing 4.2 - Connecting to a DB2 Database using JDBC Type 4

Listing 4.2 shows the exact same code snippet as in Listing 4.1, but the URL has been
changed to use the Type 4 syntax:

"jdbc:db2://<IP address or hostname>:<DB2 Instance port number>/<dbname>"

(1) In Listing 4.2, the fictitious IP address 168.100.10.1 was used. The DB2 instance
port number is 50000, and the database name to connect to is SAMPLE. To test a
connection when you are not connected to a network you can always use
localhost or the loopback IP address 127.0.0.1 to point to yourself.

Note:

Most of the code snippets shown in this chapter are extracted from the program
myprg.java which is included in the
Exercise_Files_DB2_Application_Development.zip file with this book. You can
test each code snippet by commenting out the appropriate section in the program.

After a Connection object is created, a Statement, PreparedStatement, or
CallableStatement object can be created with the methods described in Table 4.3

Method Object created Description

createStatement Statement object A Statement object can be
used to execute SQL that does
not use parameter markers.

prepareStatement PreparedStatement
object

A PreparedStatement
object can be used to execute
SQL that uses parameter
markers.

prepareCall CallableStatement
object

A CallableStatement object
can be used to call a stored
procedure.

Table 4.3 - Methods of the Connection object to create different types of Statement
object

4.3.2 Executing SQL statements

This section describes how to declare host variables, and execute SQL statements using
the Statement, PreparedStatement and CallableStatement interfaces.

4.3.2.1 Declaring host variables

Chapter 4 - Application development with Java 133

Host variables follow normal Java variable syntax. Some data types that map to
database data types in Java applications can be seen in Figure 4.5 extracted from the DB2
Information Center.

Figure 4.5 - Mapping of Java data types with DB2 data types

The full mapping list can be found at:
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.apdv.java.doc/
doc/rjvjdata.html

The DCLGEN (Declarations generator) utility in DB2 allows you to create structures for host
variables. The languages supported are C, Java, COBOL, and FORTRAN.

For example, to generate the declaration statements for the table employee in the
SAMPLE database for the Java language you can use:

db2dclgn -D sample -T employee -L Java

The output would be stored in a file employee.java with content as shown in Listing 4.3
below.

…
java.sql.Date hiredate;
java.lang.String job;
short edlevel;
java.lang.String sex;
java.sql.Date birthdate;
java.math.BigDecimal salary;
Listing 4.3 - Output of DCLGEN for the employee table using the Java language

4.3.2.2 The Statement interface

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.apdv.java.doc/doc/rjvjdata.html�
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.apdv.java.doc/doc/rjvjdata.html�

134 Getting started with DB2 application development

A class implementing the Statement interface is used to execute an SQL statement
which does not contain parameter markers. A Statement object is created with the
createStatement method from a Connection object.

Table 4.4 shows the different methods applicable to the Statement object to execute a
query.

Method Description

executeQuery Use it when a result set is expected, for example, a SELECT
statement. It returns a ResultSet object.

executeUpdate Use it for updates of database contents, for example, INSERT,
UPDATE, and DELETE. It returns an integer with the number of rows
affected.

execute Use it when you don't know until runtime whether the statement
executed is a SELECT or an UPDATE statement. It returns true if
the result of the SQL is a result set, false if it’s an update count.
Use this method in conjunction with getResultSet or
getUpdateCount methods.

Table 4.4 - Methods of the Statement object

Listing 4.4 provides a code snippet that illustrates the use of a Statement object, and the
executeQuery method.

…
(1) Statement stmt = con.createStatement();
(2) ResultSet rs = stmt.executeQuery
 ("SELECT EMPNO, FIRSTNME, LASTNAME " +
 " FROM EMPLOYEE " +
 " WHERE SALARY > 80000");
(3) while (rs.next()) {
 System.out.println("Empno = " + rs.getString(1) +
 " Full name = " + rs.getString(2) +
 " " + rs.getString(3));
 }
(4) rs.close();
(5) stmt.close();
(6) con.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 } }

Listing 4.4 - Statement object: Performing a SELECT with executeQuery

Chapter 4 - Application development with Java 135

The three dots at the beginning indicates this is part of a program, not all the listing is being
shown. Next each line marked with a number is explained as follows:

(1) An object of Statement (or class implementing the Statement interface) can be
used to execute the SQL statement which does not contain parameter markers. A
Statement object can be created from the Connection object using
createStatement method.

(2) The ResultSet object maintains a cursor to the current row of the result set of a
query. The executeQuery method allows you to execute a query (SELECT). If
you want to update, delete, or insert, use the executeUpdate method as we will
see later.

(3) The cursor can be advanced to the next row by using the next method of the
ResultSet object. The cursor by default can only be moved forward and is read-
only.

(4) Closing the result set.

(5) Closing the statement.

(6) Closing the connection.

If you would like to test the above code snippet, edit the myprg.java program
(accompanying this book) appropriately. The program includes the connection statements
shown in Listing 4.2. The program would be compiled and executed as shown below.

javac myprg.java

java myprg <userid> <password>

The output would look as shown in Figure 4.6 where the userID is arfchong, and the
password is mypasswd:

Figure 4.6 - Executing the myprg.java program

136 Getting started with DB2 application development

The next code snippet shown in Listing 4.5 below provides an example of using a
Statement object, and the executeUpdate method.

 Statement updStmt = con.createStatement();
(1) int numRows = updStmt.executeUpdate
 ("UPDATE EMPLOYEE " +
 " SET FIRSTNME = 'Raul', " +
 " LASTNAME = 'Chong' " +
 " WHERE EMPNO = '000010' ");
 System.out.println("Number of rows updated " + numRows);

Listing 4.5 - Statement object: Performing an UPDATE with executeUpdate

In the above listing, in line (1):

The executeUpdate method is used to perform a SQL UPDATE operation, which returns
an integer with the number of rows affected. The above code snippet is part of the
myprg.java program. You can run it as follows after commenting out the appropriate
sections in the program:

javac myprg.java

java myprg <userid> <password>

And this would be the output:

Number of rows updated: 1

The examples in Listing 4.6 and Listing 4.7 are similar to the previous Listing 4.5, but in this
case, the query is saved on a string called query first, and we are using the
executeUpdate method to perform an INSERT and a DELETE respectively.

 String query = null;
 query = "INSERT INTO employee (EMPNO, " +
 "FIRSTNME, LASTNAME, EDLEVEL, SALARY)" +
 "VALUES ('099999', 'Jin', 'Xie', 25, 90000)";
 Statement stmt = con.createStatement();
 int numRows = stmt.executeUpdate(query);
 System.out.println("Number of rows inserted: " + numRows);
 stmt.close();

Listing 4.6 - Statement object: Performing an INSERT with executeUpdate

 String query = null;
 query = "DELETE FROM employee where empno = '000999'";
 Statement stmt = con.createStatement();

 int numRows = stmt.executeUpdate(query);

Chapter 4 - Application development with Java 137

 System.out.println("Number of rows deleted: " + numRows);
 stmt.close();

Listing 4.7 - Statement object: Performing a DELETE with executeUpdate

The next code snippet shown in Listing 4.8 is an example of using the execute method.
As stated earlier, this method is used when you don't know until runtime if you are
performing a SELECT or an update, where an update refers to an SQL UPDATE, INSERT,
or DELETE.

 String passedStmt = "SELECT firstnme, lastname " +
 "FROM employee " +
 "WHERE salary > 80000";
 Statement stmt = con.createStatement();
 ResultSet rs = null;
 int numrows = 0;
(1) if (stmt.execute(passedStmt)){
 rs = stmt.getResultSet();
 while (rs.next()) {
 System.out.println("Full name = " + rs.getString(1) +
 " " + rs.getString(2));
 }
 rs.close();
 }
 else {
 numrows = stmt.getUpdateCount();
 System.out.println("Number of rows updated: " + numrows);
 }

Listing 4.8 - Statement object: Performing a SELECT or UPDATE with execute

In the above listing, in line (1):

If the statement passed (passedStmt in this example) is a SELECT, the execute method
will return true. If it was an UPDATE/INSERT/DELETE, it’d return false. In this particular
example we hard-coded the statement passed; however, it could have been implemented
as an argument.

To test this using the myprg.java program, comment out the corresponding section in the
program, and run these commands:

javac myprg.java

java myprg <userid> <password>

The output would look like:

Full name = Raul Chong

Full name = MICHAEL THOMPSON

138 Getting started with DB2 application development

Full name = SALLY KWAN

Full name = JOHN GEYER

Full name = EVA PULASKI

Full name = EILEEN HENDERSON

Full name = THEODORE SPENSER

If you modify the program so the passed statement is an UPDATE operation, you can test
compiling and running the program again, and would get this result:

Number of rows updated: 1

4.3.2.3 The PreparedStatement interface

A class implementing the PreparedStatement interface can be used to run queries
which can contain parameter markers. A parameter marker is a question mark (?) that
appears in a dynamic statement string and can appear where a variable could appear.
PreparedStatement extends the Statement interface.

As indicated earlier, the prepareStatement method of the Connection object is used
to create a PreparedStatement object.

If the SQL statement contains parameter markers, the values for these parameter markers
need to be set using setter methods before executing the statement. Setter methods of a
PreparedStatement object look like “setXXX”, where XXX denotes the data type of the
parameter marker. For example, setInt, setString, setDouble, setBytes,
setClob, setBlob

After setting the parameter values, use the executeQuery, executeUpdate, or
execute methods based on the SQL type.

Listing 4.9 provide a sample code snippet using PreparedStatement and a SELECT.

(1) PreparedStatement pStmt = con.prepareStatement
 ("SELECT firstnme, " +
 " lastname " +
 "FROM employee WHERE salary > ? ");
(2) pStmt.setInt(1,80000);
(3) ResultSet rs = pStmt.executeQuery();
 while (rs.next()) {
 System.out.println("Full name = " + rs.getString(1) +
 " " + rs.getString(2));
}
(4) rs.close();
(5) pStmt.close();

Listing 4.9 - PreparedStatement object: Performing a SELECT with executeQuery

In the above listing:

Chapter 4 - Application development with Java 139

(1) A prepared statement is created from a SELECT, where the parameter marker (?) is
used for the salary.

(2) Since the salary column is defined as INTEGER, we use the setter method
setInt. In this particular example we hardcode the value to 80000. The “1” in
pStmt.setInt(1,80000) represents the first parameter marker.

(3) After the setter methods have been used to set values, we use executeQuery in
this case since it’s a SELECT statement, and assign it to a result set.

(4) Close the result set

(5) Close the PreparedStatement object pStmt.

This next sample code snippet shown in Listing 4.10 provides a similar example as the
previous listing, but this time it is using a PreparedStatement with an update, and using
executeUpdate.

(1) PreparedStatement pStmt = con.prepareStatement
 ("UPDATE employee " +
 " SET salary = ? " +
 " WHERE empno = ? ");
(2) pStmt.setInt (1,85000);
(3) pStmt.setString(2,"000010");
(4) int numRows = pStmt.executeUpdate();
 System.out.println("Number of rows updated: " + numRows);
 pStmt.close();

Listing 4.10 - PreparedStatement object: Performing an UPDATE with executeUpdate

In the above listing:

(1) A prepared statement is created from an UPDATE, where one parameter marker is
used for the salary, and another one for the empno column.

(2) Since the salary column is defined as INTEGER, we use the setter method
setInt. In this particular example we hardcode the value to 85000. The “1” in
pStmt.setInt(1,85000) represents the first parameter marker.

(3) The empno column is defined as a string (CHAR in the database); therefore, we use
the setter method setString.

(4) After the setter methods have been used to set values, we use executeUpdate in
this case since it’s an UPDATE statement, and obtain the number of rows affected.

The next sample code snippet shown in Listing 4.11 provides a similar example as the
previous listing, but this time it is using a PreparedStatement with a SELECT, and using
execute.

(1) String passedStmt = "SELECT firstnme, lastname " +
 "FROM employee " +
 "WHERE salary > ?";

140 Getting started with DB2 application development

 PreparedStatement pStmt = con.prepareStatement(passedStmt);
 pStmt.setInt (1,85000);
 ResultSet rs = null;
 int numrows = 0;
(2) if (pStmt.execute())
 {
 rs = pStmt.getResultSet();
 while (rs.next()) {
 System.out.println("Full name = " + rs.getString(1) +
 " " + rs.getString(2)); }
 rs.close();
 }
 else
 {
 numrows = pStmt.getUpdateCount();
 System.out.println("Number of rows updated: " + numrows); }
 pStmt.close();

Listing 4.11 - PreparedStatement object: Performing a SELECT with execute

In the listing above:

(1) A prepared statement is created from a SELECT, where a parameter marker is used
for the salary.

(2) Use the execute method when you don’t know whether the statement to be
executed is a query (SELECT) or an update (UPDATE, INSERT, DELETE). If the
statement passed (passedStmt in this example) is a SELECT, the execute method
will return true. If it was an UPDATE/INSERT/DELETE, it’d return false. In this
particular example we hard-coded the passed statement. It could have been
implemented as an argument.

4.3.2.4 The CallableStatement interface

A class implementing the CallableStatement interface can be used to call a stored
procedure. CallableStatement extends the PreparedStatement interface. Use the
prepareCall method of the Connection object to create a CallableStatement
object.

A CallableStatement can have three types of parameters: IN, OUT, INOUT. The value
for IN and INOUT parameters must be set using setter methods (setXXX) before
executing the CallableStatement. In the same way, OUT and INOUT parameters
should be registered (using registerOutParameter methods) to the database before
executing the statement.

The CallableStatement can be executed using executeUpdate, executeQuery,
and execute methods. The usage of these three methods is described below:

 executeUpdate: When no result set is expected as the output of the call.

Chapter 4 - Application development with Java 141

 executeQuery: When a single result set is expected as the output of the call.

 execute: When multiple result sets are expected as the output of the call.

Let's take a look at the sample code snippet in Listing 4.12 using a CallableStatement
object and the executeUpdate method. Assume the view_salary_increase stored
procedure is defined as:

view_salary_increase (IN p_empno varchar(6),

 INOUT p_increase int,

 OUT p_firstname)

where the stored procedure returns as the OUT parameter the first name of an employee
for a given employee number.

(1) CallableStatement cstmt;
(2) cstmt = con.prepareCall("call view_salary_increase(?,?,?)");
(3) cstmt.setString(1,"000010");
(4) cstmt.setInt(2,10000000);
(5) cstmt.registerOutParameter(3, Types.VARCHAR);
(6) cstmt.executeUpdate();
(7) System.out.println(cstmt.getString(3) +
 " would receive and increase of " +
 cstmt.getInt(2));
(8) cstmt.close();

Listing 4.12 - CallableStatement using executeUpdate: Not returning a resultset

In the above listing:

(1) The CallableStatement object cstmt is declared.

(2) The CallableStatement object is created from the connection’s method
prepareCall and is assigned to cstmt

(3) Input parameters to the stored procedure (IN or INOUT) must be set before
executing the call

(4) Same as 3, this parameter is an INOUT parameter.

(5) Output parameters to the stored procedure must be registered to indicate the type.
For INOUT parameter, if you setXXX first, it’d be optional to register it.

(6) In this case the executeUpdate method is used because no result set is returned
by the stored procedure.

(7) Use the getXXX methods to retrieve the information from the stored procedure
parameters (OUT and INOUT)

(8) Closes the CallableStatement object cstmt

142 Getting started with DB2 application development

In this next example shown by the code snippet in Listing 4.13, a CallableStatement
object is used to call the stored procedure high_paid_employees defined as:

high_paid_employees (IN p_salary INT))

where the stored procedure returns one result set with two columns: the first name and last
name of employees with a salary greater than p_salary.

 CallableStatement cstmt;
(1) cstmt = con.prepareCall("call high_paid_employees(?)");
(2) cstmt.setInt(1,80000);
(3) ResultSet rs = cstmt.executeQuery();
 System.out.println("High-paid employees list\n" +
 "------------------------");
(4) while (rs.next()) {
 System.out.println(rs.getString(1) + " " +
 rs.getString(2));
 }
 rs.close();
 cstmt.close();

Listing 4.13 - CallableStatement object returning one result set

In the above listing:

(1) The CallableStatement object cstmt is created from the connection’s method
prepareCall to invoke the high_paid_employees stored procedure.

(2) Input parameter to the stored procedure is set before executing the call. There are
no output parameters to register.

(3) The executeQuery method issued since the stored procedure is returning one
result set.

(4) We loop through the result set, and use getter methods (getXXX) for the columns
returned in the result set.

4.3.3 Receiving results

This section describes the third step when working with JDBC programs. It describes how
to receive results, mainly ResultSet objects.

4.3.3.1 ResultSet

A ResultSet object is returned by the executeQuery method of Statement,
PreparedStatement, and CallableStatement objects. The ResultSet object
maintains a cursor to the current row of a result set. This cursor can be moved to the next
row by using the next() method of this object. A cursor by default can only be moved
forward and is read-only; however, you could define a cursor to be scrollable or updatable.

Chapter 4 - Application development with Java 143

The columns value for the current row can be fetched by calling getter methods of the
ResultSet object. When all the rows are fetched, the next method returns an exception.

Table 4.5 lists three properties for the ResultSet that can be set while creating the
Statement object.

Property Description

resultSetType Defines the scrollability of the cursor

resultSetConcurrency Defines the updatability of the cursor

resultSetHoldability Indicates that the result set will remain open even after the
statement is closed

Table 4.5 - Properties for resultSet

The createStatement and prepareStatement supporting all of these properties have
the following syntax:

createStatement (int resultSetType,

 resultSetConcurrency,

 resultSetHoldability)

prepareStatement (int resultSetType,

 resultSetConcurrency,

 resultSetHoldability)

All three properties are optional. Listing 4.14 below provides an example of working with
result sets taken from the IBM redbook mentioned at the beginning of section 4.3.

(1) Statement stmt = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_UPDATABLE);
(2) ResultSet rs=stmt.executeQuery("Select POID,Status from
 purchaseorder");
(3) while(rs.next()) {
 int id = rs.getInt(1);
 String status = rs.getString(2);
 if(id==5003 && status.toUpperCase().compareTo("UNSHIPPED")==0) {
 System.out.println("updating status to shipped for id value "+
 id+".....");
(4) rs.updateString(2,"Shipped");
(5) rs.updateRow();
 }
 }
(6) rs.beforeFirst();

144 Getting started with DB2 application development

 System.out.println("Printing all the purchase order record status");
 while(rs.next()) {
 int id = rs.getInt(1);
 String info = rs.getString(2);
 System.out.println("id="+id+" info="+ info);
 }

Listing 4.14 - An example of using a ResultSet object

In the above listing:

(1) This line is used to create the Statement object with properties for the cursor to be
scrollable (and sensitive to changes made by others) and updatable.

(2) The ResultSet object is created

(3) Looping through the resultset

(4) For the condition where id = 5003 and it is UNSHIPPED, update the String
(column 2) for that row of the cursor to status of “Shipped”. If there were more
columns you could update the other columns too using updater methods
(updateXXX)

(5) Update the row (If you used rs.insertRow(), it’d insert a new row at that
position)

(6) Move the cursor back to the front of this ResultSet object, just before the first
row.

4.3.4 Handling SQL errors and warnings

Just like any Java program, in JDBC, exception handling is done using the try-catch block.
A DB2 application throws a SQLException whenever it encounters a SQL error or a
SQLWarning whenever it encounters a SQL warning when executing SQL statements.

4.3.4.1 SQLExceptions

An object of SQLException is created and thrown whenever an error occurs while
accessing the database. The SQLException object provides the information listed in
Table 4.6

SQLException
information

Description Method to retrieve this
information

Message Textual representation of the error
code

getMessage method

SQLState The SQLState string getSQLState method.

ErrorCode An integer value and indicates the error getErrorCode method

Chapter 4 - Application development with Java 145

which caused the exception to be
thrown.

Table 4.6 - SQLException information

Apart from the above information, the DB2 JCC driver provides an extra interface
com.ibm.db2.jcc.DB2Diagnosable. This interface gives more information regarding
the error that occurred while accessing the DB2 database.

If multiple SQLExceptions are thrown, they are chained. The next exception information
can be retrieved by calling the getNextException method of the current
SQLException object. This method will return null if the current SQLException object is
last in the chain. A while loop in the catch block of the program can be used to retrieve all
the SQLException objects one by one. Listing 4.15 s hows how to handle the
SQLException in the try-catch block.

try {
// code which can throw SQLException go here
} catch (SQLException sqle)
 {
 System.out.println("Rollback the transaction and quit the program");
 System.out.println();
 try { con.rollback(); }
 catch (Exception e) {}
 System.exit(1);
 }

Listing 4.15 - Handling a SQLException

4.3.4.2 SQLWarning

The SQLWarning object is created whenever there is a database warning that occurred
while calling the methods of the following classes:

 Connection

 Statement

 PreparedStatement

 CallableStatement

 ResultSet

All these interfaces contain the getWarning method to retrieve the warning information.
Note that the creation SQLWarning object does not throw any SQLException. You need
to call the getWarning method of the above interface to check if any warning exists or
not. Listing 4.16 provides an example of working with SQLWarning.

146 Getting started with DB2 application development

Statement stmt=con.createStatement();
stmt.executeUpdate("delete from product where pid='101'");
SQLWarning sqlwarn=stmt.getWarnings();
while(sqlwarn!=null)
 {
 System.out.println ("Warning description: " + sqlwarn.getMessage());
 System.out.println ("SQLSTATE: " + sqlwarn.getSQLState());
 System.out.println ("Error code: " + sqlwarn.getErrorCode());
 sqlwarn=sqlwarn.getNextWarning();
}

Listing 4.16 - Handling a SQLWarning

4.3.5 Closing the connection

We include this section for completeness of the steps to develop a JDBC program.
However, we have already shown in earlier examples how to close a connection using the
close method of a connection. Earlier in Listing 4.4, we also illustrated how to close
Statement and ResultSet objects, also using their corresponding close methods.

4.3.6 Working with XML

Working with pureXML in Java applications is fairly easy. Simply work with SQL/XML and
XQuery statements the way you normally work with SQL statements. Treat XML as a string
within the Java program. There are performance advantages as well. The JDBC program
does not need to retrieve the entire XML document as a string or CLOB (if that was the
way it was stored) and build at run time a DOM tree (if using DOM parser). The tree was
already built when the XML document was inserted into the database. Let DB2 software
("DB2") retrieve what you need based on the SQL/XML or XQuery you passed to it.

4.3.6.1 Inserting XML data

If you want to insert a XML document to the database using a Java program, you have two
choices:

 Hardcode the XML in the Java program and insert it as a string

 Store the XML document in a file, and insert the file using the setBinaryStream
method

For example, let's assume you have created a table called CLIENTS with the following
DDL:

create table clients(

 id int primary key not null,

 name varchar(50),

 status varchar(10),

 contactinfo xml

Chapter 4 - Application development with Java 147

)

Note that the last column contactinfo is defined as XML. Figure 4.7 shows the Java
program treats this column as a string.

Figure 4.7 - Inserting an XML document hardcoded in the Java program

In the figure above, a variable xml is defined as a String. Then in the line
insertStmt.setString(4, xml), the fourth parameter marker which corresponds to the
XML column contactInfo is set with the value of the variable xml.

In Figure 4.8, the XML document is not hardcoded in the Java program, but stored in a file
called client1885.xml. Then this file is inserted into the database using the
setBinaryStream method. DB2 will take care of the rest.

148 Getting started with DB2 application development

Figure 4.8 - Inserting an XML document stored in a file

4.3.6.2 Retrieving XML documents with SQL/XML and XQuery

Everything that was learned in Chapter 15, DB2 pureXML, can be applied to this chapter.
Figure 4.9 shows an example where an SQL/XML query is invoked in the Java program. A
parameter marker is used, and for the second column of the result set returned (the email),
it is retrieved as a string. The email as you can tell from the query is an element of the XML
document stored in column contactinfo.

Figure 4.9 - Using SQL/XML in a Java program

Chapter 4 - Application development with Java 149

Figure 4.10 is an example of using XQuery in a Java program. Again, there is nothing
special about working with SQL/XML or XQuery in a Java program.

Figure 4.10 - Using XQuery in a Java program

Note:

A more complete explanation of JDBC including topics about database metadata, batch
updates, transactions, savepoints, handling large objects, and more can be found in the
IBM redbook DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and
.NET (SG24-7301-00). See the Resources section in this book for more information

4.4 SQLJ Programming
SQLJ programming is a standard for embedding SQL statements into Java programs. All
SQL statements are run statically using contexts. A context gives you information that
helps interpret where the SQL statement is executed. There are different types of contexts:

 Connection context. This is equivalent to the Connection object in JDBC. A
default connection context is used when no connection context is specified.

 Execution context. This is required to get the information regarding the SQL
statement before and after executing the statement.

4.4.1 SQLJ Syntax

When working with SQLJ, there is different syntax that can be used that can help a
precompiler identify the statements to translate from other statements in the embedded
SQL Java program. There are different types of syntax, but they all start with “#sql” and
use curly brackets as delimiters as shown below:

 #sql [connection-context] { sql statement }

150 Getting started with DB2 application development

 #sql [connection-context, execution context] { sql statement }

 #sql { sql statement }

 #sql [execution context] { sql statement }

Host variables can be identified by a colon as in the example below:

#sql {SELECT EMPNO FROM EMP WHERE WORKDEPT = :dept};

4.4.2 Connection contexts

To work with SQL in an SQLJ program, you need to first establish a database connection.
A connection context is used for that purpose. There are different ways to work with
connection contexts as shown in Listing 4.17 and Listing 4.18 below.

(1) #sql context ctx; // This should be outside the class
(2) Class.forName("com.ibm.db2.jcc.DB2Driver").newInstance();
(3) ctx ctx1 = new ctx(“jdbc:db2:sample”,false);
(4) #sql [ctx1] { DELETE FROM dept };

Listing 4.17 - Working with a Connection context

In the above listing:

(1) Declare a class for the connection context using the syntax:

#sql context <context-class-name>

(2) Load the JDBC driver; similar to JDBC programs.

(3) Invoke the constructor of the context class.

(4) An SQL statement (DELETE) is executed under the connection context “ctx1”

This other example in Listing 4.18 is similar but it combines using JDBC connection objects
with SQLJ.

 #sql context ctx; // This should be outside the class
 Class.forName("com.ibm.db2.jcc.DB2Driver").newInstance();
(1) Connection con=DriverManager.getConnection();
(2) ctx ctx1 = new ctx(con);
 #sql [ctx1] { DELETE FROM dept };

Listing 4.18 - Connection context from Connection object example:

In the above listing:

(1) Using a Connection object

(2) Invoke the constructor of the context class.

Chapter 4 - Application development with Java 151

In addition, you can also create a default context for the connection. This means that later
on there will not be a need to specify a context when performing SQL operations, as the
context to use will be the one specified as the default one. The syntax would be of this
form:

#sql { sql statement }

Listing 4.19 provides an example.

 Class.forName("com.ibm.db2.jcc.DB2Driver").newInstance();
 Connection con = DriverManager.getConnection();
(1) DefaultContext ctx1 = new DefaultContext(con);
(2) DefaultContext.setDefaultContext(ctx1);
(3) #sql { DELETE FROM dept };

Listing 4.19 - Connection with default context example

In the above listing:

(1) A DefaultContext is created.

(2) Set the default context to be ctx1

(3) Specify the SQL to execute, in this case it is a DELETE statement. Note that there is
no need to put the context name in the syntax. The default context ctx1 will be
used.

Listing 4.20 below provides an example of a complete SQLJ program using a default
context.

 import java.sql.*;
(1) import sqlj.runtime.*; // SQLJ runtime support
(2) import sqlj.runtime.ref.*; // SQLJ runtime support

 class myprg3 {
 public static void main(String argv[]) {
 try {
 Connection con = null;
 Class.forName("com.ibm.db2.jcc.DB2Driver");
 String url = "jdbc:db2://127.0.0.1:50000/SAMPLE";
 if (argv.length == 2) {
 String userID = argv[0];
 String passwd = argv[1];
 con = DriverManager.getConnection(url,userID,passwd);
 }
 else { throw new Exception
 ("\n Usage: java myprg3 userID password\n"); }
(3) DefaultContext ctx = new DefaultContext(con);
(4) DefaultContext.setDefaultContext(ctx);

152 Getting started with DB2 application development

(5) if(ctx != null)
(6) { ctx.close();}
 } catch (Exception e) { }
 } }

Listing 4.20 - A complete SQLJ program

In the above listing:

1 and 2: These packages need to be imported to provide for SQLJ runtime support

3. Creating a default context

4. Setting the default context to use

5. If the context is not closed

6. Close the context / disconnect

4.4.3 Execution contexts

An execution context monitors and controls a SQL statement while executing; it is
equivalent to the Statement inteface in JDBC and is created within a connection context
object.

To create an ExecutionContext object use the getExecutionContext method of the
connection context. Some ExecutionContext methods work before an SQL statement is
executed while others apply only after execution.

Listing 4.21 provides an example.

 #sql context ctx; // this should be outside the class
 String url = "jdbc:db2:sample";
 Class.forName("com.ibm.db2.jcc.DB2Driver").newInstance();
 Connection con=DriverManager.getConnection(url);
 ctx ctx1=new ctx(con);
(1) ExecutionContext exectx1 = ctx1.getExecutionContext();
(2) #sql[ctx1,exectx1] = { DELETE FROM purchaseorder WHERE
 status='UnShipped'}
(3) int i = exectx1.getUpdateCount();

Listing 4.21 - An example using an execution context

In the above listing:

(1) An execution context is created with the getExecutionContext method of
the connection context object.

(2) Specifying the SQL to run associated to connection context ctx1, and execution
context exectx1.

(3) Invoking the getUpdateCount method of the execution context object to obtain
the number of records deleted or updated.

Chapter 4 - Application development with Java 153

4.4.4 Iterators

Iterators are equivalent to a JDBC result set. There are two types of iterators:

 Named iterators: Identify a row by the name of the column in the result set. While
defining the named iterator, specify the name of the columns and their data types

 Position iterators: Identify a row by its position in the result set. While defining the
position iterator, specify only the data types of the columns.

Listing 4.22 provides an example of a named iterator.

(1) #sql iterator namediterator (int poid, String status)
(2) namediterator iterator1;
(3) #sql [ctx1] iterator1 = { select poid,status from purchaseorder };
(4) while(iterator1.next()) {
(5) System.out.println("poid: " + iterator1.poid() + "Status: "+
 iterator1.status());
 }
(6) iterator1.close();

Listing 4.22 - An example of a named iterator

In the above listing:

(1) A named iterator is declared with two columns. Note that the column names poid
and status are explicitly mentioned. This is why this is a named iterator.

(2) A named iterator iterator1 is declared

(3) In connection context ctx1, the iterator1 is defined with a “select poid,
status from purchaseorder”

(4) Looping through the iterator

(5) Printing the poid and status of each row retrieved. Note the syntax:
“iterator1.poid()”, and “iterator1.status()”.

(6) Closing iterator1.

Listing 4.23 provides an example of a position iterator.

(1) #sql iterator positionedIterator (int, String);
(2) String status = null;
(3) int poid = 0;
(4) positionedIterator iterator1;
(5) #sql [ctx1] iterator1={ select poid, status from purchaseorder };
(6) #sql { fetch :iterator1 into :poid, :status };
(7) while(!iterator1.endFetch()) {
(8) System.out.println("poid: " + poid + "Status: "+ status);

154 Getting started with DB2 application development

(9) #sql { fetch :iterator1 into :poid, :status };
 }

Listing 4.23 - An example of a position iterator

In the above listing:

(1) A position iterator is declared with two columns. Note that the column does not
have names, just the data type. This is why this is a position iterator

(2) A variable status is declared. This is like a host variable that are used to receive
the values from the iterator

(3) Similar to (2) for variable poid.

(4) A positioned iterator iterator1 is created.

(5) In connection context ctx1, the iterator1 is defined with a “select poid,
status from purchaseorder”

(6) Before starting the loop, we fetch the first record into the host variables poid and
status. This is because in (7) we are not using next(), but endFetch() so the
while loop condition would end differently if you use next() vs. endFetch().

(7) Looping through the iterator

(8) Printing the poid and status of each row retrieved.

(9) Fetching the next record in the iterator.

Named or position iterators can be updatable and scrollable. By default, iterators in SQLJ
are read-only and can only move forward. To define a scrollable iterator, you need to
implement sqlj.runtime.Scrollable while defining the iterator.

To define an updatable cursor, you need to implement sqlj.runtime.ForUpdate while
defining the iterator. When defining an updatable iterator, you also need to specify the
columns you would like to update.

This is similar as in JDBC. Listing 4.24 provides an example of an updatable iterator.

(1) #sql public iterator namediterator implements sqlj.runtime.ForUpdate
 with (updateColumns="STATUS") (int poid, String status);
(2) namediterator iterator1;
(3) #sql [ctx1] iterator1={ select poid,status from purchaseorder };
(4) while(iterator1.next()) {
(5) System.out.println("before update poid: " + iterator1.poid() +
 "Status: "+ iterator1.status());
(6) if(iterator1.status().toUpperCase().compareTo("UNSHIPPED")==0){
 #sql [ctx1] {update purchaseorder set status=
 'shipped' where current of :iterator1 };
 }
(7) #sql [ctx1] {commit};

Chapter 4 - Application development with Java 155

Listing 4.24 - An example of an updatable iterator

In the above listing:

(1) A named iterator is declared and it’s defined as updatable iterator because it
implements sqlj.runtime.ForUpdate and note it also indicates which column it
will be updating in: with (updateColumns="STATUS")

(2) The named iterator iterator1 is declared

(3) iterator1 is defined as the result of the “select poid,status from

purchaseorder”

(4) Looping through the iterator

(5) Printing each row of the iterator

(6) Testing if the value of the status column is “UNSHIPPED”. If it is, the value is
changed to ‘shipped’.

(7) Committing the changes.

4.4.5 Working with JDBC and SQLJ combined

JDBC and SQLJ can be used together in a single application. For example, a JDBC
connection object can be retrieved from a ConnectionContext object using its
getConnection method and vice versa.

An iterator in SQLJ and a JDBC ResultSet can be retrieved from each other as shown
below:

 Iterator from result set: #sql iterator = {CAST :result-set }

 Result set from an iterator: Use the iterator’s getResultSet method.

Listing 4.25 provides an example of working with JDBC and SQLJ combined in one
program.

 #sql public iterator positionIterator (int, String);
 Class.forName("com.ibm.db2.jcc.DB2Driver").newInstance();
 Connection con=DriverManager.getConnection(url);
 con.setAutoCommit(false);
(1) ctx ctx1=new ctx(con);
 positionIterator iterator;
 Statement stmt = con.createStatement();
 ResultSet rs=stmt.executeQuery("select poid, status from purchaseorder");
(2) #sql [ctx1] iterator={cast :rs};
 #sql {fetch :iterator into :poid, :status};
 while(!iterator.endFetch()) {
 System.out.println("id: "+poid+" status: "+status);
 #sql {fetch :iterator into :poid, :status};

156 Getting started with DB2 application development

 }
 iterator.close();

Listing 4.25 - Working with JDBC and SQLJ combined in one program

In the above listing:

(1) The connection object is used to create an SQLJ connection context

(2) This shows how an SQLJ iterator can be obtaining the results coming from a JDBC
result set

4.4.6 Preparing an SQLJ program

Preparing an SQLJ program is similar to the process followed for an embedded SQL
program where you have to precompile and bind the program. In this case, the SQLJ
program needs to be translated and customized. Figure 4.11 shows the process to prepare
the program myprg3.sqlj.

Figure 4.11 - Steps to prepare a SQLJ program

In the figure, the SQLJ program myprg3.sqlj goes through the SQLJ Translator using
the sqlj command. The SQLJ Translator inspects the file looking for lines starting with
"#sql", and replaces those lines with generated code that includes the SQLJ runtime
classes, creating a file with .java extension. It then compiles this file using the Java
compiler (javac) to create a .class file. This is shown at the bottom of the figure where
the myprg3.java and the myprg3.class files are created.

The SQLJ translator will also create, as shown at the top of the figure, serialized profile
files for each connection context class that is used in an SQLJ executable clause. In this
example it shows two serialized profile files myprg3_SJProfile0.ser and

Chapter 4 - Application development with Java 157

myprg3_SJProfile1.ser. These files hold information about the embedded SQL. From
these files a myprg3_SJProfileKeys.class file (not shown in the figure) is created
after javac is invoked. Using the DB2 customizer with the db2sqljcustomize
command, a package (compiled SQL) is created in the database.

When you want to execute the program, simply run it using the command java myprg3
which will use the myprg3.class file and the corresponding package in the database.

Note:

The program myprg3.sqlj is included in the zip file
Exercise_Files_DB2_Application_Development.zip accompanying this book.
You can review, test, and prepare this file.

Below is an example of actually executing all of these commands and the corresponding
output. These are the steps to follow:

(1) Running the SQLJ Translator (sqlj command)

D:\>sqlj myprg3.sqlj

The following files are created:

myprg3.java, myprg3.class,

myprg3_SJProfile0.ser,

myprg3_SJProfileKeys.class

(2) Run the DB2 Customizer (db2sqljcustomize command) for every .ser file. The DB2
Customizer can take several parameters. It’s basically a Java program that needs to
connect to a database since that’s where it will store the package. For example:

D:\>db2sqljcustomize -url jdbc:db2://localhost:50000/sample -user
rfchong -password mypasswd myprg3_SJProfile0.ser

Where:

 -url jdbc:db2://localhost:50000/sample is the URL needed to connect to the
database

 -user rfchong is user ID to connect to the database

 -password mypasswd is the password to connect to the database

 myprg3_SJProfile0.ser is the file name to customize to create the package in the
database

The output would look as shown in Listing 4.26 below.

158 Getting started with DB2 application development

[jcc][sqlj]
[jcc][sqlj] Begin Customization
[jcc][sqlj] Loading profile: myprg3_SJProfile0
[jcc][sqlj] Customization complete for profile myprg3_SJProfile0.ser
[jcc][sqlj] Begin Bind
[jcc][sqlj] Loading profile: myprg3_SJProfile0
[jcc][sqlj] Driver defaults(user may override): BLOCKING ALL
VALIDATE BIND STATICREADONLY YES
[jcc][sqlj] Fixed driver options: DATETIME ISO DYNAMICRULES BIND
[jcc][sqlj] Binding package MYPRG301 at isolation level UR
[jcc][sqlj] Binding package MYPRG302 at isolation level CS
[jcc][sqlj] Binding package MYPRG303 at isolation level RS
[jcc][sqlj] Binding package MYPRG304 at isolation level RR
[jcc][sqlj] Bind complete for myprg3_SJProfile0

Listing 4.26 - Output of running the DB2 customizer

No output files will be created, but a package with the embedded SQL statements and
access plan would be stored in the database.

(3) Run the program. The package previously created is then used at runtime.

D:\>java myprg3 <userid> <password>

Successful connection to the database!

Successful retrieval of record. Column 'IBMREQD' has a value of 'Y'

Successful Disconnection from database

End of Program

Figure 4.12 below shows all the output of preparing the program myprg3.sqlj

Chapter 4 - Application development with Java 159

Figure 4.12 - Preparing the SQLJ program myprg3.sqlj

4.5 pureQuery
At this point you should have a basic understanding about JDBC and SQLJ. Traditional
JDBC and SQLJ programming, as you may have noticed, requires some tedious
programming. This is one of the reasons why object relational mapping (ORM)
frameworks such as Hibernate are popular. They provide a data access abstraction layer
that facilitates the mapping between your object-oriented code and your relational
database model. However, ORM frameworks tend to generate the SQL required behind the
scenes for you, and this generated SQL may not be optimal. Moreover, diagnosing

160 Getting started with DB2 application development

performance issues and tuning become more complex because the developers no longer
control what SQL is sent to the database.

In answer to these challenges, IBM developed pureQuery. You can think of pureQuery as
a thin layer of APIs that sits on top of JDBC. It facilitates the mapping of object-oriented
code with the relational model as ORM frameworks do; but it also gives you the flexibility to
work with your SQL. Therefore, pureQuery programming model and tools, help with Java
data access, improves performance by generating code that uses best practice
approaches such as using JDBC-like batch updates, and helps with problem determination.

In addition to APIs, pureQuery also provides the following:

 A runtime, which provides optimized and secure database access

 An Eclipse-based integrated database development environment for enhancing
development productivity

 Monitoring services, to provide developers and DBAs with previously unknown
insights about performance of Java database applications.

pureQuery also allows you to generate static SQL without changing any code. This unlocks
the advantages of static SQL without any effort.

The tools for pureQuery are included in the product Optim Development Studio. The
APIs and runtime are available with the product OptimTM pureQuery Runtime and is also
packaged at no extra charge for development use on the developer’s machine with Optim
Development Studio. Monitoring services are delivered in Optim Development Studio and
to a greater degree with the IBM DB2 Performance Expert and Extended Insight Feature.

IBM OptimTM portfolio of products, provide an integrated, modular environment to design,
develop, deploy, operate, optimize and govern enterprise data throughout its lifecycle. This
is known as Optim Integrated Data Management.

Note:

More information about pureQuery and Optim Integrated Data Management can be found
in the free e-books Getting Started with pureQuery, and Getting Started with IBM Data
Studio for DB2 respectively. Both eBooks are part of this book series.

4.6 Exercises
In this exercise you will practice writing small JDBC and SQLJ programs.

Procedure

1. In Listing 4.12 we illustrated an example where a CallableStatement object was
used to return one result set. Create a JDBC program with this specifications:

- Program name: mylab4.java

- The program should be executed with using this syntax:

Chapter 4 - Application development with Java 161

java mylab4 <userid> <password> <bonus>
- Connect to the SAMPLE database using the type 4 driver

- Call the "high_bonus" stored procedure which returns 2 result sets

- Ensure you first create the high_bonus stored procedure as shown below:

 CREATE PROCEDURE HIGH_BONUS (IN p_bonus INT)
 DYNAMIC RESULT SETS 2
 --
 -- This procedure lists the first name, last name, bonus, and
 -- education level (edlevel) of the employees with a bonus amount
 -- larger than the amount specified by the parameter p_bonus.
 -- This information is in the EMPLOYEE table.
 -- The procedure also returns another result set with the names
 -- of all departments from the DEPARTMENT table.
 --
 P1: BEGIN
 -- Declare cursor1
 DECLARE cursor1 CURSOR WITH RETURN FOR
 SELECT firstnme, lastname, bonus, edlevel
 FROM employee
 WHERE bonus > p_bonus;

 -- Declare cursor2
 DECLARE cursor2 CURSOR WITH RETURN FOR
 SELECT deptname
 FROM department;

 -- Cursor left open for client application
 OPEN cursor1;
 OPEN cursor2;
 END P1

The program mylab4.java (solution) is included in the
Exercise_Files_DB2_Application_Development.zip file that accompanies this
book.

2. Look for the file connectionContext.sqlj in the
Exercise_Files_DB2_Application_Development.zip file that accompanies
this book. Prepare this SQLJ program and execute it.

162 Getting started with DB2 application development

4.7 Summary
In this chapter you learned the basics of developing Java applications working with DB2.
JDBC, a standard API to access databases using dynamic SQL, was discussed first. The
chapter showed you how to connect to a DB2 database and issue different kinds of JDBC
statements. Then you were introduced to SQLJ. Though not that popular, SQLJ
programming is more compact and better for performance as it uses static SQL embedded
in Java programs. Finally, we briefly introduced you to IBM's pureQuery. pureQuery is
IBM's answer to tedious JDBC programming and lack of flexibility of ORM frameworks.

4.8 Review questions
1. What is the difference between JDBC and SQLJ?

2. What JDBC types are supported with DB2 9.7?

3. What is the difference between db2jcc.jar and db2jcc4.jar?

4. What is an iterator?

5. What is a default context?

6. Which of the following statements is false?

A. db2jcc.jar includes a JDBC type 2 driver

B. db2jcc4.jar includes a JDBC type 2 driver

C. db2jcc.jar includes a JDBC type 4 driver

D. db2jcc4.jar includes a JDBC type 4 driver

E. None of the above

7. Which of the following statements is true?

A. pureQuery allows developers to run SQL as dynamic or static easily with no
code change

B. pureQuery can be used with an ORM

C. pureQuery is included with some Optim products

D. All of the above

E. None of the above

8. Which of the following statements is true?

A. JDBC and SQLJ cannot be combined

B. JDBC and pureQuery cannot be combined

C. SQLJ and pureQuery cannot be combined

D. JDBC, SQLJ and pureQuery can be combined

Chapter 4 - Application development with Java 163

E. None of the above

9. Which of the following is not a valid connection object method?

A. Statement

B. PreparedStatement

C. CallableStatement

D. ResultSetStatement

E. None of the above

10. Which of the following is not a valid SQLJ concept?

A. Executive context

B. Connection context

C. Default context

D. Named iterator

E. Position iterator

5
Chapter 5 – Application development with
C/C++
This chapter discusses the different aspects of application development using C/C++ with
DB2, from setting up the development environment to building and running the application.
Though embedded SQL was discussed earlier in Chapter 14, Introduction to DB2
Application Development, we will provide a closer look at how embedded SQL
programming works with a C/C++ program. The chapter also discusses how to develop an
ODBC or CLI application. In this chapter you will learn about:

 Programming a C/C++ application with embedded SQL

 Building a C/C++ application with embedded SQL

 Programming a C/C++ application with CLI/ODBC

 Building a C/C++ application with CLI/ODBC

5.1 C/C++ DB2 applications: The big picture
When we talk about database applications, the first thing that comes to our mind is SQL.
SQL is the language which is used to perform Data Definition Language (DDL), Data
Control Language (DCL), and Data Manipulation Language (DML) operations on a
relational database. SQL is not a general purpose programming language; you cannot
perform user defined operations as SQL is a non-procedural language where the SQL
statements are executed by the database manager. That’s why database applications are
mostly developed by combining the capabilities of SQL with a high level programming
language such as C or C++. Developing an application in a high level programming
language -- also known as the host language, and embedding SQL statements in that
application is known as embedded SQL programming. Figure 5.1 illustrates this concept.
Embedded SQL applications are commonly developed using C or C++.

Figure 5.1 – Embedded C/C++ SQL application

166 Getting started with DB2 application development

A C/C++ application works in a client-server architecture where the C/C++ application
works as the client and DB2 as the server. The client sends the request to the server and
the server performs the operation. A C/C++ application can be an embedded SQL
application or a CLI/ODBC application. Figure 5.2 illustrates the client-server architecture
where a C/C++ application interacts with a DB2 server.

Figure 5.2 – C/C++ application accessing a DB2 server

Figure 5.2 shows how C/C++ applications are built and can access a DB2 database.
Embedded SQL applications containing SQL statements must be precompiled by a DB2
precompiler. To facilitate this preprocessing, each SQL statement embedded in an
application must be prefixed with the keywords EXEC SQL and terminated with a
semicolon (;).

On the other hand CLI or ODBC is an alternative to embedded dynamic SQL, but unlike
embedded SQL, it does not require host variables or a precompiler. Applications can be
run against a variety of databases from different vendors which would provide their own
ODBC drivers. There is no need for the application to be compiled against each of these
databases. Processing of ODBC/CLI applications is handled by the ODBC/CLI driver.
Applications use procedure calls at run time to connect to databases, issue SQL
statements, and retrieve data and status information.

We will discuss each of the above methods in more detail in the coming sections.

5.2 Setting up the environment
Before you start building an embedded SQL C/C++ application or an ODBC/CLI
application, you need to install a supported C/C++ compiler. For embedded SQL C/C++
programs, you also need a precompiler; fortunately, this is included with DB2.

5.2.1 Supported compilers

Table 5.1 lists C/C++ compilers that are supported for DB2 database application
development on both, 32-bit and 64-bit platforms.

Chapter 5 - Application development with C/C++ 167

Operating System Supported Compilers

AIX® IBM XL C/C++ Enterprise Edition Version 7.0 for AIX

IBM XL C/C++ Enterprise Edition Version 8.0 for AIX

IBM XL C/C++ Enterprise Edition Version 9.0 for AIX

Linux GNU/Linux gcc versions 3.3 and 3.4

Intel C Compiler Version 9.1

Intel C Compiler Version 10.1

Windows® Intel Proton Compiler for Windows 32-bit applications, Version
9.0.021 or later

Microsoft® Visual C++ .NET or later

Table 5.1 – Supported C/C++ compilers

Note:

This list is not a complete list. For more details and the latest information about the
supported C/C++ compiler versions, refer to the DB2 9.7 Information Center at
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.apdv.gs.doc/
doc/r0023434.html and the DB2 Application Development Web site at:
http://www.ibm.com/software/data/db2/udb/ad/

In this book we use the Microsoft Visual C++ compiler (Windows) and the GNU/Linux gcc
compiler (Linux). Microsoft Visual C++ compiler is licensed software and comes with
Microsoft Visual Studio. The Express version of Visual Studio can be downloaded from
http://www.microsoft.com/express/Downloads/.

GNU Linux gcc compiler comes free with GNU operating systems, but can also be
downloaded from http://gcc.gnu.org/

5.2.2 Setting up the C/C++ environment

To set up the C/C++ environment, follow these steps:

1. Verify a supported C/C++ compiler is installed

Make sure that a supported C/C++ compiler is installed on a DB2 Express-C
supported platform. Check Table 5.1 for a list of supported compiler versions.

On Linux, to check whether a C/C++ compiler is installed successfully or not, issue
the command below at the Linux shell:

which gcc

If the complier is installed, you should get /usr/bin/gcc on the screen.

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.apdv.gs.doc/doc/r0023434.html�
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.apdv.gs.doc/doc/r0023434.html�
http://www.ibm.com/software/data/db2/udb/ad/�
http://www.microsoft.com/express/Downloads/�
http://gcc.gnu.org/�

168 Getting started with DB2 application development

On Windows, if using the Microsoft Visual C++ compiler, issue the cl command.
Figure 5.3 shows the output after running this command.

 Figure 5.3 – Output of the cl command

If using the Intel compiler, issue either the icl or ecl commands. Figure 5.4
shows the output after running this command.

 Figure 5.4 – Output of the icl command

2. Verify your DB2 installation has the required libraries and header files

After installing DB2 verify that the necessary static and shared libraries and header
files to develop C/C++ programs are present.

On Linux, this can be done by going to the DB2 install directory and checking for
the lib32 and lib64 directory. For example if the DB2 install directory is in
$HOME, then the 32-bit libraries location will be in $HOME/sqllib/lib32, and the
64-bit libraries location will be in $HOME/sqllib/lib64.

On Windows, the static libraries are located at <DB2 install
directory>\lib Figure 5.5. shows the location of static libraries. Here the DB2
install directory is C:\Program Files\SQLLIB

Chapter 5 - Application development with C/C++ 169

Figure 5.5 – Location of libraries and header files on a DB2 Windows
installation

3. Verify the Windows environment

On Windows development machines, ensure that the INCLUDE environment variable
contains %DB2PATH%\include as the first directory ahead of any Microsoft Platform
SDK include directories. If this is not the case, follow one of these options:

 Modify the INCLUDE variable at a command prompt by running the command: set
INCLUDE=%DB2PATH%\include;%INCLUDE% (This will work for your current
Window)

 If you want this change to be permanent, locate the Windows environment variables
by right-clicking on My Computer -> Properties -> Environment Variables and
adding %DB2PATH%\include in the INCLUDE variable.

For development using Visual Studio, you must ensure that the INCLUDE environment
variable contains %DB2PATH%\INCLUDE as the first directory. For this you need to
update the environment for your compiler using these steps:

1. Open the shortcut to the Visual Studio Command Prompt by going to
Program Files -> Microsoft Visual Studio .NET -> Visual Studio .NET Tools
-> Visual Studio .NET Command Prompt

2. In the Visual Studio Command Prompt window, run db2cmd.exe to open
the DB2 Command Window.

170 Getting started with DB2 application development

3. In the DB2 command window, set your INCLUDE path as follows:

set INCLUDE=%DB2PATH%\INCLUDE;%INCLUDE%

Figure 5.7 shows the above steps:-

 Figure 5.7 – Setup windows environment

Now you can build your application on the DB2 CLP window which has the correct DB2
environment and C/C++ environment set up.

5.3 Developing a C/C++ application with embedded SQL
This section discusses the steps required to develop a C/C++ application with embedded
SQL.

5.3.1 Source file extensions

The C/C++ source files for an embedded C/C++ SQL program need appropriate file
extensions that can be recognized by the DB2 precompiler. Table 5.2 lists the C/C++
source file extensions required by the precompiler.

Chapter 5 - Application development with C/C++ 171

Table 5.2 – Supported source file extensions

5.3.2 SQL data types in C/C++

To communicate between the application and the database, usage of correct data type
mapping (between the C/C++ data type of the host variable and the SQL data type) is very
important. When the precompiler finds the declaration of a host variable, it determines the
appropriate SQL data type. Table 5.3 lists some supported SQL data types in C/C++.

SQL column type C and C/C++ data type SQL column type
description

SMALLINT Short 16 bit signed integer

INTEGER sqlint32 32 bit signed integer

DOUBLE Double Double-precision floating
point

CHAR(n) char[n+1] where n is large
enough to hold the data
1<=n<=254

Fixed-length, null-terminated
character string

VARCHAR(n) char[n+1] where n is large
enough to hold the data
1<=n<=254

Null-terminated varying
length string

DATE char[11] Null-terminated character
form

TIME char[9] Null-terminated character
form

Table 5.3 – Supported SQL data types in C/C++

Note:

This list is not a complete list. The full mapping list can be found at:
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=/com.ibm.db2.luw.apdv.em
bed.doc/doc/r0006090.html

Platform C source File C++ source file

Linux .sqc .sqC

Windows .sqc .sqx

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=/com.ibm.db2.luw.apdv.embed.doc/doc/r0006090.html�
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=/com.ibm.db2.luw.apdv.embed.doc/doc/r0006090.html�

172 Getting started with DB2 application development

5.3.3 Steps to develop an embedded SQL C/C++ application

Developing a C/C++ application with embedded SQL involves the following steps:

1. Include required header files

2. Declare host variables

3. Connect to a database

4. Execute SQL statements

5. Handle SQL errors

6. Commit the transactions

7. Disconnect from the database

We will explore each step one by one. Listing 5.1 illustrates a basic template you can use
with the structure required for an embedded SQL application written in C.

(1) /* Include required header files

(2) /* Declaration of host variables */

 EXEC SQL BEGIN DECLARE SECTION;

 EXEC SQL END DECLARE SECTION;

 /* Declaration of SQLCA structure */

 EXEC SQL DECLARE SQLCA;

 /* Declaration of main function */

 void main()

 {

 /* Connect to the database */

(3) EXEC SQL CONNECT TO <database name> ;

 /* Error handling to check connection is successful*/

 if (SQLCODE < 0)

 {

 printf ("\n Error while connecting to database");

 printf ("\n Returned SQLCODE = ");

 exit;

 }

 else

 {

 printf ("\n Connect to database successfully");

Chapter 5 - Application development with C/C++ 173

 }

 /* End of error handling */

(4) /* Execute SQL statements

 EXEC SQL SELECT <col1>, <col2> INTO :var1 :var2

 FROM <table name> WHERE <condition> ;

 /* Error handling to check SQL statement executed successfully */

(5) if (SQLCODE < 0)

 {

 printf ("\n Error while executing SQL statement");

 printf ("\n Returned SQLCODE = ");

 exit;

 }

(6) /* Commit the transaction */

 EXEC SQL COMMIT;

 /* Error handling to check SQL statement executed successfully */

 if (SQLCODE < 0)

 {

 printf ("\n Error while Commiting data");

 printf ("\n Returned SQLCODE = ");

 exit;

 }

(7) /* Disconnect from the database */

 EXEC SQL DISCONNECT FROM <database name>;

 /* Error handling to check whether disconnection is successful */

 if (SQLCODE < 0)

 {

 printf ("\n Error while disconnecting from database");

 printf ("\n Returned SQLCODE = ");

 exit;

 }

 else

 {

 printf ("\n Disconnect from database successfully");

 }

 }

Listing 5.1 – Embedded SQL C program template

Each of the items numbered in Listing 5.1 are discussed in detail in the following
subsections.

174 Getting started with DB2 application development

Note:

The above template is in the file template.sqc which is included in
Exercise_Files_DB2_Application_Development.zip file that accompanies this
book.

5.3.4 Sample embedded SQL C/C++ application

To illustrate the different steps mentioned in the previous section, we will use a sample
application. This application is for an employee management system where you can add,
update, fetch and delete employee information from a table. Figure 5.8 provides an
overview of what the application does.

Figure 5.8 – Sample embedded SQL C/C++ application functions

Table 5.4 describes the functions shown in Figure 5.8.

Function Operation

AddEmployeeInfo() INSERT new employee information in the table

UpdateEmployeeInfo() UPDATE employee salary into the table

FetchEmployeeInfo() SELECT employee information from the table

DeleteEmployeeInfo() DELETE employee information from the table

Table 5.4 – Functions for different operations

Note:

All code snippets shown in this section are extracted from the program embeddedC.sqc
which is included in the file Exercise_Files_DB2_Application_Development.zip
accompanying this book.

5.3.4.1 Include required header files

The first step to create an embedded application is to include the required header files.
sqlca.h is probably the most important one pertaining to SQL, and the rest would depend

Chapter 5 - Application development with C/C++ 175

on what your C application does. Listing 5.2 lists the typical header files required for an
embedded SQL C application.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sqlca.h>

Listing 5.2 – Include required header files

5.3.4.2 Declare Host variables

As discussed in Chapter 1 - Introduction to DB2 Application Development, an embedded
SQL application communicates to the C/C++ host language with the help of host variables.
In this second step you must declare the host variables at the top of the program in the
DECLARE section. The host variable DECLARE SECTION starts with the EXEC SQL
BEGIN keyword and ends with EXEC SQL END keyword as illustrated in Listing 5.3.

EXEC SQL BEGIN DECLARE SECTION;

sqlint32 hempno; /* to store employee id */

char hfirstname[20]; /* to store employee first name */

char hlastname[20]; /* to store employee last name */

char hedlevel[4]; /* to store employee education level */

double hsalary ; /* to store employee salary */

double hnewsalary; /* to store employee new salary */

char hdynstmt[16384]; /* to store SQL statements*/

EXEC SQL END DECLARE SECTION;

Listing 5.3 – Declare host variables

5.3.4.3 Connect to the database

Before you can perform operations on the database, you need to establish a connection.
Database connections can be established implicitly or explicitly. An implicit connection is a
connection where the user ID is assumed to be the current user ID. Explicit connection is a
connection, which requires a user ID and password to be specified in the connect
statement. In C/C++ applications, an implicit database connection can be established by
executing the following statement:

EXEC SQL CONNECT TO sample;

If you want to establish an explicit connection use the following statement:

EXEC SQL CONNECT TO sample USER administrator USING admin123;

Listing 5.4 shows the connect statement with error handling

176 Getting started with DB2 application development

(1) EXEC SQL CONNECT TO sample; /* Database name is SAMPLE*/

(2) if (SQLCODE < 0)

 {

 printf ("\n ERROR WHILE DATABASE CONNECTION\n");

 printf ("\n SQLCODE = %d", SQLCODE);

 rc = 1;

 exit(1);

 }

 else

 {

 printf ("\n CONNECT TO DATABASE SUCCESSFULLY\n");

 }

Listing 5.4 – Connect to the database

Let's review each of the items shown in Listing 5.4:

1. This statement establishes the connection to the sample database.

2. This statement checks if the connection is successful or not. SQLCODE is a
special variable in DB2 that is set after a statement is executed. When SQLCODE
is less than zero, the statement completed with an error. If SQLCODE is equal to
zero, the statement completed successfully; and if it was greater than zero, the
statement completed with a warning.

Figure 5.9 provides the output of above code snippet.

Figure 5.9 – Output of the connect statement

If you include the utilemb.h header file, you can also use the DbConn utility function that
comes with DB2 sample programs to connect to the database. Listing 5.5 shows how to
use Dbconn utility function.

(1) rc = DbConn(dbAlias, user, pswd);

(2) if (rc != 0)

 {

 printf("\n Error while connecting to database");

 return rc;

 }

Listing 5.5 – Connect to the database using DbConn utility function

Let's review each of the items shown in Listing 5.5:

Chapter 5 - Application development with C/C++ 177

1. This statement establishes the connection to the sample database using DbConn
utility function. This function takes a userid, a password, and a database name as
arguments.

2. This statement checks if the connection was successful or not.

Note:

The utility functions included with the DB2 sample programs for C are in the directory
<DB2 install path>\sqllib\samples\c (on Windows) and <DB2 install
path>/sqllib/samples/c (on Linux). For C++ look for the subdirectory "cpp" as in
<DB2 install path>\sqllib\samples\cpp (on Windows)

5.3.4.4 Execute SQL statements

To execute SQL statements, EXEC SQL keywords are needed to indicate the beginning of
a SQL statement and must be terminated by a semicolon (;). In this section we will see how
to execute static and dynamic SQL statements and perform different operations like
INSERT, SELECT, UPDATE and DELETE.

5.3.4.4.1 Inserting data into a table

Let's take a look at the function AddEmployeeInfo() illustrated in Listing 5.6 below. This
function is used to insert employee’s information into the EMPLOYEE table.

 int AddEmployeeInfo()

 {

 int rc = 0;

 printf("\n=========================");

 printf("\n ADD EMPLOYEE INFORMATION");

 printf("\n=========================");

(1) EXEC SQL INSERT INTO employee(empno, firstnme, lastname, edlevel,

 salary)

 VALUES (50001, 'RAUL', 'CHONG', 21, 6000),

 (50002, 'JAMES', 'JI', 20, 5786),

 (50003, 'MIN', 'YAO', 20, 5876),

 (50004, 'IAN', 'HAKES', 19, 5489),

 (50005, 'VINEET', 'MISHRA', 19, 5600);

(2) if(SQLCODE < 0)

 {

 printf ("\n ERROR WHILE ADDING EMPLOYEE INFORMATION");

 printf ("\n RETURNED SQLCODE = %d", SQLCODE);

 rc = -1

 }

 else

 {

 printf("\n EMPLOYEE ADDED SUCESSFULLY ");

178 Getting started with DB2 application development

 EXEC SQL COMMIT;

 }

 return rc;

 }

Listing 5.6 – INSERT employee information

Let's review each of the items shown in Listing 5.6.:

1. This statement inserts the employee information into the employee table.

2. This statement checks whether the insert was successful.

Figure 5.10 provides the output of the above code snippet.

Figure 5.10 – Output of the INSERT operation

5.3.4.4.2 Retrieving data from a table

Retrieval of data is done by using a SELECT statement. If the SELECT statement will
return a single row, use the INTO clause (SELECT INTO) so the results are stored directly
into host variables specified.

If the SELECT returns more than one row, you must use a cursor to fetch them one at a
time. A cursor is a named control structure used by an application program to point to a
specific row within an ordered set of rows. The steps involved to work with a cursor are:

1. Declare the cursor using a DECLARE CURSOR statement.

2. Open the cursor using the OPEN statement.

3. Retrieve rows one at a time using the FETCH statement.

4. Terminate the cursor using the CLOSE statement.

Let's take a look at the function FetchEmployeeInfo() in Listing 5.7 for an example of
retrieving data. This function retrieves employees' information for those employees with
and ID between 50001 and 50005 from the EMPLOYEE table.

int FetchEmployeeInfo()

 {

Chapter 5 - Application development with C/C++ 179

 int rc = 0;

(1) EXEC SQL DECLARE cur1 CURSOR FOR SELECT empno, firstnme, lastname,

 edlevel, salary FROM employee WHERE empno BETWEEN 50001 AND 50005;

 if(SQLCODE < 0)

 {

 printf ("\n ERROR WHILE CURSOR DECLARATION");

 printf ("\n RETURNED SQLCODE = %d", SQLCODE);

 rc = -1;

 exit(1);

 }

 /* open cursor */

(2) EXEC SQL OPEN cur1;

 /* fetch cursor */

(3) EXEC SQL FETCH cur1

 INTO :hempno, :hfirstname, :hlastname, :hedlevel, :hsalary ;

 printf("\n\nEMPNO FIRSTNAME LASTNAME EMPSALARY");

 printf("\n----- --------- -------- -----------\n");

 while (SQLCODE != 100)

 {

 printf("%d %10s %11s %15f \n", hempno, hfirstname, hlastname,

 hsalary);

 EXEC SQL FETCH cur1

 INTO :hempno, :hfirstname, :hlastname, :hedlevel, :hsalary;

 if(SQLCODE < 0)

 {

 printf ("\n ERROR WHILE FETCHING DATA");

 printf ("\n RETURNED SQLCODE = %d", SQLCODE);

 rc = -1;

 exit(1);

 }

 }

(4) EXEC SQL CLOSE cur1;

 EXEC SQL COMMIT;

 return rc;

 }

Listing 5.7 – SELECT employee information

In the above listing:

1. Declares the cursor cur1

2. Opens the cursor cur1

3. Fetches a row one at a time and prints the values.

180 Getting started with DB2 application development

4. Closes the cursor.

Figure 5.11 provides the output of above code snippet.

Figure 5.11 – Output of SELECT operation

5.3.4.4.3 Updating data in a table

Let's take a look at how you can update data in a table by reviewing the function
UpdateEmployeeInfo() shown in Listing 5.8. This function updates information in the
EMPLOYEE table for employees whose employee id and new salary is not known.

In this example we use dynamic SQL statements. As discussed in Chapter 1, Introduction
to DB2 Application Development, in a dynamic SQL statement not everything is known
about the SQL structure until runtime. The statement uses parameter markers, indicated by
a question mark (?), to indicate the unknowns. The PREPARE statement 'compiles' the
dynamic SQL.

 int UpdateEmployeeInfo()

 {

 int rc = 0, noofemp, loop;

 printf("\n============================");

 printf("\n UPDATE EMPLOYEE INFORMATION");

 printf("\n============================");

(1) strcpy(hdynstmt, "UPDATE employee SET SALARY = ? WHERE empno

 = ?");

(2) EXEC SQL PREPARE stmt FROM :hdynstmt;

 if(SQLCODE < 0)

 {

 printf ("\n EROROR WHILE PREPARING STATEMENT");

 printf ("\n RETURNED SQLCODE = %d", SQLCODE);

 rc = -1;

 exit(1);

Chapter 5 - Application development with C/C++ 181

 }

 printf("\n NUMBER OF EMPLOYEE TO UPDATE: ");

 scanf("\n%d", &noofemp);

 for(loop = 0; loop != noofemp; loop++)

 {

 printf("\n ENTER EMPLOYEE ID AND NEW SALARY: ");

 scanf("\n %d %lf",&hempno, &hnewsalary);

(3) EXEC SQL EXECUTE stmt USING :hnewsalary, :hempno;

 if(SQLCODE < 0)

 {

 printf ("\n EROROR WHILE EXECUTING STATEMENT");

 printf ("\n RETURNED SQLCODE = %d", SQLCODE);

 rc = -1;

 exit(1);

 }

 }

 printf("\n EMPLOYEE INFORMATION UPDATED SUCESSFULLY ");

(4) EXEC SQL COMMIT;

 if(SQLCODE < 0)

 {

 printf ("\n EROROR WHILE COMITTING DATA");

 printf ("\n RETURNED SQLCODE = %d", SQLCODE);

 rc = -1;

 exit(1);

 }

 return rc;

 }

Listing 5.8 – UPDATE employee information

In the above listing:

1. Assigns the SQL statement into the variable

2. Prepares the statement with a parameter marker.

3. Executes the statement for host variable hnewsalary and hempno entered by the
user.

4. Commits the transaction.

Figure 5.12 provides the output of the above code snippet.

182 Getting started with DB2 application development

Figure 5.12 - Output of SELECT operation

5.3.4.4.4 Deleting data from a table

Let's take a look at the DeleteEmployeeInfo() function which deletes employee
information from the EMPLOYEE table. Listing 5.9 shows the delete example.

int DeleteEmployeeInfo()

{

 int rc = 0;

 int option;

 char diagoption;

 printf("\n============================");

 printf("\n DELETE EMPLOYEE INFORMATION");

 printf("\n============================");

 printf("\n ENTER 1: (TO DELETE EMPLOYEE INFORMATION) ");

 printf("\n ENTER 2: (TO DELETE ALL EMPLOYEES INFORMATION) ");

 scanf("\n%d", &option);

 if(option == 1)

 {

 printf("\n ENTER EMPLOYEE ID:");

 scanf("\n%d", &hempno);

(1) EXEC SQL DELETE employee WHERE empno = :hempno;

 if(SQLCODE < 0)

 {

 printf ("\n EROROR WHILE DELETING INFORMATION");

 printf ("\n RETURNED SQLCODE = %d", SQLCODE);

 rc = -1;

 exit(1);

 }

 printf("\n EMPLOYEE WITH ID %d DELETED SUCESSFULLY ", hempno);

Chapter 5 - Application development with C/C++ 183

 }

 else

 {

(2) EXEC SQL DELETE employee WHERE empno BETWEEN 50001 AND 50005;

 if(SQLCODE < 0)

 {

 printf ("\n EROROR WHILE DELETING INFORMATION");

 printf ("\n RETURNED SQLCODE = %d", SQLCODE);

 rc = -1;

 exit(1);

 }

 printf("\n ALL EMPLOYEES DELETED SUCESSFULLY ");

(3) EXEC SQL COMMIT;

 }

 return rc;

 }

Listing 5.9 – DELETE employee information

In the above listing:

1. SQL statement to delete information of a particular employee

2. SQL statement to delete information of all the employees

3. Commit the transaction.

Figure 5.13 provides the output of above code snippet.

Figure 5.13 – Output of DELETE operation

184 Getting started with DB2 application development

5.3.4.5 Commit statements

After the execution of SQL statements, depending on your code logic, you should code a
commit or rollback statement. Listing 5.10 shows the commit statement.

EXEC SQL COMMIT;

if (SQLCODE < 0)

 {

 printf ("\n COMMIT ERROR");

 printf ("\n SQLCODE = %d", SQLCODE);

 exit(1);

 }

Listing 5.10 – COMMITstatement

5.3.4.6 Disconnecting from the database

Disconnecting from a database is the final step in working with a database. Listing 5.11
shows the statement to close the database connection.

/* Disconnect from the sample database */

 EXEC SQL CONNECT RESET;

/* Error handling to check whether disconnection is successful */

 if (SQLCODE < 0)

 {

 printf ("\n Error while disconnecting from database");

 printf ("\n Returned SQLCODE = ", SQLCODE);

 exit (1);

 }

 else

 {

 printf ("\n DISCONNECT FROM SAMPLE DATABASE SUCCESSFULLY \n\n");

 }

Listing 5.11 – Disconnect from the database

You can also use DbDisconn utility to disconnect from the database. For this, you need to
include the utilemb.h header file in the header section. Listing 5.12 shows the use of
DbDisconn utility function.

 /* disconnect from database */

 rc = DbDisconn(dbAlias);

 if (rc != 0)

 {

 return rc;

 }

Listing 5.12 – Disconnect from the database using DbDisconn utility

Chapter 5 - Application development with C/C++ 185

5.3.5 Building embedded SQL C/C++ applications

You can build an embedded SQL C/C++ application either manually from the command
line or by using DB2 provided scripts. This section discusses both ways.

5.3.5.1 Building embedded SQL C/C++ applications from the command line

Building embedded SQL C/C++ applications from the command line involves the following
steps:

1. Precompile the application by issuing the PRECOMPILE command

2. If you created a bind file (by using the BINDFILE option in the PRECOMPILE
command in step 1), bind this file to a database to create an application package
by issuing the BIND command.

3. Compile the modified application source and the source files that do not contain
embedded SQL to create an application object file (a .obj file).

4. Link the application object files with the DB2 and host language libraries to create
an executable program using the link command.

These steps are illustrated in Figure 5.14 below taken from the developerWorks Article
DB2 packages: Concepts, examples, and common problems. [4]

186 Getting started with DB2 application development

Figure 5.14 – Building an embedded C/C++ SQL program

Let's take a look at each of the steps illustrated in Figure 5.14 in more detail:

5.3.5.1.1 Step 1: Precompile the source file

Once you have created the embedded SQL application’s source files, you must precompile
each host language file containing SQL statements with the PREP command. The
precompiler comments out all SQL statements contained in the source file, generates the
DB2 run-time API calls for those statements and creates a BIND file when the BINDFILE
option is used as shown below:

db2 prep embeddedC.sqc bindfile

Figure 5.15 shows the output of above command

Chapter 5 - Application development with C/C++ 187

Figure 5.15 – Precompiling a C source file using the PREP command

5.3.5.1.2 Step 2: Binding the bind file

Binding is the process of creating a package on the database server out of a bind (.bnd) file
that was created by the PREP command. The bind file contains the information required by
DB2 such as the collection id, package name, timestamp, host variables, SQL statements,
and so on, to create the package on the server. For example:

db2 bind embeddedC.bnd

Figure 5.16 provides the output of the above command.

Figure 5.16 – Binding a package using the BIND command

DB2 also provides a tool called db2bfd that can dump the contents of a bind file. This tool
can be helpful if you want to get information about the package that it would create, without
actually creating the package first.

db2bfd -b will dump header information, containing the package name, consistency
token, etc. This is shown in Figure 5.17.

188 Getting started with DB2 application development

Figure 5.17 – Output of db2bfd -b

db2bfd -s will dump the SQL statements as shown in Figure 5.18.

Figure 5.18 – Output of db2bfd –s

db2bfd -v will dump the host variables as shown in Figure 5.19

Chapter 5 - Application development with C/C++ 189

 Figure 5.19 – Output of db2bfd –v

5.3.5.1.3 Step 3: Compile the modified source file (.c) generated in Step 2

Using your C/C++ compiler, compile the .c file. For example:

 cl -Zi -Od -c -W2 -DWIN32 embeddedC.c

Figure 5.20 provides the output of above command

Figure 5.20 – Compile the application

5.3.5.1.4 Step 4: Link the file with DB2 and C libraries

Link the .obj files and the DB2 and C libraries as follows:

link -debug -out:embeddedC.exe embeddedC.obj db2api.lib

Figure 5.21 provides the output of above command.

Figure 5.21 – Link application with DB2 libraries

190 Getting started with DB2 application development

5.3.5.1.5 Step 5: Execute the application

The result of step 4 is an executable file, embeddedC. You can run the executable file by
entering the executable name (On Windows), or changing the permissions in Linux so it's
an executable file (chmod +x):

embeddedC

Figure 5.22 provides the output of above command.

Figure 5.22 – Output of the executable file embeddedC

5.3.5.2 Building embedded SQL C/C++ applications using the sample build script

To build an embedded C application, the easiest way is to use bldapp script provided by
DB2. The bldapp script compiles and links the embedded application. The script is
located in the sqllib/samples/c directory if the application is written in C. If the
application is written in C++ the location of the script is sqllib/samples/cpp, along with
sample utility programs that can be built with these files.

bldapp scripts takes up to four parameters, represented inside the script file by the
variables $1, $2, $3, and $4. The parameter, $1, specifies the name of your source file.
Building embedded SQL programs requires a connection to the database so three optional
parameters are also provided: the second parameter, $2, specifies the name of the
database to which you want to connect; the third parameter, $3, specifies the user ID for
the database, and $4 specifies the password.

If the program contains embedded SQL, indicated by the .sqc extension, then the
embprep script is called to precompile the program, producing a program file with a .c
extension.

The following example shows how to build and run embedded C applications. To build the
above sample program embeddedC.sqc enter:

bldapp embeddedC

Chapter 5 - Application development with C/C++ 191

Figure 5.23 provides the output, and highlights four steps which were also discussed in
section 5.4.1.

Figure 5.23 – Output of building the application using bldapp script

The result is an executable file, embeddedC. You can run the executable file by entering
the executable name:

embeddedC

5.5 Developing a C/C++ application with ODBC/CLI
In section 1.3.3 you were introduced to ODBC/CLI development. In this chapter we discuss
this subject again, but in more detail. DB2 Call Level Interface (DB2 CLI) is IBM’s callable
SQL interface to the DB2 family of database servers. It is a C and C++ application
programming interface for relational database access that uses function calls to pass
dynamic SQL statements as function arguments. DB2 CLI is based on the Microsoft Open
Database Connectivity (ODBC) specification and the International Standard for SQL/CLI.
The DB2 CLI driver is included with all DB2 servers and several clients as discussed in
section 1.3.3. It behaves as the ODBC driver for ODBC applications connecting to DB2.

ODBC is an alternative to embedded dynamic SQL, but unlike embedded SQL, it does not
require host variables or a precompiler. The main advantage of an ODBC application over

192 Getting started with DB2 application development

an embedded SQL C/C++ application is that an ODBC application can run against a variety
of databases from different vendors without having to compile the code against each of
these databases. To run a compiled ODBC/CLI application, you only need to install the
ODBC/CLI driver that the vendor provides on the machine where you are running the
application, and their client. Applications use procedure calls at run time to connect to
databases, issue SQL statements, and retrieve data and status information.

5.5.1 Additional environment setup for CLI/ODBC applications

In addition to what was discussed in section 5.2, for an ODBC/CLI application to access a
DB2 database you also need to follow these steps:

5.5.1.1 Linux

1. Install an ODBC driver manager.

2. Register the DB2 database as an ODBC data source in the .odbc.ini file.
For example, to register the SAMPLE database, the .odbc.ini file must
contain the following line

 SAMPLE=IBM DB2 ODBC DRIVER

3. Set the LD_LIBRARY_PATH environment variable to libodbc.so.

4. Set the ODBCINI environment variable as follows:

 ODBCINI=/opt/odbc/system_odbc.ini;export ODBCINI

5.5.1.2 Windows

1. Make sure that the Microsoft ODBC Driver Manager and the DB2 CLI/ODBC
driver are installed. To verify that both exist on the machine follow the steps
below:

- Double click on the Microsoft ODBC Data Sources icon in the Control Panel, or
run the odbcad32.exe command from the command line.

- Click on the Drivers tab and check IBM DB2 ODBC DRIVER -
<DB2_Copy_Name> is shown in the list. Figure 5.24 shows the output. If
ODBC Driver Manager or the IBM DB2 CLI/ODBC driver is not in the list, you
need to download the IBM Data Server driver for ODBC and CLI from
http://www-01.ibm.com/support/docview.wss?rs=4020&uid=swg21385217 and
install it by copying the clidriver folder to <DB2 install
directory>\sqllib

http://www-01.ibm.com/support/docview.wss?rs=4020&uid=swg21385217�

Chapter 5 - Application development with C/C++ 193

 Figure 5.24 – Add ODBC data source

2. The next step is to configure the ODBC Data Source. Follow below steps to set
up the Data Source.

• In the ODBC Data Source Administrator panel (as shown in Figure 5.24
above), click on the System DSN tab.

• Click on Add, select IBM DB2 ODBC driver and click finish to create new
data source.

• In the window that pops up, enter any name for the data source name, in
this example we will use sample, then choose the database SAMPLE and
click on add button to register this database.

3. You can also check if the DB2 database is registered by listing your current
data sources with the following command from the DB2 command window or
Linux shell:

 db2 list system odbc data sources

Figure 5.25 shows the output of above command. You can see the data source
SAMPLE is added in the list.

194 Getting started with DB2 application development

 Figure 5.25 – Add ODBC data source

4. An alternative to using the ODBC Data Source Administrator is to register the
database using the command below:

 db2 catalog system odbc data source sample

5.5.2 Handles

An ODBC/CLI handle is a variable that refers to a data object allocated and managed by
ODBC/CLI. In simpler terms, a handle is a pointer to a variable which is used for passing
references to the variable between parts of the program. There are four types of handles in
ODBC/CLI:

 Environment handle (SQL_HANDLE_ENV)

An environment handle refers to an object that holds information about the global
state of the application, attributes or connections. An environment handle must be
allocated before a connection handle can be allocated.

 Connection handle (SQL_HANDLE_DBC)

A connection handle refers to an object that holds information about the connection
to a particular database. For each database, a separate connection handle must
be allocated. A connection handle must be allocated before a statement handle
can be allocated.

 Statement handle (SQL_HANDLE_STMT)

A statement handle refers to an object that holds information about the execution
of a single SQL statement. Before the execution of a SQL statement, a statement
handle must be allocated and associated with a connection handle.

 Descriptor handle (SQL_HANDLE_DESC)

A descriptor handle refers to an object that contains information about the columns
in a result set and dynamic parameters in an SQL statement.

Figure 5.26 taken from the IBM redbook DB2 Express-C: The Developer Handbook for
XML, PHP, C/C++, Java, and .NET [5] illustrates the relationship between the different
handles.

Chapter 5 - Application development with C/C++ 195

Figure 5.26 – CLI Handles

5.5.3 Steps to develop an ODBC/CLI application

Figure 5.27 shows the steps required to develop an ODBC/CLI application.

Figure 5.27 – Steps required in an ODBC/CLI application

The steps shown in Figure 5.27 are described in more detail in the following sections.

196 Getting started with DB2 application development

5.5.3.1 Include header files

To start application development with CLI, you need to include sqlcli1.h header file
which contains CLI constants, function prototypes, data structures required for developing
CLI application. Listing 5.13 lists the header files required for a CLI/ODBC application.

/* Include header files */

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <sqlcli1.h>

Listing 5.13 – Header files required for CLI application

5.5.3.2 Allocate environment handle

Allocation of different handles can be done using SQLAllocHandle API. SQLAllocHandle()
is a generic function that allocates environment, connection, statement, or descriptor
handles.

 Note:

This function replaces the deprecated functions SQLAllocConnect(),
SQLAllocEnv(), and SQLAllocStmt(). For a complete list of CLI and ODBC
functions, review this link
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.apdv.cli.doc/
doc/r0000553.html

Listing 5.14 shows the syntax of SQLAllocHandle API

SQLRETURN SQLAllocHandle(

 SQLSMALLINT HandleType,

 SQLHANDLE InputHandle,

 SQLHANDLE *OutputHandlePtr);

Listing 5.14 – Syntax of SQLAllocHandle function

Function SQLAllocHandle takes as arguments the type of handle (environment,
connection, statement, or descriptor), the input handle and the output handle. To allocate
an environment handle the value of HandleType must be SQL_HANDLE_ENV. If the
handle type is SQL_HANDLE_ENV the value of InputHandle will be SQL_NULL_HANDLE.
OutputhandlePtr will be a pointer to a buffer in which to return the handle to the newly

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.apdv.cli.doc/doc/r0000553.html�
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.apdv.cli.doc/doc/r0000553.html�

Chapter 5 - Application development with C/C++ 197

allocated data structure. After the handle is allocated, SQLAllocHandle returns any one of
the following return codes, which are self-explanatory:

 SQL_SUCCESS

 SQL_SUCCESS_WITH_INFO

 SQL_INVALID_HANDLE

 SQL_ERROR

Let’s take a look at an example. Listing 5.15 shows the allocation of an environment
handle.

 /* allocate an environment handle */

(1) rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, pHenv);

(2) if (rc != SQL_SUCCESS)

 {

 printf("\n\nERROR while allocating environment handle.\n");

 funcRc = 1;

 exit (1);

 }

 printf("\n\nAllocate environment handle successfully.");

Listing 5.15 – Allocate Environment handle using SQLAllocHandle function

In the above listing:

1. This statement allocates the environment handle using SQLAllocHandle API
and returns the pointer to pHenv.

2. This statement checks whether allocation is successful or not.

5.5.3.3 Connect to the database

After the successful allocation of the environment handle, the next step is to connect to the
database using SQLConnect(). Before connecting to the database you need to allocate a
connection handle. Allocation of a connection handle can be done by the
SQLAllocHandle API using SQL_HANDLE_DBC as the type of handle. The value of
InputHandle will be the pointer to the environment handle variable. Listing 5.16 shows the
syntax of SQLConnect, and Listing 5.17 provides an example of allocating a connection
handle using SQLAllocHandle and connecting to a database using SQLConnect.

SQLRETURN SQLConnect (

 SQLHDBC ConnectionHandle, /* hdbc */

 SQLCHAR *ServerName, /* szDSN */

 SQLSMALLINT ServerNameLength, /* cbDSN */

 SQLCHAR *UserName, /* szUID */

 SQLSMALLINT UserNameLength, /* cbUID */

 SQLCHAR *Authentication, /* szAuthStr
*/

198 Getting started with DB2 application development

 SQLSMALLINT AuthenticationLength); /* cbAuthStr */

Listing 5.16 – Syntax of SQLConnect function

 /* allocate a database connection handle */

(1) rc = SQLAllocHandle(SQL_HANDLE_DBC, *pHenv, pHdbc);

 if (rc != SQL_SUCCESS)

 {

 printf("\n\nERROR while allocating connection handle.\n");

 funcRc = 1;

 exit (1);

 }

 printf("\n\nAllocate Connection handle successfully.");

 /* connect to the database */

(2) rc = SQLConnect(*pHdbc, (SQLCHAR *)dbAlias, SQL_NTS,(SQLCHAR

 *)user,SQL_NTS,(SQLCHAR *)pswd, SQL_NTS);

 if (rc != SQL_SUCCESS)

 {

 printf("\n\nERROR while connecting to database.\n");

 funcRc = 1;

 exit (1);

 }

 printf("\n\nConnected to %s database successfully\n", dbAlias);

Listing 5.17 – Allocate connection handle and connect to the database

In the above listing:

1. This statement allocates the connection handle using SQLAllocHandle
function.

2. This statement connects to the database using SQLConnect. Database name
will be passed as an argument.

If you would like to test the above code snippet, copy the ApplInit function from
cli_odbc.c program (accompanying this book) and change the userid, and password in
the program. The program includes the handle allocation and connection statements
shown in Listing 5.15 and Listing 5.17. Figure 5.28 provides the output of above code
snippet of Listing 5.15 and 5.17.

Chapter 5 - Application development with C/C++ 199

Figure 5.28 – Connection handle allocation and connect to the database

There are other APIs available that can be used to connect to a database. The
SQLDriverConnect() API extends the functionality of SQLConnect() by adding extra
connection parameters and the ability to get connection information from the user. Table
5.4 lists the available connection related APIs.

CLI Connection API Use of API

SQLConnect Establishes the connection to the target database

SQLBrowseConnect Get required attributes to connect to data source

SQLSetConnectAttr Set the connection attributes

SQLGetConnectAttr Get the current attribute setting

SQLDisconnect Disconnect from the data source

Table 5.4 – Connection related CLI APIs

Performing the above steps every time on a large application would be very time
consuming. To make things easier, you can use utility functions provided by DB2 in the
samples directory. You need to include utilcli.h header file in the header section of
your application. Let’s take a look at an example where you can use the utility function
CLIAppInit() to allocate the environment handle, connection handle, set AUTOCOMMIT,
and connect to the database. Listing 5.18 illustrates this.

/* initialize the CLI application by calling a helper utility function
defined in utilcli.c */

rc = CLIAppInit(dbAlias, user, pswd, &henv, &hdbc,
(SQLPOINTER)SQL_AUTOCOMMIT_ON);

if (rc != 0)

{

return rc;

}

Listing 5.18 – Initialize CLI application using utility function

The above code will perform the initialization of a CLI application taking as arguments the
database name (alias), userid, password, environment handle variable and connection
handle variable as parameters.

200 Getting started with DB2 application development

5.5.3.4 Processing SQL statements

In CLI to issue a SQL statement, your first need to allocate a statement handle. A
statement handle is associated with a connection handle and tracks the execution of a SQL
statement. Processing SQL statements requires four steps:

1. Allocation of the statement handle

2. Preparing and executing SQL statements

3. Processing the results

4. Freeing the allocated statement handle.

Figure 5.29 illustrates the steps required for the processing of a SQL statement.

Figure 5.29 – Processing of a SQL statement

SQL statements are passed as SQLCHAR string variable to DB2 CLI functions. The
variable contains a SQL statement with or without parameter markers. Listing
5.19.provides an example.

/* SQL INSERT statement to be executed */

SQLCHAR *stmt = (SQLCHAR *)"INSERT INTO employee(empno, firstnme,

lastname, edlevel, salary) VALUES (50006, 'SANJAY', 'KUMAR', 21, 50000),

(50007, 'RAJIT', 'PILLAI', 19, 47860), (50008, 'PRIYANKA', 'JOSHI', 20,

45600)";

Chapter 5 - Application development with C/C++ 201

Listing 5.19 – Storing a SQL statement in a string variable

In the above example, the stmt variable is assigned the INSERT statement. You can also
pass a SQL string argument cast to an SQLCHAR * to the function that will use the SQL
directly, without the need of a variable. This is shown in Listing 5.20 where the function
SQLExecDirect directly uses the SQL statement.

/* SQL INSERT statement to be executed */

SQLExecDirect (hstmt, (SQLCHAR *) " INSERT INTO employee(empno, firstnme,
lastname, edlevel, salary) "

"VALUES (50006, 'SANJAY', 'KUMAR', 21, 50000), "

"(50007, 'RAJIT', 'PILLAI', 19, 47860), "

"(50008, 'PRIYANKA', 'JOSHI', 20, 45600)", SQL_NTS);

Listing 5.20 – Directly using a SQL statement in a function

Table 5.5 provides the list of supported CLI APIs for processing SQL statements.

CLI APIs Use Of API

SQLPrepare Prepare a statement

SQLBindParameter Bind a parameter marker to a buffer

SQLSetParam Bind a parameter marker to a buffer

SQLDescribeParam Return description of a parameter marker

SQLExecute Execute a statement

SQLExecDirect Execute a statement directly

SQLNumParams Get number of parameters in a SQL statement

SQLNumResultCols Get number of result columns

SQLBindCol Bind a column to an application variable

SQLFetch Fetch next row

SQLGetDiagField Get a field of diagnostic data

SQLEndTran End transactions of a connection or an Environment

Table 5.5 – List of supported CLI APIs for processing SQL statements

202 Getting started with DB2 application development

Note:

This list is not a complete list. For more details and the latest information about the
supported CLI APIs, refer to the DB2 9.7 information center at
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.apdv.cli.doc/
doc/r0000553.html

The examples below demonstrate how to use CLI APIs listed in Table 5.5 for INSERT,
SELECT and DELETE operations.

5.5.3.4.1 Inserting data

Function AddEmployeeInfo() adds new employee information in the EMPLOYEE table.
To execute the INSERT SQL statement directly, the function uses SQLExecDirect CLI
function as shown in Listing 5.21.

/* Perform INSERT operation */

int AddEmployeeInfo(SQLHANDLE hdbc)

 {

 int funcRc = 0;

 SQLRETURN rc = SQL_SUCCESS;

 SQLHANDLE hstmt; /* statement handle */

 /* SQL INSERT statement to be executed */

(1) SQLCHAR *stmt = (SQLCHAR *)"INSERT INTO employee(empno, firstnme,

 lastname, edlevel, salary) "

 "VALUES (50006, 'SANJAY', 'KUMAR', 21, 50000), "

 "(50007, 'RAJIT', 'PILLAI', 19, 47860),"

 "(50008, 'PRIYANKA', 'JOSHI', 20, 45600)";

 /* allocate a statement handle */

(2) rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

 if(rc != SQL_SUCCESS)

 {

 printf("\n Error while allocating statement handle");

 funcRc = 1;

 exit (1);

 }

 /* execute the statement */

(3) rc = SQLExecDirect(hstmt, stmt, SQL_NTS);

 if(rc != SQL_SUCCESS)

 {

 printf("\n Error while statement execution");

 funcRc = 1;

 exit (1);

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.apdv.cli.doc/doc/r0000553.html�
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.apdv.cli.doc/doc/r0000553.html�

Chapter 5 - Application development with C/C++ 203

 }

 /* Commit the transaction */

(4) rc = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT);

 if(rc != SQL_SUCCESS)

 {

 printf("\n Error while committing the transaction");

 funcRc = 1;

 exit (1);

 }

 /* free the statement handle */

(5) rc = SQLFreeHandle(SQL_HANDLE_STMT, hstmt);

 if(rc != SQL_SUCCESS)

 {

 printf("\n Error while freeing handle");

 funcRc = 1;

 exit (1);

 }

 printf("\n Employee added successfully ");

 return funcRc;

}

Listing 5.21 – Insert data into the table

In the above listing:

1. stmt variable contains the SQL INSERT statement.

2. Allocates the statement handle using SQLAllocHandle() API. Connection
handle and statement handle info are passed as arguments.

3. Executes the statement directly using SQLExecDirect() API. Statement handle
variable and stmt variable are passed as arguments.

4. Commit the transaction using SQLEndTran() API. Connection handle variable
and SQL_COMMIT are passed as arguments.

5. Frees allocated statement handle using SQLFreehandle() API. Statement
handle variable passed as an argument.

Figure 5.30 provides the output of above code snippet.

204 Getting started with DB2 application development

Figure 5.30- Output of INSERT operation

5.5.3.4.2 Retrieving data

Retrieving query results with the SELECT statement involves binding application variables
to columns of a result set and then fetching the rows of data into the application variables.
To retrieve rows of the result set you need to

1. Bind application variable to each column of the result set. Binding can be done
by using the SQLBindCol() function.

2. Repeatedly fetch the row of data from the result set by calling SQLFetch() until
SQL_NO_DATA_FOUND is returned.

Listing 5.22 illustrates the function FetchEmployeeInfo() that shows how to fetch
employee information. We will use parameter markers represented with a question mark
(?). The application must bind each application variable to a parameter marker in the SQL
statement before it can execute the statement. Binding is done by calling the
SQLBindParameter() function.

/* perform Select operation */

int FetchEmployeeInfo(SQLHANDLE hdbc)

 {

 int funcRc = 0;

 SQLRETURN rc = SQL_SUCCESS;

 SQLHANDLE hstmt; /* statement handle */

(1) /* SQL SELECT statement to be executed */

 SQLCHAR *stmt = (SQLCHAR *) "SELECT firstnme, lastname, edlevel FROM

 employee WHERE empno >= ? ";

 sqlint32 empno = 0;

(2) struct

 {

 SQLINTEGER ind;

 SQLCHAR value[20];

Chapter 5 - Application development with C/C++ 205

 } firstname; /* variable to be bound to the firstnme column */

 struct

 {

 SQLINTEGER ind;

 SQLCHAR value[15];

 } lastname; /* variable to be bound to the lastname column */

 struct

 {

 SQLINTEGER ind;

 SQLSMALLINT value;

 } edlevel; /* variable to be bound to the edlevel column */

 /* set AUTOCOMMIT OFF */

(3) rc = SQLSetConnectAttr(hdbc, SQL_ATTR_AUTOCOMMIT,

 (SQLPOINTER)SQL_AUTOCOMMIT_OFF, SQL_NTS);

 if(rc != SQL_SUCCESS)

 {

 printf("\n Error while handle allocation");

 funcRc = 1;

 exit (1);

 }

 /* allocate a statement handle */

(4) rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

 if(rc != SQL_SUCCESS)

 {

 printf("\n Error while allocating statement handle ");

 funcRc = 1;

 exit (1);

 }

 /* prepare the statement */

(5) rc = SQLPrepare(hstmt, stmt, SQL_NTS);

 if(rc != SQL_SUCCESS)

 {

 printf("\n Error while preparing statement");

 funcRc = 1;

 exit (1);

 }

 /* bind empno to the statement */

(6) rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG,

206 Getting started with DB2 application development

 SQL_INTEGER, 0, 0, &empno, 0, NULL);

 if(rc != SQL_SUCCESS)

 {

 printf("\n Error while binding paremeters");

 funcRc = 1;

 exit (1);

 }

 /* execute the statement for empno = 50006 */

 empno = 50006;

 /* execute the statement */

(7) rc = SQLExecute(hstmt);

 if(rc != SQL_SUCCESS)

 {

 printf("\n Error while statement execution");

 funcRc = 1;

 exit (1);

 }

 /* bind column 1 to variable */

(8) rc = SQLBindCol(hstmt, 1, SQL_C_CHAR, firstname.value, 20,

 &firstname.ind);

 if(rc != SQL_SUCCESS)

 {

 printf("\n Error while binding column");

 funcRc = 1;

 exit (1);

 }

 /* bind column 2 to variable */

(9) rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, lastname.value, 15,

 &lastname.ind);

 if(rc != SQL_SUCCESS)

 {

 printf("\n Error while binding column");

 funcRc = 1;

 exit (1);

 }

 /* bind column 3 to variable */

(10) rc = SQLBindCol(hstmt, 3, SQL_C_SHORT, &edlevel.value, 0,

 &edlevel.ind);

 if(rc != SQL_SUCCESS)

Chapter 5 - Application development with C/C++ 207

 {

 printf("\n Error while binding column");

 funcRc = 1;

 exit (1);

 }

 printf("\n\n FIRSTNAME LASTNAME EDLEVEL \n");

 printf(" --------- -------- -------\n");

 /* fetch each row and display */

(11) rc = SQLFetch(hstmt);

 if (rc == SQL_NO_DATA_FOUND)

 {

 printf("\n Data not found.\n");

 }

 while (rc != SQL_NO_DATA_FOUND)

 {

 printf(" %8s %14s %8d \n", firstname.value, lastname.value,

 edlevel.value);

 /* fetch next row */

 rc = SQLFetch(hstmt);

 }

 /* Commit the transaction */

(12) rc = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT);

 if(rc != SQL_SUCCESS)

 {

 printf("\n Error while committing the transaction");

 funcRc = 1;

 exit (1);

 }

 /* free the statement handle */

(13) rc = SQLFreeHandle(SQL_HANDLE_STMT, hstmt);

 if(rc != SQL_SUCCESS)

 {

 printf("\n Error while freeing handle");

 funcRc = 1;

 exit (1);

 }

 return funcRc;

}

Listing 5.22 – Fetch data from the table

In the above listing:

208 Getting started with DB2 application development

1. stmt variable contains the SELECT statement

2. Variable to be bound to the firstnme, lastname and edlevel column

3. Sets auto commit off using SQLSetConnectAttr function.

4. Allocate statement handle using SQLAllochandle function

5. Prepare the SELECT statement using SQLPrepare as the statement has
parameter markers.

6. Bind empno variable to the statement using SQLBindParameter function.

7. Execute the statements using SQLExecute function for empno 50006.

8. Bind column 1 to variable firstname using SQLBindCol function.

9. Bind column 2 to variable lastname using SQLBindCol function.

10. Bind column 3 to variable edlevel using SQLBindCol function.

11. Fetch each row using SQLFetch function and display the results.

12. Commit the transaction using SQLEndTran function.

13. Free the allocated statement handle using SQLFreeHandle function.

Figure 5.31 shows the output of above code snippet

Figure 5.31 – Fetch employee information from the table

5.5.3.4.3 Deleting data

Listing 5.23 shows function DeleteEmployeeInfo(). It invokes SQLExecDirect to
delete employee information.

 /* Perform Delete operation */

 int DeleteEmployeeInfo(SQLHANDLE hdbc)

 {

 int funcRc = 0;

 SQLRETURN rc = SQL_SUCCESS;

Chapter 5 - Application development with C/C++ 209

 SQLHANDLE hstmt; /* statement handle */

 /* SQL DELETE statement to be executed */

(1) SQLCHAR *stmt = (SQLCHAR *)"DELETE FROM employee WHERE empno >=

 50006";

 /* set AUTOCOMMIT OFF */

(2) rc = SQLSetConnectAttr(hdbc, SQL_ATTR_AUTOCOMMIT,

 (SQLPOINTER)SQL_AUTOCOMMIT_OFF, SQL_NTS);

 if(rc != SQL_SUCCESS)

 {

 printf("\n Error while setting Auto Commit OFF");

 funcRc = 1;

 exit (1);

 }

 /* allocate a statement handle */

(3) rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

 if(rc != SQL_SUCCESS)

 {

 printf("\n Error while allocating statement handle");

 funcRc = 1;

 exit (1);

 }

 /* directly execute the statement */

(4) rc = SQLExecDirect(hstmt, stmt, SQL_NTS);

 if(rc != SQL_SUCCESS)

 {

 printf("\n Error while statement execution");

 funcRc = 1;

 exit (1);

 }

 /* Commit the transaction */

5) rc = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT);

 if(rc != SQL_SUCCESS)

 {

 printf("\n Error while committing transaction");

 funcRc = 1;

 exit (1);

 }

 /* free the statement handle */

210 Getting started with DB2 application development

6) rc = SQLFreeHandle(SQL_HANDLE_STMT, hstmt);

 if(rc != SQL_SUCCESS)

 {

 printf("\n Error while freeing handle");

 funcRc = 1;

 exit (1);

 }

 printf("\n Employee Deleted successfully");

 return funcRc;

}

Listing 5.23 – Deleting employee information

In the above listing:

1. stmt variable contains the SQL INSERT statement.

2. Sets Auto commit off using SQLSetConnectAttr function.

3. Allocates statement handle using SQLAllocHandle() function. The
connection handle and statement handle are passed as arguments.

4. Executes delete SQL statement directly using SQLExecDirect() API. The
Statement handle variable and stmt variable are passed as arguments.

5. Commit the transaction using SQLEndTran() API. The Connection handle and
SQL_COMMIT are passed as arguments.

6. Frees allocated statement handle using SQLFreehandle() API. The
Statement handle is passed as an argument.

Figure 5.32 shows the output of the above code snippet.

Figure 5.32 – Delete employee information from the table.

5.5.3.5 Disconnecting from the database

After processing the SQL statements, the next step is to call SQLDisconnect() to
disconnect from the database. Listing 5.24 shows how to do this.

Chapter 5 - Application development with C/C++ 211

 /* disconnect from the database */

(1) rc = SQLDisconnect(*pHdbc);

(2) if (rc != SQL_SUCCESS)

 {

 printf("\n\nERROR while disconnecting from database.\n");

 funcRc = 1;

 exit (1);

 }

 printf("\n\nDisconnect from %s database successfully.", dbAlias);

Listing 5.24 – Disconnecting from the database

In the above listing:

1. Disconnect from the database using SQLDisconnect API. Pass connection
handle variable as an argument.

2. Check whether the disconnection was successful.

5.5.3.6 Freeing the handles

The last step in a CLI application is to free all the allocated handles. To free the allocated
handles, DB2 CLI provides the SQLFreeHandle API which takes the handle type and the
handle variable as arguments. Before calling SQLFreeHandle () an application must call
SQLDisconnect(). Calling SQLFreeHandle() before the SQLDisconnect() returns
SQL_ERROR and the connection remains valid. Listing 5.25 shows how to free the
handles.

 /* free connection handle */

(1) rc = SQLFreeHandle(SQL_HANDLE_DBC, *pHdbc);

 if (rc != SQL_SUCCESS)

 {

 printf("\n\nERROR while freeing connection handle.\n");

 funcRc = 1;

 exit (1);

 }

 printf("\n\nFree connection handle successfully.") ;

 /* free environment handle */

(2) rc = SQLFreeHandle(SQL_HANDLE_ENV, *pHenv);

 if (rc != SQL_SUCCESS)

 {

 printf("\n\nERROR while freeing environment handle.\n");

 funcRc = 1;

 exit (1);

 }

printf("\n\nFree environment handle successfully.\n\n") ;

212 Getting started with DB2 application development

Listing 5.25 – Free allocated environment and connection handles.

In the above listing:

1. Frees allocated connection handle using SQLFreehandle.

2. Frees allocated environment handle using SQLFreehandle.

Figure 5.33 shows the output of the above code snippets in Listing 5.24 and 5.25.

Figure 5.33 - Freeing allocated handles

Note:

All the code snippets shown in this section are extracted from the program cli_odbc.c
which is included in the Exercise_Files_DB2_Application_Development.zip file
with this book. Before building the application ensure to change the userid and password at
lines # 52 and 53 in the program.

5.5.4 Building ODBC/CLI applications

You can build ODBC/CLI application either manually from the command line or by using
the DB2 provided scripts.

5.5.4.1 Building an ODBC or CLI application from the command line

Building ODBC application from the command line involves the following steps:

1) Compile the application on windows using below command

 cl -Zi -Od -c -W2 -DWIN32 cli_odbc.c

Figure 5.34 shows the output of above command

Chapter 5 - Application development with C/C++ 213

Figure 5.34 – Compile application

2)

Link the application with the CLI library (db2cli.lib) for a CLI application or the odbc library
(odbc32.lib) for an ODBC application. For example, the command below would create the
CLI application cli_odbc:

link -debug -out:cli_odbc.exe cli_odbc.obj db2cli.lib db2api.lib

 Figure 5.35 shows the output of the above command

Figure 5.35 – Linking the application with the CLI library

On the other hand this command would create an ODBC application:

link -debug -out:cli_odbc.exe cli_odbc.obj odbc32.lib

Figure 5.36 shows the output of the above command:

Figure 5.36 – Link the application with the ODBC library

You can run the executable file by entering the executable name cli_odbc.

5.5.4.2 Building an ODBC or CLI application using the sample build script

To build an application using the sample script bldapp that comes with DB2, follow the
same recommendations provided earlier in section 5.4.2. By default bldapp script uses
db2cli.lib library to build CLI applications. If you want to build ODBC applications using
bldapp replace db2cli.lib with odbc32.lib in the script.

To build the sample program cli_odbc described earlier, enter:

214 Getting started with DB2 application development

bldapp cli_odbc

The result is an executable file, cli_odbc. You can run the executable file by entering the
executable name:

cli_odbc

5.6 Working with XML in C/C++ applications with DB2
As discussed in Chapter 2, DB2 pureXML, DB2 provides the XML data type to store XML
data natively. To exchange XML data between the database server and an embedded SQL
C/C++ application, you need to declare host variables in your application source code.
Columns with the XML data type are described as an SQL_TYP_XML column SQLTYPE.
XML columns can be accessed directly using SQL, XQuery or SQL/XML.

Sample program xmlinsert.sqc, xmlread.sqc demonstrates different ways to insert
and read the data from an XML column. You can find these sample programs under
<DB2 install path>/samples/xml/c directory.

5.7 Exercises
1. Write a program to read database log files asynchronously with a database

connection

 Solution: To review the solution check the dblogconn.sqc sample under <DB2
install path>/samples/c directory

2. Write a program to read and write LOB data

 Solution: To review the solution check the dtlob.sqc sample under <DB2
install path>/samples/c directory

3. Write a program to use a trigger on a table.

 Solution: To review the solution check the tbtrig.sqc sample under
 <DB2 install path>/samples/c directory

4. Write a program to insert data using the CLI LOAD utility

 Solution: To review the solution check the tbload.c sample under
<DB2 install path>/samples/cli directory

5.8 Summary
In this chapter you learned the basics of developing C/C++ applications with DB2. The
chapter showed you how to set up the environment for building C/C++ applications and
how to connect to a DB2 database and issue different kinds of SQL statements using an
embedded SQL application and also a CLI/ODBC application. CLI/ODBC applications use
procedure calls at run time to connect to databases, issue SQL statements, and retrieve
data and status information.

Chapter 5 - Application development with C/C++ 215

5.9 Review questions
1. What is the difference between an embedded SQL C/C++ application and a CLI/ODBC

application?

2. What is a cursor?

3. What is a parameter marker?

4. What are handles?

5. What are different return codes returned by CLI APIs?

6. What is the file extension of an embedded SQL C++ program on Windows?

A. .sqc

B. .c

C. .sqx

D. .sqC

E. None of the above

7. What is the command that can dump the SQL statements from a bind file?

A. db2bfd –b

B. db2bfd –s

C. db2bfd –h

D. db2bfd –v

E. None of the above

8. What is the command to list current data sources?

A. db2 list odbc data sources

B. db2 system odbc data sources

C. db2 list system odbc data sources

D. db2 system odbc data source

E. None of the above

9. Which of the following API is used for allocating all the handles?

A. SQLAllocHandle ()

B. SQLAllocConnect()

C. SQLAllocEnv()

D. SQLAllocStmt()

E. None of the above

216 Getting started with DB2 application development

10. Which of the following shows the correct flow of handle allocations in CLI application?

A. Allocate environment handle -> allocate connection handle -> allocate
statement handle -> free statement handle-> free connection handle -> free
environment handle

B. Allocate connection handle -> allocate environment handle -> allocate
statement handle -> free statement handle-> free environment handle -> free
connection handle

C. Allocate connection handle -> allocate environment handle -> free environment
handle -> free connection handle

D. Allocate environment handle -> allocate statement handle -> free statement
handle -> free environment handle

E. None of the above

6
Chapter 6 – Application Development with
.NET
Microsoft introduced the .NET Framework as a platform for building and executing
applications on the Windows platform. It includes a large library that provides many
features for Web development, database connectivity, user interface, and so on. With
.NET you can write code in over forty different programming languages with C# and Visual
Basic being the most popular ones. Regardless of the programming language, .NET
applications compile into a type of bytecode that Microsoft calls Intermediate Language
(IL), and executes in the Common Language Runtime (CLR). CLR is the heart of the .NET
Framework and provides a runtime environment for .NET applications.

In this chapter you will learn about:

 Setting up the .NET environment to work with DB2

 Understanding DataSet and providers for ADO.NET

 Working with the IBM Database Add-ins for Visual Studio

 Developing .NET with DB2 applications

6.1 .NET with DB2 applications: The big picture
In .NET, support to access databases is provided through ActiveX Data Objects (ADO) for
.NET. ADO.NET supports both, connected and disconnected database access. .NET
applications accessing a database need a .NET data provider which is normally supplied
by the database vendor.

For disconnected data access, instances of the DataSet class act as a database cache that
resides in your application's memory.

Figure 6.1 provides an overview of .NET and DB2 applications.

218 Getting started with DB2 application development

Figure 6.1 - .NET with DB2 applications

The figure depicts a .NET application accessing a DB2 database through a .NET data
provider supplied with DB2. For disconnected access, it needs to go through a DataSet
object.

6.2 The ADO.NET data architecture
Data Access in ADO.NET relies on two components: DataSet and Data Provider.

 DataSet

The dataset is a disconnected, in-memory representation of data. It can be
considered as a local copy of the relevant portions of the database. The DataSet is
persisted in memory and the data in it can be manipulated and updated
independently of the database. When the use of a DataSet is finished, changes can
be made back to the central database for updating. The data in DataSet can be
loaded from any valid data source like DB2.

 Data Provider

The Data Provider is responsible for providing and maintaining the connection to
the database. A Data Provider is a set of related components that work together to
provide data in an efficient and performance driven manner. Each Data Provider
consists of the following component classes:

- The Connection object which provides a connection to the database

- The Command object which is used to execute a command

- The DataReader object which provides a forward-only, read only, connected
recordset

- The DataAdapter object which populates a disconnected DataSet with data
and performs update

Chapter 6 - Application development with .NET 219

Figure 6.2 below shows the relationship between the different ADO.NET objects. These
objects will be explained in more detail in the following sections.

Figure 6.2 - ADO.NET core objects and their relationship

Data access with ADO.NET can be summarized as follows:

A Connection object establishes a connection to the database. A Command object
executes a query to the database. If the query returns more than a single value, the
command object returns a DataReader, which is like a cursor. Alternatively, the
DataAdapter can be used to populate a DataSet object. The database can be updated
using the Command object or the DataAdapter.

6.2.1 Data providers for ADO.NET

In the ADO.NET architecture, applications -- also known as Data Consumers -- connect to
a database -- also referred to as Resource -- using a data provider. The data provider
encapsulates data and provides a means to interact with the database including
connection, execution of SQL statements, and retrieval of results.

There are 3 types of .NET data providers for DB2 applications to access a DB2 database:

 IBM Data Server Provider for .NET

 OLE DB .NET Data Provider

 ODBC .NET Data Provider

220 Getting started with DB2 application development

IBM Data Server Provider for .NET is a high performance, managed type ADO.NET data
provider, which is provided by IBM and has a much better performance than the OLE DB
and ODBC .NET data providers.

OLE DB .NET Data Provider is a bridge provider from Microsoft that passes the ADO.NET
request to the native IBM OLE DB provider (IBMDADB2).

ODBC.NET Data Provider is a bridge provider from Microsoft that passes ADO.NET
requests to the IBM ODBC Driver.

IBM Data Server Provider for .NET is recommended for any new ADO.NET application
development. It provides the best performance since it doesn't require an extra layer or
bridge as shown in Figure 6-3.

Figure 6.3 - .NET Data Providers for DB2 applications

As illustrated in the above Figure 6.3 each provider delivers the same core functionalities
or classes described earlier: Connection, Command, DataAdapter, DataReader.

In the Microsoft .NET Framework, classes are organized into a hierarchical structure of
related groups called namespaces. System.Data namespace contains classes
associated with the use of ADO.NET.

The IBM.Data.DB2 namespace is the .NET Framework Data Provider for IBM data
servers. The IBM Data Server Provider for .NET extends support for the ADO.NET
interface and delivers high-performing, secure access to data.

Chapter 6 - Application development with .NET 221

Note:

For more details on namespaces refer to
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=/com.ibm.swg.im.dbc
lient.adonet.ref.doc/doc/IBMDataDB2Namespace.html

6.2.1.1 Connection

The Connection object is used to connect to a database and control the transactions in
ADO.NET. Each of the three data providers mentioned earlier has their own Connection
Object (DB2Connection, OleDbConnection, and OdbcConnection). The
Connection object has a public property ConnectionString, which is required for
establishing a connection to the database. ConnectionString requires the database
name and other parameters such as user ID and password. For example:

connection.ConnectionString = “Database=Sample”;

The ConnectionString property can be set through the Connection object
constructor, as shown in Table 6.2 below.

Provider Example

IBM Data Server
Provider for .NET

DB2Connection connection =

 new DB2Connection(“Database=SAMPLE”);

OLE DB .NET Data
Provider

OleDbConnection connection =

 new OleDbConnection(“Provider=IBMDADB2;" +
"Data Source=sample;UID=userid;PWD=password;”);

ODBC.NET Data
Provider

OdbcConnection connection = new
OdbcConnection("DSN=sample;UID=userid;PWD=password;");

Table 6.2 - Connection string depending on the data provider used

Table 6.3 describes the Connection object public methods.

Method name Description Example

Open This opens a database
connection as specified in a
connection_string.
Connections can be opened
by explicitly calling the Open
method on the connection or
by implicitly using a

connection.Open();

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=/com.ibm.swg.im.dbclient.adonet.ref.doc/doc/IBMDataDB2Namespace.html�
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=/com.ibm.swg.im.dbclient.adonet.ref.doc/doc/IBMDataDB2Namespace.html�

222 Getting started with DB2 application development

DataAdapter.

Close This closes the database
connection

connection.Close();

CreateCommand This returns a command
object associated with the
connection

connection.CreateCommand();

BeginTransaction This begins the database
transaction

connection.BeginTransaction()

Table 6.3 - Connection object public methods

6.2.1.2 Command

The Command object allows execution of any supported SQL statement or stored
procedure for a given data Connection object. A Connection object should be
previously created, but it does not need to be opened prior to creating the SQL statements.

The Command object can be instantiated as shown in Table 6.4.

Provider Example

IBM Data Server
Provider for .NET

DB2Command cmd = new DB2Command();

OLE DB .NET Data
Provider

OleDbCommand cmd = new OleDbCommand();

ODBC.NET Data
Provider

OdbcCommand cmd = new OdbcCommand();

Table 6.4 – Instantiating the Command object depending on the data provider

The Command object has public properties CommandType and CommandText. The
CommandType describes whether an SQL statement or a stored procedure will be
executed. The CommandText is used to set or get an SQL statement or a stored
procedure that is to be executed, for example:

cmd.CommandType = CommandType.Text;

cmd.CommandText = "SELECT manager FROM org WHERE DEPTNUMB=10";

or

cmd.CommandType = CommandType.StoredProcedure;

cmd.CommandText = procName;

Chapter 6 - Application development with .NET 223

Command object has the following public methods:

 CreateParameter: This is used for parameter handling, for example:

set param1 = cmd.CreateParameter("DEPTNAME", adVarChar,
adParamInput, 14, "Test");

set param2 = cmd.CreateParameter("DEPTNUMB", adTinyInt,
adParamInput, , 510);

 ExecuteNonQuery: Use this to execute a SQL command that does not return

any data, such as UPDATE, INSERT, or DELETE SQL operations. Method returns
the number of rows affected for given execution, as shown:

 int rowsAffected = cmd.ExecuteNonQuery();

 ExecuteReader: Use this to execute a SQL query that returns a DataReader.

DataReader is fast forward-only stream of data, for example:

 DB2DataReader reader = cmd.ExecuteReader ();

 ExecuteScalar: Use this to execute a SQL statement that retrieves a single

value from the database, for example:

 int count=(int)cmd.ExecuteScalar();

Note:

Object returned by cmd.ExecuteScalar() should be cast to data type of the underlying
database object. The above example is valid for a case where a single value is being
retrieved from an int column.

6.2.1.3 DataAdapter

The data adapter object populates a disconnected DataSet with data and performs
updates. It contains four optional commands for SELECT, INSERT, UPDATE, and
DELETE. Use this object when you want to load or unload data between a DataSet and a
database.

The DataAdapterobject can be instantiated as shown in Table 6.5.

Provider Example

IBM Data Server
Provider for .NET

DB2DataAdapter adapter = new DB2DataAdapter();

OLE DB .NET Data
Provider

OleDbDataAdapter adapter = new OleDbDataAdapter();

224 Getting started with DB2 application development

ODBC.NET Data
Provider

OdbcDataAdapter adapter = new OdbcDataAdapter();

Table 6.5 – Instantiating the DataAdapter depending on the data provider

Data adapter object has the following public properties:

 The DeleteCommand deletes records using SQL statements or stored procedures
from the data set, for example:

adapter.DeleteCommand = new DB2Command(“DELETE From org WHERE
DEPTNUMB= 10”, connection);

 The InsertCommand inserts new records into a database using SQL or stored
procedures, for example:

adapter.InsertCommand = new DB2Command(“INSERT INTO org VALUES
(30,‘Test’, 60, ‘Eastern’, ‘Toronto’)”, connection);

 The SelectCommand selects records in a database using SQL or stored
procedures, for example:

adapter.SelectCommand = new DB2Command(“SELECT manager FROM org WHERE
DEPTNUMB = 30”, connection);

 The UpdateCommand updates records in a database using SQL or stored
procedures, for example:

adapter.UpdateCommand = new DB2Command(“UPDATE org SET manager=70
WHERE DEPTNUMB=20”, connection);

Data Adapter has the following public methods:

 Fill: This fills records in DataSet, as shown below.

DataSet results= new DataSet();

adapter.SelectCommand = new DB2Command("Select * from dept",
connection);

adapter.Fill(results);

 Update: This updates records in DataSet and a database through INSERT,
UPDATE, and DELETE operations, for example:

DataSet results= new DataSet();

adapter.UpdateCommand = new DB2Command(“UPDATE org SET Manager=70

WHERE DEPTNUMB=20”, connection);

adapter.Update(results);

Chapter 6 - Application development with .NET 225

6.2.1.4 DataReader

DataReader is used for fast forward-only, read-only access to connected record sets that
are returned from executing SQL statements or stored procedure calls. The DataReader
object cannot be directly instantiated and needs to be returned as the result of the
Command object’s ExecuteReader method.

The DataReader object can be used as shown in Table 6.6.

Provider Example

IBM Data Server Provider for
.NET

Db2DataReader reader = cmd.ExecuteReader();

OLE DB .NET Data Provider OleDbDataReader reader = cmd.ExecuteReader();

ODBC.NET Data Provider OdbcDataReader reader = cmd.ExecuteReader();

Table 6.6 – Using DataReader depending on the data provider used

The DataReader object has FieldCount and HasRows public properties. The
FieldCount property returns the total number of columns in the current row while
HasRows property indicates whether DataReader has one or more rows by returning true
or false. For example:

int cols=reader.FieldCount;

bool rows=reader.HasRows;

The DataReader object has the following public methods:

 Read: Reads records one row at a time and advances the cursor to the next row. It
returns true or false to indicate whether there are any rows to read, for example:

bool done=reader.read();

 Close: This closes the DataReader, for example:

reader.Close();

 Getxxxx: This is used to get data of type xxxx, for example:

Console.WriteLine (reader.GetString(1));

226 Getting started with DB2 application development

6.2.2 DataSet for ADO.NET
The DataSet object represents an in-memory cache of data, which was retrieved from the
database. The DataSet object is a disconnected dataset, which provides a consistent
relational model independent of the data source. Since it is disconnected from the
database, it reduces the communication overhead to the database server. The DataSet
object has the public property DataSetName, which gets or sets DataSet name, for
example:

DataSet ds = new DataSet();

ds.DataSetName = "DB2";

The DataSet object has the following public methods:

 AcceptChanges: This commits changes to the DataSet, for example:

ds.AcceptChanges();

 Clear: This clears the DataSet contents, for example:

ds.Clear();

 GetXML: This gets the XML representation of data in the DataSet, for example:

Console.WriteLine(ds.GetXml())

 ReadXML: This reads the XML schema and XML into DataSet, for example:

ds.ReadXML(reader);

 WriteXML: This writes XML schema and XML into DataSet, for example:

ds.WriteXML (".\\test.xml") ;

Listing 6.1, Listing 6.2, and Listing 6.3 provide an ADO.NET sample C# code snippet that
demonstrates the use of the various DB2 Data Providers. Each listing contains the C# code
to connect to a database. These sample code snippets require the DB2 SAMPLE database
to be created.

Listing 6.1 shows the C# code snippet to connect to a database using the IBM Data Server
.NET Data Provider.

String connectString = "Database=SAMPLE";

DB2Connection conn = new DB2Connection(connectString);

conn.Open();

return conn;

Listing 6.1 - C# code snippet to connect to a database using the IBM Data Server
Provider for .NET

Chapter 6 - Application development with .NET 227

Listing 6.2 shows the C# code snippet to connect to a database using the OLE DB .NET
Data Provider

OleDbConnection con = new OleDbConnection("Provider=IBMDADB2;" +

 "Data Source=sample;UID=userid;PWD=password;");

con.Open()

Listing 6.2 - C# code snippet to connect to a database using the OLE DB .NET Data
Provider

Listing 6.3 shows the C# code snippet to connect to a database using the ODBC.NET Data
Provider

OdbcConnection con = new
OdbcConnection("DSN=sample;UID=userid;PWD=password;");

con.Open()

Listing 6.3 - C# code snippet to connect to a database using the ODBC.NET Data
Provider

The code samples can be compiled using the following command:

csc NETSamp.cs /r:<DB2 Install Path>\bin\netf20\IBM.Data.DB2.dll

where <DB2 Install Path> is the path where DB2 is installed.

In C#, all errors are treated as instances of an exception. Error handling in ADO.NET is
performed using a try/catch/finally block or using the On Error construct.

6.3 Setting up the environment
The set up required to start developing .NET applications to access DB2 is fairly straight
forward. You only need to install either a DB2 client, or a DB2 server which include a .NET
data provider. Table 6.1 shows the the .NET data providers that are shipped with DB2
Version 9.7 clients and servers, and their 32-bit and 64-bit support levels.

.Net data provider framework 32-bit support 64-bit support

IBM Data Server Provider for .NET Framework
Version 1.1

Yes No

IBM Data Server Provider for .NET Framework
Version 2.0, Version 3.0, and Version 3.5

Yes Yes

Table 6.1 - 32-bit and 64-bit support in IBM Data Server data providers for .NET

During the installation of the DB2 client or server software, one of these two IBM Data
Server Providers for .NET editions will be installed:

 For Windows on 32-bit AMD and Intel systems (x86)

228 Getting started with DB2 application development

The 32-bit edition of the IBM Data Server Provider for .NET Framework version
2.0, version 3.0 and version 3.5 is installed with DB2 9.7. The IBM Data Server
Provider for .NET Framework version 1.1 is also installed.

 For Windows on AMD64 and Intel EM64T systems (x64)

Only the 64-bit edition of the IBM Data Server Provider for .NET is installed with
DB2 Version 9.7. The IBM Data Server Provider for .NET, Framework 1.1 is not
installed. The 64-bit edition of the IBM Data Server Provider for .NET does not
support the IA-64 architecture.

You can run 32-bit .NET applications on a 64-bit Windows instance, using a 32-bit edition
of the IBM Data Server Provider for .NET. To get a 32-bit IBM Data Server Provider for
.NET on your 64-bit computer, you can install the 32-bit version of IBM Data Server Driver
Package.

Note:

For more details about the IBM Data Server Provider for .NET for rapid application
development, visit the IBM Information Management and Visual Studio .NET zone at
http://www.ibm.com/developerworks/data/zones/vstudio/index.html.

You can use Visual Studio to develop .NET applications. You can learn more about using
the IBM Database Add-Ins for Visual Studio in section 6.3.1.

6.3.1 IBM Database Add-Ins for Visual Studio

The IBM Database Add-Ins for Visual Studio are a collection of features that integrate
seamlessly into your Visual Studio development environment so that you can work with
DB2 servers and develop DB2 procedures, functions, and objects.

IBM Database Add-Ins for Visual Studio are designed to present a simple interface to DB2
databases. For example, instead of using SQL, the creation of database objects can be
done using designers and wizards. And for situations where you do need to write SQL
code, the integrated DB2 SQL editor has the following features:

 Colored SQL text for increased readability

 Integration with the Microsoft® Visual Studio IntelliSense feature, which provides for
intelligent auto-completion while you are typing DB2 scripts

With IBM Database Add-Ins for Visual Studio, you can:

 Open various DB2 development and administration tools

 Create and manage DB2 projects in the Solution Explorer

 Access and manage DB2 data connections (in Visual Studio 2005 or later you can
do this from the Server Explorer)

http://www.ibm.com/developerworks/data/zones/vstudio/index.html�

Chapter 6 - Application development with .NET 229

 Create and modify DB2 scripts, including scripts to create stored procedures,
functions, tables, views, indexes, and triggers

Note:

At the time of writing the IBM Database Add-Ins for Visual Studio are not yet supported
with Visual Studio 2010.

6.3.1.1 Installing the IBM Database Add-Ins for Visual Studio

The IBM Database Add-Ins for Visual Studio is a separately installable component and can
be downloaded from http://www.ibm.com/db2/express/download.html. After you install a
DB2 product, install the IBM Database Add-Ins for Visual Studio by double clicking on the
executable db2exc_vsai_xxx_WIN_x86.exe, where xxx represents a version number
that matches the version number of the DB2 server. The installation of the add-ins is
straight forward; simply take all defaults. Figure 6.4, 6.5 and 6.6 illustrate some of the
panels that will appear when you install the IBM Database Add-Ins for Visual Studio.

Figure 6.4 - Installing the IBM Database Add-Ins for Visual Studio - Welcome panel

http://www.ibm.com/db2/express/download.html?S_CMP=ECDDWW01&S_TACT=DOCBOOK07�

230 Getting started with DB2 application development

Figure 6.5 - Installing the IBM Database Add-Ins for Visual Studio - Select the
installation folder

Figure 6.6 - Installing the IBM Database Add-Ins for Visual Studio - Setup complete

Chapter 6 - Application development with .NET 231

If you do not have Visual Studio installed on your computer, the add-ins will not install.

Note:

For more details about using the IBM Database Add-Ins for Visual Studio, visit the IBM
Information Management and Visual Studio zone at
http://www.ibm.com/developerworks/data/zones/vstudio/index.html.

6.3.2 Using Visual Studio with DB2

In this section, we describe the steps to create a Visual C# ADO.NET application. You can
use almost the same steps to create an application in Visual Basic, Visual J#, Visual C/C#,
and so on.

6.3.2.1 Creating a Visual C# ADO.NET application

The following steps create a Visual C# ADO.NET application using Visual Studio

1. Create a Visual C# project: File->New->Project->VC# -> Windows Application

 On the File menu, select New -> Project

 On the New Project dialog, for Project Types select the Visual C# Projects folder.
Select Windows Forms Application project template. Specify the project name and
directory under Name and Location respectively. The Solution Explorer window
should look similar to Figure 6.7.

Figure 6.7 - Creating a new Visual C# .NET project

2. Once the installation of the IBM Database Add-ins for Visual Studio is complete, the data
source tab will appear besides the Toolbox tab. This is illustrated in Figure 6.8.

http://www.ibm.com/developerworks/data/zones/vstudio/index.html�

232 Getting started with DB2 application development

 Figure 6.8 – Data Source tab appears on the bottom left corner after registration

3. Drag and drop the data adaptor on the Windows form. Also drag and drop the data
grid control on the form. Change the name property according to the requirement.

4. Click on the db2DataAdapter and then select the Generate DataSet option. Select
New: DB2DataSet1 and click OK. This will create a dataset object and an instance
of that object named db2DataSet11.

5. Click on dataGrid_employee on the form and in the properties window make the
following property selections, in order to data-bind the EMPLOYEE table to the data
grid:

 For DataSource - Select Db2DataSet111

 For DataMember - Select EMPLOYEE

Chapter 6 - Application development with .NET 233

This is illustrated in Figure 6.9.

 Figure 6.9 – Selecting the data source

6. Generate a connection string by using the GUI tool as is illustrated in Figure 6.10

234 Getting started with DB2 application development

Figure 6.10 – Forming the Connection string

The connection string can be formed at runtime as follows:

DB2Connection con = new DB2Connection("Database=sample;User
ID=db2admin;Server=localhost:50000;Persist Security
Info=True;Password=db2admin");

DB2DataAdapter da = new DB2DataAdapter("select * from
administrator.Employees",con);

 DataSet db2DataSet11 = new DataSet();

 da.Fill(db2DataSet11);

 GridView1.DataSource =db2DataSet11;

 GridView1.DataBind();

7. After successfully editing the data source the Data Member can be listed in the data
sources tab as illustrated in Figure 6.11

Figure 6.11 – Listing Data Member in data sources tab

8. Double click on form.cs; it will present a code window. Write a small program in it as
illustrated in Figure 6.12 below.

Chapter 6 - Application development with .NET 235

Figure 6.12 – Writing code in form.cs

9. To test this sample program, click on Debug -> Start Without Debugging from the Visual
Studio .NET menu. This will build and run the application. If everything went well, you
should be able to see the table data in the grid retrieving data from the DB2 SAMPLE
database as shown in Figure 6.13 below.

Figure 6.13 – Retrieved values in Data Grid.

6.4 Developing .NET - DB2 applications
In this section, you will learn how to establish connections to a DB2 database and retrieve
some information. We will provide examples using each of the data providers discussed
earlier, and we use the SAMPLE database, with db2admin as the username and mypsw as
the password. The sample code is provided as part of the file

236 Getting started with DB2 application development

Exercise_Files_DB2_Application_Development.zip provided with this book.
Follow four steps to connect to DB2 using any .NET Data Provider and run the programs:

Step 1: Configure connectivity to the database.

Set up connectivity to the DB2 database as discussed in the DB2 Client Connectivity
chapter of the eBook Getting started with DB2 Express-C - 3rd Edition.

Step 2: Set the reference

To set the reference, go to menu bar and select view -> solution explorer. On your project
right click and select References. In References select the data provider with which you
intend to work. This is illustrated in Figure 6.14.

Figure 6.14 – Adding the Data Provider as Reference

Step 3: Compile the programs

http://www.ibm.com/db2/books�

Chapter 6 - Application development with .NET 237

To compile the program, on the menu bar select Build -> Build Solution option. This is
illustrated in Figure 6.15.

Figure 6.15 – Compiling a program

Step 4: Execute the program

To execute the program, on the menu bar select Debug -> Start Debugging option as
shown in Figure 6.16.

Figure 6.16 – Executing a program

238 Getting started with DB2 application development

6.4.1 Connecting to a DB2 database with the IBM Data Server Provider for
.NET

Listing 6.4 shows how to connect to a DB2 database in Visual Basic using the IBM Data
Server Provider for .NET and issuing a simple SELECT statement.

(1) Imports IBM.Data.DB2

Module Module1

 Sub Main()

 Dim cmd As DB2Command

 Dim con As DB2Connection

 Dim rdr As DB2DataReader

 Dim v_IBMREQD As String

 Try

 con = New DB2Connection("Database=sample;" +

 "UID=db2admin;PWD=mypsw;")

 cmd = New DB2Command()

 (2) cmd.Connection = con

 (3) cmd.CommandText = "SELECT * FROM SYSIBM.SYSDUMMY1"

 cmd.CommandTimeout = 20

 con.Open()

 (4) rdr = cmd.ExecuteReader(CommandBehavior.SingleResult)

 v_IBMREQD = ""

 While (rdr.Read() = True)

 v_IBMREQD = rdr.GetString(0)

 End While

 Dim strMsg As String

 strMsg = "Successful retrieval of record. Column " +

 "'IBMREQD’ has a value of '" + v_IBMREQD + "'"

 Console.WriteLine(strMsg)

 Console.ReadLine()

 (5) rdr.Close()

 (6) con.Close()

 Catch myException As DB2Exception

 End Try

 End Sub

End Module

Listing 6.4 - Visual Basic ADO.NET code snippet (IBM Data Server Provider for .NET)

Let's review each of the items shown in Listing 6.4:

1. This statement imports the IBM.Data.DB2, which indicates the use of IBM Data
Server Provider for .NET.

Chapter 6 - Application development with .NET 239

2. The connection string is assigned to the cmd.Connection, to be able to execute
the query later.

3. The cmd.CommandText sets the query to be executed at the data source with the
help of connection established before.

4. The rdr is an instance of the DataReader object and executes the command
using the cmd.ExecuteReader method.

5. Close the DataReader object.

6. Close the Connection object.

Listing 6.5 shows how to connect to a DB2 database in C# using the IBM Data Server
Provider for .NET and issuing a simple SELECT statement.

using System;

using System.Collections.Generic;

using System.Text;

using IBM.Data.DB2;

namespace c1

{

 class Program

 {

 static void Main(string[] args)

 {

 DB2Command cmd = null;

 DB2Connection con = null;

 DB2DataReader rdr = null;

 string v_IBMREQD;

 int rowCount;

try{

 con = new DB2Connection("Database=sample;UID=db2admin;PWD=mypsw;");

 cmd = new DB2Command();

 cmd.Connection = con;

 cmd.CommandText = "SELECT * FROM SYSIBM.SYSDUMMY1";

 cmd.CommandTimeout = 20;

 con.Open();

 rdr = cmd.ExecuteReader(System.Data.CommandBehavior.SingleResult);

 v_IBMREQD = "";

 while (rdr.Read() == true) {

 v_IBMREQD = rdr.GetString(0); }

 string strMsg;

 strMsg = " Successful retrieval of record. Column" +

240 Getting started with DB2 application development

 " 'IBMREQD' has a value of '" + v_IBMREQD + "'";

 Console.WriteLine(strMsg);

 Console.Read();

 rdr.Close();

 con.Close();

} catch (DB2Exception myException) { }

 }

 private static void getch()

 {

throw new Exception("The method or operation is not implemented.");

 }

 }

}

Listing 6.5 - C# ADO.NET code snippet (IBM Data Server .NET Data Provider)

6.4.2 Connecting to a DB2 database with the OLE DB .NET Data Provider

Listing 6.6 shows how to connect to a DB2 database in Visual Basic using the OLE DB
.NET Data Provider and issuing a simple SELECT statement.

Imports System.Data.OleDb

Module Module1

 Sub Main()

 Dim cmd As OleDbCommand

 Dim con As OleDbConnection

 Dim rdr As OleDbDataReader

 Dim v_IBMREQD As String

 Try

 con = New OleDbConnection("DSN=sample;UID=db2admin;PWD=mypsw;"
+ "Provider='IBMDADB2';")

 cmd = New OleDbCommand()

 cmd.Connection = con

 cmd.CommandText = "SELECT * FROM SYSIBM.SYSDUMMY1"

 cmd.CommandTimeout = 20

 con.Open()

 rdr = cmd.ExecuteReader(CommandBehavior.SingleResult)

 While rdr.Read()

 v_IBMREQD = rdr.GetString(0)

 End While

 Dim str1 As String

 str1 = "'IBMREQD' has a value of '" + v_IBMREQD + "'"

 'Console.WriteLine('IBMREQD' has a value of '" +

 v_IBMREQD + "'")

Chapter 6 - Application development with .NET 241

 Console.WriteLine(str1)

 Console.ReadLine()

 rdr.Close()

 con.Close()

 Catch myException As OleDbException

 End Try

 End Sub

End Module

Listing 6.6 - Visual Basic ADO.NET code snippet (OLE DB .NET Data Provider)

Listing 6.7 shows how to connect to a DB2 database in C# using the OLE DB .NET Data
Provider and issuing a simple SELECT statement.

using System;

using System.Collections.Generic;

using System.Text;

using System.Data.OleDb;

namespace c2

{

 class Program

 {

 static void Main(string[] args)

 {

 OleDbCommand cmd = null;

 OleDbConnection con = null;

 OleDbDataReader rdr = null;

 int rowCount;

 string v_IBMREQD, strMsg;

 try

 {

 con = new OleDbConnection("DSN=sample;UID=db2admin;PWD=mypsw;" +
"Provider='IBMDADB2';");

 cmd = new OleDbCommand();

 cmd.Connection = con;

 cmd.CommandText = "SELECT * FROM SYSIBM.SYSDUMMY1";

 cmd.CommandTimeout = 20;

 con.Open();

 rdr =
cmd.ExecuteReader(System.Data.CommandBehavior.SingleResult);

 v_IBMREQD = "";

 while (rdr.Read() == true) {

 v_IBMREQD = rdr.GetString(0); }

 strMsg = " Successful retrieval of record. Column" + "

 'IBMREQD' has a value of '" + v_IBMREQD + "'";

242 Getting started with DB2 application development

 Console.WriteLine(strMsg);

 Console.ReadLine();

 rdr.Close();

 con.Close();

} catch (OleDbException myException) { }

 }

 }

}

Listing 6.7 - C# ADO.NET code snippet (OLE DB .NET Data Provider)

6.4.3 Connecting to a DB2 database using the ODBC .NET Data Provider

Listing 6.8 shows how to connect to a DB2 database in Visual Basic using the ODBC .NET
Data Provider and issuing a simple SELECT statement.

Imports System.Data.Odbc

Module Module1

 Sub Main()

 Dim cmd As OdbcCommand

 Dim con As OdbcConnection

 Dim rdr As OdbcDataReader

 Dim v_IBMREQD As String

 Try

 con = New OdbcConnection("DSN=sample;UID=db2admin;PWD=mypsw;"
+ "Driver={IBM DB2 ODBC DRIVER};")

 cmd = New OdbcCommand()

 cmd.Connection = con

 cmd.CommandText = "SELECT * FROM SYSIBM.SYSDUMMY1"

 cmd.CommandTimeout = 20

 con.Open()

 rdr = cmd.ExecuteReader(CommandBehavior.SingleResult)

 While rdr.Read()

 v_IBMREQD = rdr.GetString(0)

 End While

 Dim str1 As String

 str1 = "'IBMREQD' has a value of '" + v_IBMREQD + "'"

 Console.WriteLine(str1)

 Console.ReadLine()

 rdr.Close()

 con.Close()

 Catch myException As OdbcException

Chapter 6 - Application development with .NET 243

 End Try

 End Sub

End Module

Listing 6.8 - Visual Basic ADO.NET code snippet (ODBC .NET Data Provider)

Listing 6.9 shows how to connect to a DB2 database in C# using the ODBC .NET Data
Provider and issuing a simple SELECT statement.

using System;

using System.Collections.Generic;

using System.Text;

using System.Data.Odbc;

namespace c3

{

 class Program

 {

 static void Main(string[] args)

 {

 OdbcCommand cmd = null;

 OdbcConnection con = null;

 OdbcDataReader rdr = null;

 string v_IBMREQD, strMsg;

 try

 {

 con = new OdbcConnection("DSN=sample;UID=db2admin;PWD=mypsw;"
+ "Driver={IBM DB2 ODBC DRIVER};");

 cmd = new OdbcCommand();

 cmd.Connection = con;

 cmd.CommandText = "SELECT * FROM SYSIBM.SYSDUMMY1";

 cmd.CommandTimeout = 20;

 con.Open();

 rdr =
cmd.ExecuteReader(System.Data.CommandBehavior.SingleResult);

 v_IBMREQD = "";

 while (rdr.Read() == true) {

 v_IBMREQD = rdr.GetString(0); }

 strMsg = " Successful retrieval of record. Column" +

 " 'IBMREQD' has a value of '" + v_IBMREQD + "'";

 Console.WriteLine(strMsg);

 Console.ReadLine();

 rdr.Close();

 con.Close();

 } catch (OdbcException myException) { }

 }

244 Getting started with DB2 application development

 }

}

Listing 6.9 - C# ADO.NET code snippet (ODBC .NET Data Provider)

There is an extra step needed in Step 1, previously described, when using the ODBC .NET
Data Provider:

Step 1: Configuring connectivity

 The DB2 database must be cataloged as an ODBC data source. To catalog an
ODBC data source follow the steps given below:

db2 catalog system ODBC data source <databasename>

or

db2 catalog user ODBC data source <databasename>

 To list ODBC data sources:

db2 list system ODBC data sources

or

db2 list user ODBC data sources

Compiling and executing steps are the same as listed before.

6.5 Data Manipulation using .NET
The following C# sample code snippets illustrate the methods to SELECT, INSERT,
UPDATE and DELETE using the IBM Data Server Provider for .NET classes --
DB2Connection, DB2Command, and DB2Transaction.

Listing 6.10 illustrates how to perform a SELECT.

(1) cmd.CommandText = "SELECT deptnumb, location " +

 " FROM org " +

 " WHERE deptnumb < 25";

 (2) DB2DataReader reader = cmd.ExecuteReader();

Listing 6.10 - C# code demonstrating a SELECT

Let's review each of the items shown in Listing 6.10:

(1) The cmd.CommandText specifies the query to be executed using the connection
established before.

(2) The reader is an instance of the DataReader object and executes the command
using the cmd.ExecuteReader method. The ExecuteReader method sends the
CommandText to the Connection and builds a DB2DataReader.

Listing 6.11 illustrates how to perform an INSERT.

Chapter 6 - Application development with .NET 245

// Use the INSERT statement to insert data into the 'staff' table.

 cmd.CommandText = "INSERT INTO staff(id, name, dept, job, salary) " +
" VALUES(380, 'Pearce', 38, 'Clerk', 13217.50),” +
" (390, 'Hachey', 38, 'Mgr', 21270.00), " +

" (400, 'Wagland', 38, 'Clerk', 14575.00)”;

(1) cmd.ExecuteNonQuery();

Listing 6.11 - C# code demonstrating an INSERT

Let's review the item shown in Listing 6.11:

(1) The cmd.ExecuteNonQuery executes an SQL statement against the connection
and returns the number of rows affected.

Listing 6.12 illustrates how to perform an UPDATE.

 // This method demonstrates how to update rows in a table

 cmd.CommandText = "UPDATE staff " +

 " SET salary = (SELECT MIN(salary) " +

 " FROM staff " +

 " WHERE id >= 310) " +

 " WHERE id = 310";

 cmd.ExecuteNonQuery();

Listing 6.12 - C# code demonstrating an UPDATE

Listing 6.13 illustrates how to perform DELETEs.

// This method demonstrates how to delete rows from a table

 {

 try

 cmd.CommandText = "DELETE FROM staff " +

 " WHERE id >= 310 " +

 " AND salary > 20000";

 cmd.ExecuteNonQuery();

Listing 6.13 - C# code demonstrating a DELETE

6.5.1 Building and Running the sample program
The code snippets shown above were taken from the program TbUse.cs which is part of
the sample programs provided with DB2 and can be found under the directory
C:\Program Files\IBM\SQLLIB\samples\.NET\cs.

To run the program follow these steps:

246 Getting started with DB2 application development

1. Compile the TbUse.cs file with bldapp.bat from a DB2 Command Window as
follows:

 bldapp TbUse

or compile TbUse.cs with the makefile by entering the following at the command
prompt:

 nmake TbUse

2. Run the TbUse program by entering the program name at the command prompt:

 TbUse

Note:

For more information about sample programs, refer to:

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.apdv.sam
ptop.doc/doc/c0007609.html

6.6 Exercises
Write a small C# program to access BLOB data in the SAMPLE database. Follow these
steps:

1. Run the following command from a DB2 Command Window to create the SAMPLE
database if it was not already created: db2sampl

2. Write a C# program to update and retrieve BLOB and CLOB data from the
EMP_PHOTO and EMP_RESUME tables. If you find this exercise difficult to do, the
sample program for this exercise is provided in the project db2lobs.zip, under the
“Retrieving and updating BLOBs and CLOBs “ section in the following link :
http://www.ibm.com/developerworks/data/library/techarticle/0304surange/0304surang
e.html#resources

3. Modify the schema name in the program appropriately and test it.

4. To Run the C# program, follow the steps listed in section 6.6.1.

6.7 Summary
In this chapter, you have learned how to set up the environment to develop .NET
applications using DB2. You learned the various types of data providers and the way you
need to code depending on the provider chosen. The IBM Data Server data provider for
.NET is the recommended one because it is best for performance. You also learned about

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.apdv.samptop.doc/doc/c0007609.html�
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.apdv.samptop.doc/doc/c0007609.html�
http://www.ibm.com/developerworks/data/library/techarticle/0304surange/0304surange.html#resources�
http://www.ibm.com/developerworks/data/library/techarticle/0304surange/0304surange.html#resources�

Chapter 6 - Application development with .NET 247

the IBM Database Add-ins for Visual Studio. The chapter also discussed how to connect to
a DB2 database, and how to manipulate DB2 data using sample programs.

6.8 Review questions
1. What is the difference between the FieldCount and HasRows public properties of the

DataReader object?

2. What configuration do you need to do differently when using the ODBC .NET Data
Provider?

3. Name and explain the two components on which the Data Access in ADO.NET relies
on.

4. Can you use a 32-bit IBM Data Server Provider for .NET on a 64-bit computer?

5. How can you use the Visual Studio Add-Ins with DB2?

6. The key component of disconnected data access in ADO.NET is:

A. DataSet

B. DataReader

C. Connection

D. DataAdapter

E. None of the above

7. Which of the following component classes populates a disconnected DataSet with
data?

A. Command object

B. DataReader object

C. DataAdapter object

D. Dataset

E. None of the above

8. Which public property of the Command object is used to describe whether an SQL
statement or a stored procedure will be executed?

A. CommandText

B. CreateParameter

C. ExecuteNonQuery

D. CommandType

E. None of the above

248 Getting started with DB2 application development

9. All data providers listed below are the .NET data providers for DB2 applications to
access a database EXCEPT?

A. IBM Data Server Provider for .NET

B. Microsoft .NET Data Server Provider

C. OLE DB .NET Data Provider

D. ODBC .NET Data Provider

E. None of the above

10. In IBM Database Add-Ins for Visual Studio, what is used to create and manage DB2
Projects?

A. Object Browser

B. Server Explorer

C. Solution Explorer

D. Device Emulator Manager

E. None of the above

7
Chapter 7 - Application development with
Ruby on Rails
Ruby is an open source, free, dynamic programming language. Ruby on Rails (RoR), or
Rails for short is a framework built using Ruby. RoR is based on the Model, View and
Controller (MVC) architecture. By supporting agile development techniques it has enabled
many developers to radically reduce the time and pain involved in creating Web
applications.

In this chapter you will learn about:

 Ruby on Rails and the MVC architecture

 How to setup Ruby on Rails to work with DB2

 A basic understanding of ways to program RoR applications with DB2

 How to build a simple Ruby on Rails application with DB2

7.1 Ruby on Rails applications with DB2: The big picture
Ruby on Rails is organized around the Model, View, and Controller architecture, usually
just called MVC. MVC benefits include:

 Isolation of business logic from the user interface

 Making it clear where different types of code belong for easier maintenance

A Model represents the information (data) of the application and the rules to manipulate
that data. In the case of Rails, models are primarily used for managing the rules of
interaction with a corresponding database table. In most cases, one table in your database
will correspond to one model in your application. The bulk of your application’s business
logic will be concentrated in the model. Under this architecture, DB2 provides data
persistence.

Controllers provide the “glue” between models and views. In Rails, controllers are
responsible for processing the incoming requests from the Web browser, interrogating the
models for data, and passing that data on to the views for presentation.

250 Getting started with DB2 application development

Views represent the user interface of your application. In Rails, views are often HTML files
with embedded Ruby code that performs tasks related solely to the presentation of the
data. Views handle the job of providing data to the Web browser or other tool that is used
to make requests from your application.

Figure 7.1 illustrates this architecture.

Figure 7.1 RoR - DB2 applications: The MVC architecture

In the above figure, a user invokes the application by starting a Web browser and entering
the application's URL as shown in (1). In this particular example, we are using RoR's Web
server called WEBrick which is installed on the same server (localhost) and listens to port
3000 by default. The URL to invoke the application would look like
http://localhost:3000/myapp1, where myapp1 represents the name of the controller.

The incoming request is serviced by the routing module which redirects it to controllers and
actions as shown in (2). Then the Controller interacts with the Model which processes the
request as shown in (3). The Model may interact with the DB2 database if access to
persistent data is required as shown in (4). The Model reports back to the Controller and
the Controller interacts with the View (5). Finally, the View passes to the browser
information to display (6).

Since RoR applications are object-oriented applications while most commercial databases,
including DB2, use the relational database model, it is common to use object-relational
mapping (ORM) libraries for these two models to interact. Active Record is the ORM

Chapter 7 - Application development with Ruby on Rails 251

layer supplied with Rails. It closely follows the standard ORM model: tables map to
classes, rows to objects, and columns to object attributes.

ORM makes it easier to manage database schema changes. For example, say you built an
application which among other things displays information of a table. Your customer asks
you to add a couple of columns, and display them. Though this may seem like a simple
request, for a large application, this can be quite time consuming, and a source of errors.
You would need to look for all applicable SQL statements that were accessing this table
and modify them so they include the new columns. This change request could be handled
much more easily with ORM, because the mapping between entities in the database and
entities in the program is included in XML configuration files. Programmers can now
conveniently change the XML document to add the columns, and the ORM takes care of
generating the correct SQL for you. This may also be useful to avoid code duplication of
using the same SQL in different locations in your application. In Active Record (Rails'
ORM); however, there are no XML configuration files to change.

Rails philosophy is founded on two main principals:

a) “Do not repeat yourself” (DRY)

b) “Convention Over Configuration” (CoC)

The DRY principle is based on the idea that every piece of knowledge in a system should
be expressed in one place only. This helps programmers avoid changes in many different
parts of the application.

The CoC principle allows programmers to be consistent and reduce the amount of code
simply by following some conventions. Table 7.1 lists some of these conventions and
provide examples.

Convention Example

Table names have all lowercase letters and
need to be plural

books

The model name uses the class naming
convention of unbroken MixedCase and is
always the singular of the table name. In the
Ruby language the first letter of a class
starts in upper case

Book

Rails looks for the class definition in a file
called book.rb in the /app/models directory.

Controller class names are pluralized BooksController

Rails looks for the class definition in a file
called books_controller.rb in the
/app/controllers directory

Table 7.1 - Examples of the CoC principle

252 Getting started with DB2 application development

7.2 Setting up the RoR environment
Before you can develop RoR applications, you first have to install Ruby, Rails, the drivers
and adapters that work with DB2, and configure some files. Depending on your platform,
you may have to follow different procedures.

Note:

In this book we show you how to set up the RoR environment on Windows. For the setup
required on other platforms, refer to the free eBook Getting started with Ruby on Rails,
which is part of this DB2 on Campus free book series.

7.2.1 Installing Ruby

To install Ruby on Windows, install the code by using the One-click Installer - Windows
from http://rubyforge.org/frs/?group_id=167

At the time of writing the latest Ruby version is Ruby 1.8.6-27 Release Candidate 2;
therefore, we will choose the ruby186-27_rc2.exe executable file. When you click this
file, you can either run it, or save it. In our case, we choose Run which would download the
file to a temporary location in our computer, and then invoke it.

The installation is very simple, all you need to do is accept the license,
choose the installing location, and take all the default settings by clicking the Next button
several times. When you click the Install button the installation will start. Figure 7.2 to
Figure 7.4 show you some of the installation panels.

http://www.ibm.com/db2/books�
http://rubyforge.org/frs/?group_id=167�

Chapter 7 - Application development with Ruby on Rails 253

Figure 7.2 - Ruby installation - Choose components

For the Choose components panel, we did choose to enable RubyGems. RubyGems is
discussed in a later section.

Figure 7.3 - Ruby installation - Choose the install location.

254 Getting started with DB2 application development

Figure 7.4 - Ruby Installtion - Installation progress bar

After you have installed Ruby, click Next, and then Finish buttons. If you want to review the
readme file, you can check the Show Readme checkbox.

Next, it's a good idea to test whether we have installed Ruby successfully by verifying the
version installed. From a Windows Command Prompt, you can run the command ruby
with the -v flag to verify the Ruby version. This is shown in Figure 7.5.

Figure 7.5 - Verifying the Ruby version installed

You can also verify you have the Ruby menus by clicking on Start -> All Programs -> Ruby-
186-27.

Note:

In this chapter, <ruby_home> refers to the location where Ruby is installed and
<app_home> refers to the home directory of an application created with Rails.

Chapter 7 - Application development with Ruby on Rails 255

7.2.1.1 RubyGems: Locating, installing and upgrading Ruby packages

RubyGems is the standard packaging and installation framework for Ruby libraries and
applications. RubyGems makes it easy to locate, install, upgrade, and uninstall Ruby
packages.

A gem, in the RubyGems world, is a packaged Ruby application or library. These files
follow a standard format and are stored in a central repository on the Internet. Gems have
a name and a version; for example rake 0.4.16.

A command line tool also called gem can be used to manipulate these gem files. If you
want a gem, you can simply ask RubyGems to install it (and all its dependencies) online.
Everything is done for you. Figure.7.6 shows you how to install the "rake" gem through the
internet.

Figure 7.6 – Installing the rake gem

As shown in the figure, from the machine where you installed Ruby, you can issue the
command gem install rake. This will connect to http://rubygems.org/, and locate the
rake libraries and the rake command-line program. We discuss the rake command later;
for now, it's good to know that rake is a tool you can use to build other gems. Once the
libraries and command-line program are downloaded, they are automatically installed.

7.2.2 Installing Rails
With RubyGems you can install Rails and its dependencies easily just as other gems.
Install Rails by following these steps:

1. Open a Command Prompt window.

Start -> All Programs -> Accessories -> Command Prompt

2. Change the directory to <ruby_home> and issue the gem command:

gem install rails

It may take several minutes to get all packages installed depending on your network speed.
The gem command accesses the http://rubygems.org/ site to look for the required Rails

http://rubygems.org/�
http://rubygems.org/�

256 Getting started with DB2 application development

packages. Once downloaded and installed successfully, you’ll see the result as shown in
Figure 7.7

Figure 7.7 Installing Rails

To test whether you have successfully installed Ruby on Rails or not, issue the command
rails with the –v flag. This command will report the Rails version as shown in Figure 7.8.

Figure 7.8 – Rails Version

7.2.3 Creating your first RoR application and starting the Web server

Let's create your very first RoR application. It will be so simple you don't even have to write
any code! Here are the steps:

1. Change the directory to <ruby_home>: cd <ruby_home>

2. Create your RoR application named myapp1 by issuing the following command

rails myapp1

This will create a structure for your application as shown in Figure 7.9. However, at this
point we will not write any code.

Chapter 7 - Application development with Ruby on Rails 257

Figure 7.9 - Creating the RoR application myapp1

3. Change the work directory to <app_home>, the directory for your application:

cd myapp1

4. Start the WEBrick Web Server:

ruby script/server

When the Web server starts, it will report the process ID (PID) and TCPIP listening port
number which should default to 3000. This is illustrated in Figure 7.10.

Figure 7.10 - Starting the WEBrick Web Server

Now that the Web server is up and running, open a browser and redirect it to
http://localhost:3000/ which will take you the Welcome page shown in Figure 7.11.

http://localhost:3000/�

258 Getting started with DB2 application development

Figure 7.11 - Welcome Page

Thus far we have created the structure to develop a test application myapp1, and started
the Web server. In a later section we show you how to work with a DB2 database and
create models, views and controllers.

7.2.4 Working with a DB2 database: The ibm_db gem

Rails support for DB2 is provided directly from IBM itself through an open source gem
called ibm_db. This gem contains a driver (written in C) that allows Ruby to communicate
with DB2, and an adapter written in Ruby that enables Active Record to work with DB2.

The ibm_db adapter has a direct dependency on the ibm_db driver, which utilizes the IBM
Driver for ODBC and CLI to connect to IBM data servers. As mentioned earlier, Active
Record is the object-relational mapping (ORM) layer supplied with Rails. It closely follows
the standard ORM model but differs from most other ORM libraries in the way it is
configured. By using a sensible set of defaults, Active Record minimizes the amount of
configuration that developers need to perform. Figure 7.12 illustrates how Active Record
communicates with IBM_DB and DB2 Server.

Chapter 7 - Application development with Ruby on Rails 259

Figure 7.12 – Interactions between Active Record and IBM_DB

With the ibm_db gem installed, Rails can be used with a DB2 data server, including DB2
Express-C and other DB2 editions on Linux, UNIX and Windows; DB2 for i5/OS®, and DB2
for z/OS.

7.2.4.1 Installing the ibm_db gem

To install the ibm_db gem on Windows, simply run this command:

gem install ibm_db

The above command retrieves a pre-built binary version of the driver, so you won't need
any compilers or build tools. If prompted for a version from a list, select the latest mswin32
option available. Figure 7.13 illustrates how to run this command from a Windows
Command Prompt, and part of the output.

Figure 7.13 – Installing the ibm_db gem

On Linux and UNIX, the gem is built from source; because of this, the installation process
requires a few more steps as shown below:

1. Open up a shell as root by running:

$ sudo -s

2. Set the environment. The assumption is that db2inst1 is the DB2 instance owner:

$ export IBM_DB_INCLUDE=/home/db2inst1/sqllib/include

$ export IBM_DB_LIB=/home/db2inst1/sqllib/lib

260 Getting started with DB2 application development

3. Source the DB2 profile. This step is technically not required to build the driver, but it
enables a user other than the DB2 instance owner to execute commands like db2 or
db2level.

$. /home/db2inst1/sqllib/db2profile

4. Finally, install ibm_db by executing from the same shell:

$ gem install ibm_db

5. Once the gem is safely installed, you can exit from the root shell with exit.

On Mac OS X Snow Leopard (a Tiger version of DB2 doesn't exist), you can follow these
steps:

1. $ sudo -s

2. $ export IBM_DB_INCLUDE=/Users/myuser/sqllib/include

3. $ export IBM_DB_LIB=/Users/myuser/sqllib/lib64

4. $ export ARCHFLAGS="-arch x86_64"

5. $ gem update --system

6. $ gem install ibm_db

7. $ exit

7.2.4.2 The database.yml configuration file

After installing Ruby on Rails successfully and creating a new Rails application, the
configuration file database.yml would be automatically created in the directory
C:\<ruby_home>\<app_home>\config. Using the myapp1 application created earlier,
this file would be located under C:\Ruby\myapp1\config. The database.yml file
provides information to your application about how to work with DB2. Figure 7.14 illustrates
a sample database.yml file opened with the SciTE editor that was installed with Ruby
(Start -> All Programs -> Ruby-186-27 -> SciTE).

Chapter 7 - Application development with Ruby on Rails 261

Figure 7.14 – Contents of a sample database.yml configuration file

As you can see from Figure 7.14, the database.yml file contains three different sections
(development, test and production) in which Rails can run by default. The development
environment is used to interact manually with the application; the test environment is used
to run automated tests; the production environment is used when you deploy your
application for the world to use.

Table 7.2 provides a description of some of the attributes included in the database.yml
file

Connection
attribute

Description Required

Adapter Ruby adapter name, for DB2 it is
ibm_db

Yes

262 Getting started with DB2 application development

Database Database alias/name of the
database to which the Rails project
connects

Yes

Username User ID used to connect to the DB2
database

Yes

Password Password for the user ID specified Yes

Schema The collection of named objects.
The schema provides a way to
group objects logically within the
database.

Optional. If the schema is missing
from database.yml, this attribute is
set to the authorization ID of the
current session user.

Application Application name. Only applicable
when working with DB2 Connect™
software to work with DB2 for i5/OS
and DB2 for z/OS.

Optional

Account A character string used to identify
the client accounting string. Only
applicable when working with DB2
Connect software to work with DB2
for i5/OS and DB2 for z/OS.

Optional

Workstation A character string used to identify
the client workstation name. Only
applicable when working with DB2
Connect software to work with DB2
for i5/OS and DB2 for z/OS.

Optional

Host Host name of the remote server
where the database resides

The optional connection attributes
host and port associated with
remote TCP/IP connections are only
required when DB2 catalog
information is not available and no
data source has been registered in
the db2cli.ini configuration file for
DB2 CLI. This type of setup is
possible while using the IBM Driver
for ODBC and CLI instead of a
complete DB2 Client installed
locally.

Chapter 7 - Application development with Ruby on Rails 263

Port This parameter contains the name
of the DB2 instance TCP/IP port

Same as for the Host attribute
described above.

Table 7.2 - Description of some DB2 connection attributes in database.yml file

7.3 Developing RoR applications
This section describes how to build simple Web applications using Rails scaffolding.
Using the scaffold utility, you can quickly generate some of the major pieces of an
application. The scaffold utility will easily create the models, views, and controllers for a
new resource in a single operation.

The next sections describe the steps to create a simple Web application using scaffolding.
The application will access a DB2 database; therefore, you first need to create a DB2
database, and configure the database.yml file.

7.3.1 Developing a sample application: A book catalog
The book catalog application, which for simplicity is named bookapp, allows users to
obtain information about books. There will be two types of users: Regular users, and
authors. The requirements of the bookapp application are simple:

1. Regular users can browse information about books.

2. Authors are regular users who can add new books to the catalog and update book
information.

3. There will be one page to display books, and one page to manage books.

4. XML will be used to store book's information.

This application only needs one table, the books table. Its columns are described below, in
Table 7.3.

Column Name Data Type Description

TITLE Varchar Book’s name

DESCRIPTION XML Book’s information, including authors and a
short description.

STATUS Varchar Indicates whether a book is available,
completed, not ready, etc.

Table 7.3 – books table columns and description

The table will be created automatically in DB2 through RoR using the scaffold and rake
commands as we will describe soon. RoR will also add extra columns, one of them being
the ID column which would be used as the primary key.

264 Getting started with DB2 application development

The two pages mentioned in requirement #3 above will correspond to two resources: book
and catalog which we will build later with the scaffold command.

In this particular example, the RoR application, the WebBrick server, and the DB2 server
are all running on the same Windows machine. Therefore, when configuring the
database.yml file, we will specify localhost.

7.3.1.1 Creating a DB2 database

Let's create the booksdb database using the following command from the DB2 Command
Window, or Linux/UNIX shell:

db2 create db booksdb using codeset utf-8 territory us

This may take few minutes as DB2 is creating some internal objects, and performing some
autoconfiguration. As mentioned earlier, you do not need to create the books table using
DB2 tools. This will be created through RoR.

7.3.1.2 Creating the application structure

Let's create the bookapp application by opening a terminal, navigating to a folder where
you have rights to create files (we refer to it as <app_home> from now on), and typing the
following:

rails –d ibm_db bookapp

With this command, the bookapp application is created. The -d ibm_db indicates it
should be preconfigured for a DB2 database using the ibm_db adapter. Figure 7.16 shows
you the output of the command.

Chapter 7 - Application development with Ruby on Rails 265

Figure 7.16 – Creating the Rails application bookapp

After creating the bookapp application, a folder with the name of the application is created
in your working directory. Switch to that folder. In our example use this command:

cd <app_home>\bookapp

You will note several directories and files were automatically created under that directory.
Table 7.4 explains the main sub-directories that are created.

Directory Descriptions

app\ This directory contains the controllers, models, views, and helpers for your
application.

config\ This directory includes files and subdirectories where you will configure
your application’s runtime rules, routes, database, and more.

db\ Under this directory you will find files and subdirectories used to show

266 Getting started with DB2 application development

your current database schema, as well as the database migrations.

Table 7.4 - Default directory structure for a RoR application

As explained earlier, you must configure the database.yml file to enter the values that
will tell the RoR application how to connect to the DB2 database. Edit the
<app_home>\bookapp\config\database.yml file as follows under the development
section:

development:

adapter: ibm_db

 username: arfchong

 password: passwd

 database: booksdb

 host: localhost

 port: 50000

We use the ibm_db adapter, and want to connect to the booksdb database. In this
example the database server resides on the same machine as the RoR application,
therefore the host and port information could be removed, and RoR would establish a local
connection to the DB2 database. For illustration purposes, we have set the host field to
localhost, and the port field to 50000. This means that RoR will establish the
connection using TCPIP as if the DB2 server was on a different, remote machine.

The userID and password to use should be defined at the remote server. In our example,
the username is arfchong, and the password is passwd. If you are following along, you'd
have to change these values appropriately.

Since we are working on the development of this application, you can remove or comment
out the other two sections in database.yml: test, and production.

To test you can connect to the database with this configuration, issue the following
command:

<app_home>\bookapp> rake db:migrate

If you get an error, there is something wrong with the configuration values in
database.yml, or maybe the DB2 instance is not running. An error means that Rails can’t
work with your database.

Next, we use scaffolding to quickly generate a template for our application. You can later
modify this template according to your needs. Run the scaffold command as follows to
create the book resource with a table that has the columns title, description and status.

 ruby <app_home>\bookapp\script\generate scaffold Book

 title:string description:xml status:string

Figure 7.17 below illustrates the output of running the above command.

Chapter 7 - Application development with Ruby on Rails 267

Figure 7.17 – Using scaffold to quickly create the bookapp sample application

Many components have been done by scaffold, saving us a lot of time. The main two that
we are interested in are the model itself, book.rb and the migrate file,
20100611202808_create_books.rb which are highlighted in Figure 7.17 above.

Let's take a look at the migrate file 20100611202808_create_books.rb. This
generated file includes a timestamp as part of the file name. The rb extension identifies
the file as a Ruby file. Figure 7.18 below shows the contents of this file.

268 Getting started with DB2 application development

Figure 7.18 – Contents of the migration file 20100611202808_create_books.rb

The up method is used when applying the migration to DB2. This defines how the table will
be created. The down method undoes what up has done. It is executed when you want to
revert the database to a previous version.

Earlier we ran the rake db:migrate command to test if the database.yml file was
configured correctly to connect to the database. What this command actually does is not
only connect to the database, but also review the contents of migration files (if they exist),
and apply the required changes. Now that we created a migration file
20100611202808_create_books.rb with the scaffold utility, the rake command will
apply all the migration instructions that have not been applied to the database before from
this file. In this case, since the books table was not created before, it will create it in DB2.

The db:migrate parameter specified in the command indicates that the required
commands and SQL statements should be generated and passed to DB2. Figure 7.19
shows the output of this command.

Figure 7.19 – Running rake db:migrate command

Chapter 7 - Application development with Ruby on Rails 269

Let's verify in DB2 that the table was created using the DB2 command list tables from
the DB2 Command Window or Linux/UNIX shell. Figure 7.20 shows the command used
and the output.

Figure 7.20 – Listing from DB2 the tables created by rake db:migrate

Figure 7.20 shows that rake db:migrate command created the BOOKS table, but also
a table called SCHEMA_MIGRATIONS. This second table is used by RoR to track
migration instructions for your database.

Let's verify the structure of the BOOKS table using the DB2 command describe table
as shown in Figure 7.21.

Figure 7.21 – The structure of the BOOKS table created by rake db:migrate

Note that in Figure 7.21 there are three new columns: ID, CREATED_AT, UPDATED_AT.
Rails automatically creates a default primary key column ID; therefore, you do not have to
explicitly define a primary key when working with Rails. With respect to columns
CREATED_AT and UPDATED_AT, Rails adds these columns because they are useful in
many scenarios, but they are not neccesarily needed for migrations. All the migration
information that Rails needs is stored in the migration table.

270 Getting started with DB2 application development

Now let's take a look at the other table that was created, the SCHEMA_MIGRATION table.
Figure 7.22 shows the contents of this table.

Figure 7.22 –Contents of the table SCHEMA_MIGRATION

As you can see from the figure, the SCHEMA_MIGRATION table contains only one
column, the VERSION column, which is used to keep track of migration version number
numbers. The version number is the numerical prefix on the migration’s filename. For
example, for file 20100611202808_create_books.rb, the version is
20100611202808.

The rake db:migrate it its simplest form will run the up method for all the migrations
that have not yet been run. If you want a specific version, Active Record will run the
required migrations (up or down) until it has reached the specified version. For example to
migrate to version 20100705000000 run:

rake db:migrate VERSION=20100705000000

If this is greater than the current version, that is, it is migrating upwards; the up method will
be invoked on all migrations up to and including 20100705000000, if it is migrating
downwards, the down method will be invoked on all the migrations down to, but not
including, 20100705000000. To rollback to the last migration, use:

rake db:rollback.

Let's take a look now at what has been built for this application. If the WEBrick Web server
is not started, use this command to start it:

<app_home>\bookapp> ruby script/server

Then enter http://localhost:3000/books in a browser. Figure 7.23 displays the output.

http://localhost:3000/books�

Chapter 7 - Application development with Ruby on Rails 271

Figure 7.23 – The Listing books page

Click the new book link, and create an entry for a new book as shown in Figure 7.24 below.

Figure 7.24 – Creating a new book item

Note that through the RoR application, the XML document is correctly stored in the BOOKS
table as shown in Figure 7.25 which uses IBM Data Studio.

272 Getting started with DB2 application development

Figure 7.25 – Viewing the XML document from IBM Data Studio

If you point your browser back to http://localhost:3000/books you will now be able to see
the book that was created. This is illustrated in Figure 7.26. You can also see other
operations have been automatically created by RoR such as Show, Edit and Destroy.

Figure 7.26 – Listing books

http://localhost:3000/books�

Chapter 7 - Application development with Ruby on Rails 273

Now that we can add, delete and update books using the book resource, we need to work
on another resource that allows you to list all books. Let's create the catalog resource for
this purpose using this command:

<app_home>\bookapp>ruby script/generate controller catalog index

In the above command the controller’s name is catalog and a default view page named
index is also created. Figure 7.27 shows the output of this command.

Figure 7.27 – Generating the catalog resource

Note:

Once the catalog resource has been created, you must restart the Web server, otherwise
you may get errors related to the routers.

The following actions will build basic logic for the catalog controller to list all the books.
Copy and paste the code shown in Listing 7.1 below to the file
<app_home>\bookapp\app\models\book.rb

(1) class Book < ActiveRecord::Base
(2) def self.find_books
(3) xquery=

"select i.TITLE, i.ID, t.AUTHOR, t.INFO, i.STATUS from books i,
xmltable('$DESCRIPTION/Info'
 columns AUTHOR varchar(100) path 'Authors',
 INFO varchar(400) path 'Description'
) as t"

(4) find_by_sql(xquery)
 end
 end

Listing 7.1 - Contents of the book.rb file to list all the books

274 Getting started with DB2 application development

In Listing 7.1:

(1) Defines the Book class

(2) The find_books method that we will use in the catalog.

(3) The xquery statement to use in the find_books method. This xquery statement
retrieves columns from two tables, the BOOKS table (using the alias of i); and the table
created with the XMLTABLE function (using the alias of t). For more information about
the XMLTABLE function, refer to Chapter 2, DB2 pureXML

(4) A built_in method find_by_sql that can be used to execute raw sql.

Note:

For more information about the Ruby on Rails API, review http://api.rubyonrails.org/.

Copy and paste the code shown in Listing 7.2 below to the file

<app_home>\bookapp\app\controllers\catalog_controller.rb.

This tells the catalog controller where to fetch books.

(1) class CatalogController < ApplicationController
(2) def index
 @books=Book.find_books
 end

End

Listing 7.2 - Contents of the catalog_controller.rb file

In Listing 7.2:

(1) Defines the CatalogController class

(2) An index method is defined. It gets an instance variable @books returned by
find_books, which was defined in the model of Book.

Copy and paste the code shown in Listing 7.3 to the file

<app_home>\bookapp\app\views\catalog\index.html.erb

<h1>DB2 on Campus Book Series</h1>

<% for book in @books -%>

<div class="entry" >

<h3><%= link_to h(book.title) ,book ,:id => book%></h3>

<h3>Authors</h3>

<%= book.author %>

<h3>Description</h3>

<%= book.info %>

http://api.rubyonrails.org/�
http://api.rubyonrails.org/�

Chapter 7 - Application development with Ruby on Rails 275

<h3>Status</h3>

<%= book.status %>

</div>

<% end %>

Listing 7.3 - Contents of the index.html.erb file

The above html code tells a view how to display a book’s information.

Let's now take a look at our code in action! Point your browser to
http://localhost:3000/catalog. It should display a page with the catalog list as illustrated in
Figure 7.28 below.

Figure 7.28 - Catalog list

http://localhost:3000/catalog�

276 Getting started with DB2 application development

7.3.2 Customizing the layout

Let's improve the appearance of the page using cascading style sheets (CSS). Browse to
the directory <app_home>\bookapp\public\stylesheets and create a text file
called style.css. Copy and paste the code shown in Listing 7.4 below to the file style,

/* Styles for RoR - DB2 example */

#main {

margin-left: 10em;

padding-top: 1ex;

padding-left: 2em;

background: white;

font-size: 14px;

font-family:Arial, sans-serif;

}

#side {

float: left;

padding-top: 1em;

padding-left: 1em;

padding-bottom: 1em;

width: 12em;

background: #152 ;

font-size: 12px;

font-family:Verdana, Arial, sans-serif;

}

#side a {

color: #bfb ;

font-size: small;

}

#banner {

background: #99cc66 ;

padding-top: 10px;

padding-bottom: 10px;

border-bottom: 1px solid;

font-size: 35px;

font-family:Verdana, Arial, sans-serif;

color: #282 ;

text-align: center;

}

#columns {

Chapter 7 - Application development with Ruby on Rails 277

background: #152 ;

}

h1 {

font: 150% arial;

color: #230 ;

border-bottom: 3px solid #230 ;

}

Listing 7.4 - Contents of the file style - a CSS file

We will use this style CSS file when we change the layout. A layout in Rails is a
template into which we can flow additional content. In our case, we can define a single
layout for all the book pages and insert the catalog pages into that layout. There are many
ways of specifying and using layouts in Rails. We only show you how to use the simplest
method:

Create a template file in the <app_home>\bookapp\app\views\layouts directory with
the same name as the controller catalog. Because layout is part of views, a suffix of
html.erb must be added to catalog as in catalog.html.erb. All views rendered by the
catalog controller will use this layout by default. Open a text editor and copy the code
shown in Listing 7.5 below and paste it into the catalog.html.erb file. This will create a
new layout for all the pages under views of catalog.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <meta http-equiv="content-type" content="text/html;charset=UTF-8" />

 <title>DB Books Series</title>

(1) <%= stylesheet_link_tag "style"%>

 </head>

 <body id="catalog">

 <div id="banner">

 <%=@page_title|| "DB2 on Campus Books Series"%>

 </div>

 <div id="side">

 Home

(2) Books

 </div>

 <div id="main">

 <%= yield :layout %>

 </div>

 </body>

278 Getting started with DB2 application development

</html>
Listing 7.5 - Contents of the catalog.html.erb file

In (1) note how we invoke the style CSS file.

In (2) we add a link to books, where all books information are manipulated, including
create, update and delete.

Next, we will do the same for
<app_home>\bookapp\app\views\layouts\book.html.erb

Copy and paste the contents of Listing 7.6 below which are very similar to Listing 7.5. Note
that in Listing 7.5 we had:

Books

while in Listing 7.6 we have:

Catalog

This is done so each page points to each other in the Menu left bar.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <meta http-equiv="content-type" content="text/html;charset=UTF-8" />

 <title>DB Books Series</title>

 <%= stylesheet_link_tag "style"%>

 </head>

 <body id="catalog">

 <div id="banner">

 <%=@page_title|| "Books' Administration"%>

 </div>

 <div id="side">

 Home

 Catalog

 </div>

 <div id="main">

 <%= yield :layout %>

 </div>

 </body>

</html>
Listing 7.6 - Contents of the books.html.erb file

Chapter 7 - Application development with Ruby on Rails 279

We have now constructed a layout for all the pages. If you wanted to change this layout,
you can simply change it in one place. This is a clear example of the DRY (Don’t repeat
yourself) RoR philosophy!

If you refresh the browser, you will see the improved look of the pages as illustrated in
Figure 7.28 to Figure 7.30

Figure 7.28 - The Catalog list after applying a layout

280 Getting started with DB2 application development

Figure 7.29 - The Book Administration page after applying a layout

Chapter 7 - Application development with Ruby on Rails 281

Figure 7.30 - The page to update books after applying a layout

7.4 Exercises
In this exercise, you will practice creating a blog application. Before running the exercise,
make sure Ruby on Rails, and DB2 Express-C have been installed successfully. A table
named POS, with three columns NAME, TITLE, CONTENT will be created during this
process.

Procedure:

1. Create the RoR blog application:

 rails –d ibm_db blog

2. Configuring ibm_db according to your environment, such as local or remote

3. Create a resource

script/generate scaffold Post name:string title:string content:text

4. Running a migration

 rake db:migrate

282 Getting started with DB2 application development

5. Start the Web server and click this link http://localhost/posts. Compare the result with
files in the Exercise_Files_DB2_Application_Development.zip file that
accompanies this book.

7.5 Summary
In this chapter, you have learned the basics to develop a Ruby on Rails application using
the ibm_db adapter/driver and a DB2 data server. The chapter explained the setup
required to get Ruby on Rails working on Windows, followed by the configuration of the
database.yml file to connect to a DB2 database. At the end, the chapter showed how to
develop a simple Web application. The sample application uses an XML column to store
the description of each book.

7.6 Review questions
1. What is Ruby on Rails? What is a gem?

2. How can I install DB2’s RoR driver and adapter?

3. How does RoR communicate with DB2?

4. How can I configure the database.yml file with DB2?

5. Can I use XML as a data type in RoR?

6. Which of the following statements about RubyGems is false?

A. A central repository for hosting packages in a standardized package
format

B. Installs and manages multiple, and simultaneously installed versions of the
same library.

C. The older versions of the same library must be deleted before the new one
is installed

D. RubyGems are end-user tools for querying, installing, uninstalling, and
manipulating packages.

E. None of the above

7. All the below items are gems but ____ is not.

A. Ruby

B. Rails

C. Rake

D. IBM_DB

E. None of the above

http://localhost/posts�

Chapter 7 - Application development with Ruby on Rails 283

8. Which of the following sentences about IBM_DB and Active Record is true?

A. IBM_DB contains a driver and an adapter. The driver directly interacts
with Active Record

B. Active Record is a part of IBM_DB

C. IBM_DB adapter utilizes the IBM Driver for ODBC and CLI to connect to
IBM data servers.

D. To enable IBM_DB, we should install both DB2 client and server on your
PC.

E. None of the above

9. Which is optional in database.yml when we want to connect to a remote DB2
server installed on Linux?

A. Account

B. Database

C. Password

D. Username

E. None of the above

10. Which of the following is the best sequence to install ibm_db on Linux?

a. Open a shell as root

b. Set the environment

c. Install ibm_db

d. Source DB2 profile

e. Exit from the root shell

A. a->b->c->d->e

B. a->b->d->c->e

C. a->d->b->c->e

D. a->c->d->b->e

E. None of the above

8
Chapter 8 – Application development with PHP
PHP (PHP Hypertext Preprocessor) is an interpreted, general-purpose, open source,
scripting programming language primarily intended for the development of Web
applications. The first version of PHP was created by Rasmus Lerdorf and contributed
under an open source license in 1995.

PHP generally runs on a Web server; its code is executed by the PHP runtime to create
dynamic Web page content. It can also be used for command-line scripting and client-side
GUI applications. PHP can be deployed on most Web servers, many operating systems
and platforms, and can be used with many relational database management systems. It is
available free of charge, and the PHP Group provides the complete source code for users
to build, customize and extend for their own use.

In this chapter you will learn about:

 Setting up the PHP environment to work with DB2

 Developing PHP applications with DB2

8.1 PHP - DB2 Applications: The big picture
Figure 8.1 provides an overview of a PHP-DB2 application. In the figure, a user opens a
Web browser and points to a page that invokes a PHP script. The request is received by
the Web server where PHP code also resides, and the PHP code is executed. If the
request needs to access data from DB2, PHP will connect to the DB2 database and
retrieve, update or delete the necessary data. After that, if output needs to be returned, it
is sent as HTML to the Web browser.

286 Getting started with DB2 application development

Figure 8.1 - Interaction between PHP, a Web server and DB2

PHP primarily acts as a filter, taking input from a file or stream containing text and/or PHP
instructions and outputs another stream of data; most commonly the output will be HTML.
PHP scripts are often compiled at runtime by the PHP engine, which increases their
execution speed. PHP scripts can also be compiled before runtime using PHP compilers.

8.2 Setting up the environment
To start working with PHP you need to install a Web server, PHP, and a DB2 database
server. If your Web server and database server are on different machines, you also need to
install a DB2 client on the Web server.

In this section we explain how to configure your environment manually by downloading and
installing each component separately.

8.2.1 Setting up the PHP environment manually

If you would like to set up your environment manually by installing each component
separately, you need to follow these steps:

1. Install the Apache HTTP Server

Download the source code from http://httpd.apache.org/download.cgi specific to
your operating system. Installation instructions are available on the same URL.

2. Install DB2 Express-C. Download it from http://www.ibm.com/db2/express

http://httpd.apache.org/download.cgi�
http://www.ibm.com/db2/express/download.html?S_CMP=ECDDWW01&S_TACT=DOCBOOK07�

Chapter 8 - Application development with PHP 287

3. On Linux, ensure you have the gcc compiler and the following development
packages: apache-devel, autoconf, automake, bison, flex, gcc, and libxml2-devel
package

4. If the Web server where the PHP code is and the database server are on different
machines, download and install one of the following DB2 clients: IBM Data Server
Driver Package, IBM Data Server Client, or IBM Data Server Driver for ODBC and
CLI. These can be found at this location: http://www-
01.ibm.com/support/docview.wss?rs=4020&uid=swg21385217

5. Download the latest version of the PHP from http://www.php.net for Linux/UNIX or
Windows. The latest version of PHP at the time of writing is PHP 5.3. Install it, and
configure it. The following sections explain how to do this on Linux/UNIX and
Windows.

8.2.1.1 Setting up the PHP environment manually on Linux or UNIX

1. Untar the PHP package previously downloaded by issuing the following command:

tar -xjf php-5.x.x.tar.bz2

2. Change directories into the newly created php-5.x.x directory.

3. Configure the makefile by issuing the configure command. Specify the
features and extensions you want to include in your custom version of PHP. A
typical configure command includes the following options:

./configure --enable-cli--disable-cgi --with-
apxs2=/usr/sbin/apxs2 --with-zlib --with-pdo-ibm=<sqllib>

Where --with-pdo-ibm=<sqllib> enables the pdo_ibm driver using the DB2
CLI library to access DB2 databases. The <sqllib> setting refers to the directory
where DB2 was installed. The pdo_ibm driver is discussed in more detail later in
this chapter.

4. Compile the files by issuing the make command.

5. Install the files by issuing the make install command. Depending on how you
configured the PHP install directory using the configure command; you may
need root authority to successfully issue this command. This should install the
executable files and update the Apache HTTP Server configuration to support
PHP.

6. Install the ibm_db2 extension by issuing the following command as a user with
root authority: pecl install ibm_db2

http://www-01.ibm.com/support/docview.wss?rs=4020&uid=swg21385217�
http://www-01.ibm.com/support/docview.wss?rs=4020&uid=swg21385217�
http://www.php.net/�

288 Getting started with DB2 application development

This command downloads, configures, compiles, and installs the ibm_db2
extension for PHP.

7. Copy the php.ini-recommended file to the configuration file path for your new
PHP installation. To determine the configuration file path, issue the php -i
command and look for the php.ini keyword. Rename the file to php.ini.

8. Open the new php.ini file with a text editor and add the following lines, where
"instance" refers to the name of the DB2 instance on Linux or UNIX.

 To set the DB2 environment for pdo_ibm:

PDO_IBM.db2_instance_name=instance

 To enable the ibm_db2 extension and set the DB2 environment:

extension=ibm_db2.so

ibm_db2.instance_name=instance

9. Restart the Apache HTTP Server to enable the changed configuration.

8.2.1.2 Setting up the PHP environment manually on Windows

1. Extract the PHP zip package previously downloaded into an install directory.

2. Extract the collection of PECL modules zip package into the \ext\ subdirectory of
your PHP installation directory.

3. Create a new file named php.ini in your installation directory by making a copy
of the php.ini-recommended file.

4. Open the php.ini file in a text editor and add the following lines.

 To enable the PDO extension and pdo_ibm driver:

extension=php_pdo.dll

extension=php_pdo_ibm.dll

 To enable the ibm_db2 extension:

extension=php_ibm_db2.dll

5. Enable PHP support in Apache HTTP Server 2.x by adding the following lines to
your httpd.conf file, in which phpdir refers to the PHP install directory:

LoadModule php5_module 'phpdir/php5apache2.dll'

AddType application/x-httpd-php .php

PHPIniDir 'phpdir'

6. Restart the Apache HTTP Server to enable the changed configuration.

Chapter 8 - Application development with PHP 289

Note:

For Windows, it is always recommended to download the *.msi installers instead of the zip
archives for installation of both the Web server (Apache in our case) and PHP.

8.3 PHP - DB2 application development
In this section, we describe how to access a DB2 database from a PHP application. We
first describe the different extensions that can be used for this purpose.

8.3.1 PHP extensions to use with DB2
There are three PHP extensions you can use with DB2 software ("DB2"), though only the
first two are recommended ones:

 ibm_db2

A PHP extension written, maintained, and supported by IBM for access to DB2
databases.

 pdo_ibm / pdo_odbc

A driver for the PHP Data Objects (PDO) extension that offers access to DB2
databases through the standard object-oriented database interface introduced in
PHP 5.1. It uses CLI as the underlying interface to DB2. Alternatively, you can use
pdo_odbc which uses ODBC drivers or DB2 CLI.

 Unified ODBC

An extension that historically provided access to DB2 database systems. It is not
recommended that you write new applications with this extension because
ibm_db2 and pdo_ibm both offer significant performance and stability benefits
over Unified ODBC. We will not cover this extension in this book.

Note:

The ibm_db2 extension API makes porting an application that was previously written for
Unified ODBC almost as easy as globally changing “odbc_” to “db2_” throughout the
source code of your application since all function names start with “odbc_” in Unified
ODBC and “db2_” in ibm_db2 with the rest of the name being identical in both.

8.3.2 PHP development with the ibm_db2 extension

If you are working in Linux/UNIX, before using ibm_db2, make sure that the php.ini
configuration has been set to the DB2 instance you want PHP to connect to, so that PHP
will refer to the libraries of the respective instance for connecting and querying the

290 Getting started with DB2 application development

database. In Linux/UNIX, this overrides the environment variable DB2INSTANCE, while in
Windows this option is simply ignored.

If not already present, you can make an entry in the php.ini file as follows assuming you
are using the default instance name of db2inst1:

[ibm_db2]

ibm_db2.instance_name=db2inst1

Another global variable that we can change in the php.ini file is the ibm_db2.binmode
which can be used to modify the binary data handling by the PHP driver. The syntax is:

ibm_db2.binmode = “n”

Where n = {1,2,3}.

When set to “1”, the DB2_BINARY constant gets set and all binary data is handled as it is.

When set to “2”, the DB2_CONVERT constant gets set and all the binary data is converted
into ASCII by the ibm_db2 driver.

When set to “3”, the DB2_PASSTHRU constant gets set and all the binary data gets
converted into a null value.

8.3.2.1 Program flow

The typical steps followed by a PHP program are:

1. Connect to the database.

2. Prepare and execute the statement.

3. Process the results.

4. Free the resources.

PHP uses handlers for connections and statements. Handlers are variables that are set
after a connection or a statement execution, and are useful to establish a relationship
between a connection and the statements being executed.

8.3.2.2 Connecting to a Database

There are two methods to connect to a DB2 database:

 Non persistent connection (db2_connect)

 Persistent database connection (db2_pconnect)

As the name suggests, the non persistent connection disconnects and frees up the
connection resources after each db2_close, or when the connection resource is set to
NULL, or the script ends. Performance can be impacted if database sessions are made

Chapter 8 - Application development with PHP 291

and freed too often. However, it is advisable to use a non persistent connection when you
are doing INSERT, UPDATE, or DELETE like operations.

In the case of persistent connections, the connection resources are not freed up after a
db2_close or the script is exited. Whenever a new connection is requested, PHP tries to
reuse the connection with the same credentials.

The syntax of the connection varies depending on whether the database has been
cataloged in DB2 or not.

8.3.2.2.1 Making a connection to a cataloged database

To make a connection to a cataloged database, the database alias name, user ID, and
password of the database server are the required parameters in db2_connect. Listing 8.1
shows an example for connecting to the SAMPLE database.

<?php

$db_name = 'Sample';

$usr_name = 'db2inst1';

$password = '123456';

// For persistent connection, change db2_connect to db2_pconnect

(1) $conn_resource = db2_connect($db_name, $usr_name, $password);

 if ($conn_resource) {

 echo 'Connection to database succeeded.';

(2) db2_close($conn_resource);

 } else {

 echo 'Connection to database failed.';

 echo 'SQLSTATE value: ' . db2_conn_error();

 echo 'with Message: ' . db2_conn_errormsg();

 }

?>

Listing 8.1 – Connecting to a cataloged database

In the above listing:

1. conn_resource is the connection handler after the db2_connect() method
obtains a connection

2. The db2_close() method is used to close/relinquish the connection resources
we had acquired before.

8.3.2.2.2 Making a connection to a non-cataloged database

To create a connection to a non-cataloged remote database we need to pass the details
about the database server into a connection string and pass it as a parameter in the
connection function. The connection string should be in the following format:

DRIVER={IBM DB2 ODBC DRIVER};DATABASE=database name;HOSTNAME=host

292 Getting started with DB2 application development

name;PORT=port;PROTOCOL=TCPIP;UID=user name;PWD=password;

8.3.2.3 Preparing and executing a statement
Before you prepare and execute SQL statements, you need to decide the following
characteristics about the transaction:

 Type of cursor used

 How to catch the error

 Isolation level to use

8.3.2.3.1 Type of cursor to be used

PHP with ibm_db2 supports two kinds of cursors:

 Forward only cursors

This is the default cursor of a PHP application with ibm_db2. The cursor fetches
the result set row by row in a unidirectional way. It is an ideal cursor when we want
to perform read-only operations against the database.

 Scrollable cursors

The ibm_db2 extension implements scrollable cursors using the keyset-driven
scrollable cursor. This cursor can detect and make changes to the underlying data.
When the cursor is opened, DB2 makes a keyset where it stores the keys, which
are used to determine the order and the set of rows in the cursor. As the fetch
operation proceeds, the cursor scrolls through the keys in the keyset to retrieve the
most recent values in the database.

8.3.2.3.2 How to catch an error

The application you write should be good enough to catch and explain all exceptions to the
user, including the SQL and database errors. For that, the program should check the return
values of the database functions and print the SQLSTATE and the error message if an error
has occurred. Use db2_stmt_error and db2_stmt_errormsg to display the error
details when an error occurs. Listing 8.2 provides an example.

$stmt = db2_exec($conn_resource, $sql);

if (!$stmt) {

echo 'SQLSTATE value: ' . db2_stmt_error();
echo 'with Message: ' . db2_stmt_errormsg();

}

Listing 8.2 – Displaying error details

Chapter 8 - Application development with PHP 293

8.3.2.3.3 Isolation level to use

You can use two methods to change the isolation level in a PHP program:

1. Append the WITH clause in the SQL statement so that a particular SQL
runs in the specified isolation level. Listing 8.3 provides an example.

// With connection being made and connection resource

// is in $conn_resource

$sql = 'SELECT c_id FROM customer WITH UR';

$stmt = db2_exec($conn_resource, $sql);

 Listing 8.3 – Set isolation level in PHP with ibm_db2

In the above example, the query is run using the UR isolation level.

2. Changing the CURRENT ISOLATION special register

To use a particular isolation level for the whole session, set the CURRENT
ISOLATION special register to UR, CS, RS, or RR. The DB2 special register value
overrides the default isolation level. It is a good practice to reset the isolation level
to the default (CS) toward the end of the script. See Listing 8.4 for an example.

// With connection being made and connection resource

// is in $conn_resource

(1) $currentiso = 'SET CURRENT ISOLATION LEVEL TO RR';

(2) $sql = 'SELECT c_id FROM customer';

(3) $stmt = db2_exec($conn_resource, $currentiso);

(4) $stmt = db2_exec($conn_resource, $sql);

// Execute other SQL statements

 $currentiso = 'SET CURRENT ISOLATION LEVEL TO CS';

 $stmt = db2_exec($conn_resource, $currentiso);

Listing 8.4 – Set isolation level in CURRENT ISOLATION special register

In the above listing:

(1) currentiso is assigned the current isolation level to RR.

(2) sql is assigned the SQL query to be executed.

(3) stmt is assigned the return values from the db2_exec() method. The
connection resource variable, and the isolation level need to be passed while
executing the command.

(4) stmt is assigned the return values from the db2_exec() method. The
connection resource variable and the query to be executed need to be passed
while executing the command.

8.3.2.3.4 Preparing and executing SQL statements

294 Getting started with DB2 application development

The concept of preparing and executing SQL statments in one or two different steps have
been discussed in Chapter 1. In PHP with the ibm_db2 extension, this is done as follows:

Prepare and execute together

Doing a prepare and execute in one step involves only one function, but it does not give
you optimized performance if the same query is executed more than once. Passing the
SQL statement along with the connection resource to the function db2_exec will prepare
and then execute the statement in one step. The one step process can be used with
different cursor types:

 To execute and prepare with default cursors :

$sql = 'SELECT c_id FROM customer';

$stmt = db2_exec($conn_resource, $sql);

 To execute and prepare with a different type of cursor parameter, you can use an
optional parameter for changing the default forward-only cursor to the scrollable
cursor. You need to pass DB2_SCROLLABLE as an associative array as the third
parameter as shown below:

$stmt = db2_exec($conn_resource, $sql, array('cursor' =>
DB2_SCROLLABLE));

Prepare and then execute

This is the best way to execute SQL statements in terms of security and performance. The
steps involved in the procedure are:

1. Preparing the SQL statement

You can prepare an SQL statement with or without parameter markers by using
the db2_prepare function. You can also specify which type of cursor to use while
fetching the rows. For example, this SQL statement uses parameter markers:

SELECT c_name FROM CUSTOMERS WHERE c_id = ? and c_phone = ?

The values for the parameter markers ("?") can be supplied to the database engine
to retrieve the results using the db2_prepare function.

2. Bind the parameters

Use the db2_bind_param function to bind a PHP variable into the prepared
SQL statement dynamically. It is more powerful than binding an array of variables
in the db2_execute statement, because we can specify the parameter type, data
type, precision, and scale of the variable that we bind with the prepared SQL
statement. The parameter DB2_PARAM_IN is used for all statements, except when
inserting large objects and using the CALL statement. Once the parameter is

Chapter 8 - Application development with PHP 295

bound, it is assigned to memory, and the prepared statement is now populated
with those values, which were not given during the db2_prepare. You can
assign the value of the parameter in PHP after the binding also. Listing 8.6 shows
an example of preparing, binding with two parameter markers (one of which is an
integer, and the other is a character), and executing a statement.

<?php

 $database = 'sample';

 $user = '';

 $password = '';

 $conn = db2_connect($database, $user, $password);

 if ($conn) {

$statement = 'SELECT c_id, c_name, c_email FROM db2inst1.customer

 WHERE c_id > ? OR c_name NOT LIKE ?';

// prepare the SQL statement

 $stmt = db2_prepare($conn, $statement);

$id = 100;

(1) db2_bind_param($stmt, 1, "id", DB2_PARAM_IN);

 db2_bind_param($stmt, 2, "name", DB2_PARAM_IN, DB2_CHAR);

 $name = 'MyName';

 $result = db2_execute($stmt);

(2) while ($object = db2_fetch_object($stmt)) {

// Iterate through results

 echo 'ID: ' . $object->C_ID;

 echo 'Name: ' . $object->C_NAME;

 echo 'Email: ' . $object->C_EMAIL;

 }

 if (!$result) {

(3) db2_rollback($conn);

 echo 'Execution failed. ';

 echo 'SQLSTATE value: ' . db2_stmt_error();

 echo 'with Message: ' . db2_stmt_errormsg();

 }

 db2_free_stmt($stmt);

 db2_close($conn);

 } else {

 echo 'Connection to database failed.';

 echo 'SQLSTATE value: ' . db2_conn_error();

 echo 'with Message: ' . db2_conn_errormsg();

 }

?>

Listing 8.6 – Preparing, binding, and executing SQL statements

In the above listing:

296 Getting started with DB2 application development

1. The db2_bind_param binds a PHP variable to an SQL statement parameter

2. The db2_fetch_object returns an object with properties representing columns in
the fetched row so we have a variable object to hold it.

3. The db2_rollback() rolls back an in-progress transaction on the specified
connection resource and begins a new transaction. PHP applications normally
default to AUTOCOMMIT mode, so db2_rollback() normally has no effect unless
AUTOCOMMIT has been turned off for the connection resource.

Note:

If the specified connection resource is a persistent connection, all transactions in progress
for all applications using that persistent connection will be rolled back. For this reason,
persistent connections are not recommended for use in applications that require
transactions.

In addition, note the following before you bind the variables:

 The PHP variable name needs to enclosed in double quotes (") and without the
dollar sign ($) “variable”.

 Check for the position variable of the bound parameters. The indexing should start
at 1.

 For variables other than INTEGER and VARCHAR, we recommend you use the data
type specified: DB2_BINARY, DB2_CHAR, DB2_DOUBLE, or DB2_LONG.

Another example using the DECIMAL data type, requires you to use the parameter
DB2_LONG in db2_bind_param. In the statement below, amount is a DECIMAL type
variable.

// Here we bind a decimal (10,2) type variable amount

db2_bind_param($stmt, 1, "amount", DB2_PARAM_IN,DB2_LONG);

3. Executing the query

Once you prepare the query, bind the parameter in db2_bind_param. The statement
resource is obtained after the query is prepared and binding is passed as the input to
db2_execute, which executes the statement. You can find a sample program for this
method in Listing 8.6.

Alternatively, pass the parameter as an array directly to db2_execute. In this case, the
array variable also needs to be provided as the second parameter in addition to the ones
from db2_bind_param.

Once the query is executed, you can use the statement resource to get the result set using
one of the following functions:

Chapter 8 - Application development with PHP 297

1. db2_fetch_array

2. db2_fetch_assoc

3. db2_fetch_both

4. db2_fetch_object

5. db2_fetch_row

Some of these functions are discussed in more detail in the next section.

8.3.2.4 Processing the results

When an SQL statement returns a result set, there are different ways to retrieve the rows.
You can fetch the result set row by row into a data structure or use scrollable cursors to
scroll through the result set and then fetch the required rows.

8.3.2.4.1 Using db2_fetch_array

This function is used to fetch the rows of the result set data into an array indexed by the
column number. It takes the statement resource as input and returns false when there are
zero rows returned. Listing 8.7 provides an example.

while ($row = db2_fetch_array($stmt)) {

printf("%d %s %s", $row[0], $row[1], $row[2]);

}

Listing 8.7 – Using db2_fetch_array function

8.3.2.4.2 Using db2_fetch_assoc

This function is used to fetch the result set data into an array indexed by the column name.
It returns a false if there are zero rows returned. Listing 8.8 provides an example.

$sql = 'SELECT * FROM customer WHERE c_id >= ?';

$stmt = db2_prepare($conn_resource, $sql);

if (!$stmt) {

 echo 'The prepare failed. ';

 echo 'SQLSTATE value: ' . db2_stmt_error();

 echo 'with Message: ' . db2_stmt_errormsg();

 } else {

 db2_bind_param($stmt, 1, "c_id", DB2_PARAM_IN);

 $c_id = 100;

 $result = db2_execute($stmt);

 if (!$result) {

 echo 'The execute failed. ';

 echo 'SQLSTATE value: ' . db2_stmt_error();

 echo 'with Message: ' . db2_stmt_errormsg();

 }

298 Getting started with DB2 application development

 }

 while ($row = db2_fetch_assoc($stmt)) {

 printf("%d %s %s ", $row['C_ID'], $row['C_NAME'], $row['C_EMAIL']);

 }

Listing 8.8 – Using db2_fetch_assoc function

Since the columns are indexed by the column names, the case of the column names does
matter. The default case of the column can be overridden using the DB2_ATTR_CASE
statement option which can have one of these values:

 DB2_CASE_NATURAL: Column names as returned by DB2.

 DB2_CASE_LOWER: Column names are forced to lower case.

 DB2_CASE_UPPER: Column names are forced to uppercase.

For example, if you would like to force column names to lower case, use:

$stmt = db2_prepare($conn_resource, $sql, array('DB2_ATTR_CASE' =>

DB2_CASE_LOWER));

8.3.2.4.3 Using db2_fetch_both

This function returns an array which is indexed by both the column number and the column
name. Listing 8.9 provides an example.

while ($row = db2_fetch_both($stmt)) {

printf("%d %s %s", $row[0], $row['C_NAME'], $row['C_EMAIL']);

}

Listing 8.9 – Using db2_fetch_both function

8.3.2.4.4 Using db2_fetch_object

This function can be used to return an object for each row fetched. Each property of the
object will be the column returned. Listing 8.10 provides an example.

while ($row = db2_fetch_object($stmt)) {

printf("%d %s %s", $row->C_ID, $row->C_NAME, $row->C_EMAIL);

}

Listing 8.10 – Using db2_fetch_object function

8.3.2.4.5 Using db2_fetch_row

This function can be used to iterate through the result set or go to the specified row number
when using scrollable cursor. Listing 8.11 shows how to fetch all the rows in the result set
using db2_fetch_row function.

Chapter 8 - Application development with PHP 299

while ($row = db2_fetch_row($stmt)) {

 printf("%d %d %s",

 db2_result($stmt, 0),

 db2_result($stmt, 1),

 db2_result($stmt, 2)

);

}

Listing 8.11 – Using db2_fetch_row function

8.3.2.4.6 Retrieving metadata

There are functions which can be used to retrieve the metadata about the columns, which
are returned by the result set. Some useful ones are:

 db2_num_rows returns the number of rows that were deleted, inserted, or
updated by the SQL statement or the number of rows returned by the SQL
statement. However, if you are using scrollable cursors to perform the SQL
operation, the use of db2_num_rows should be avoided, and you should try to use
the ‘SELECT COUNT(*) FROM table WHERE condition‘.

 db2_fetch_ function returns boolean values which can be used to test the end of
a result set.

 Metadata functions with prefix db2_field_ can be used to derive all types of
information about the fields returned by an SQL statement. The information can be
about column name, data type, precision, and scale for decimal type and width.
These functions, if run successfully, return a string containing the information. The
parameters needed for the functions are statement resource and the column
number starting from 0 or the column name.

 db2_num_fields helps to get the number of columns returned by the SELECT
statement. It is used to find out the number of columns returned by the dynamically
generated queries and stored procedures. Listing 8.12 provides an example.

$sql = 'SELECT * FROM customer WHERE c_id > ?';

$stmt = db2_prepare($conn_resource, $sql);

// The number of columns in the statement

echo 'Num fields: ' . db2_num_fields($stmt) . ' in the statement';

if (!$stmt) {

 echo 'The prepare failed. ';

 echo 'SQLSTATE value: ' . db2_stmt_error();

 echo 'with Message: ' . db2_stmt_errormsg();

 } else {

 db2_bind_param($stmt, 1, "c_id", DB2_PARAM_IN);

 $c_id = 100;

300 Getting started with DB2 application development

 $result = db2_execute($stmt);

 if (!$result) {

 echo 'The execute failed. ';

 echo 'SQLSTATE value: ' . db2_stmt_error();

 echo 'with Message: ' . db2_stmt_errormsg();

 }

}

Listing 8.12 – Using metadata functions

8.3.2.5 Freeing the resources

You can free statement resources using db2_free_stmt and result set resources using
db2_free_result. If you do not use these functions to free the resources, both
resources are automatically freed after the script finishes.

The DB2 function db2_close can be used to free the connection resources allocated by
db2_connect. If db2_pconnect is used to establish persistent connections, the
db2_close request is ignored and the connection resource is used by the next similar
connection. Listing 8.13 provides an example of using db2_close.

$result = db2_close($conn_resource);

if ($result) {

echo 'Connection was successfully closed.';

}

Listing 8.13 – Using the db2_close() method

8.3.3 PHP development with PDO_IBM/PDO_ODBC

This section describes PHP development using the pdo_ibm driver. Other than a few
differences in configuration parameter names, PHP development with pdo_ibm and
pdo_odbc is exactly the same. After the installation and configuration of DB2 and these
drivers along with PHP and Apache, there are some variables that may need to be edited
in the php.ini file to make PDO work with DB2. Some of these variables were discussed
earlier, but more explanation is provided below:

 pdo_odbc.db2_instance_name

This entry has to be included in Linux and UNIX installations in order to guide PHP
to the instance where the DB2 libraries are located. Below are some examples
assuming your instance name is db2inst1.

For pdo_ibm use:
[PDO_IBM instance name]

 pdo_ibm.db2_instance_name= db2inst1

Chapter 8 - Application development with PHP 301

For PDO_ODBC use:
[PDO_ODBC instance name]

pdo_odbc.db2_instance_name= db2inst1

 pdo_odbc.connection_pooling

Connection pooling helps database application performance by reusing old
connections established before. It is especially beneficial when the connections
made have a short duration. The value of pdo_odbc.connection_pooling can
be configured so as to decide the level of the connection pooling. The different
levels are listed in Table 8.1.

Connection pooling level Description

Strict A connection is reused when the connection
credentials exactly match the connection options
of an existing closed connection. We recommend
to use this option when connection pooling is
enabled.

Relaxed Connections with a matching connection string
are reused and not all connection attributes are
checked.

Off Connection pooling is not used

The following example shows an entry in php.ini when the connection pooling is
set to relaxed:

[PDO connection pooling]

pdo_ibm.connection_pooling = relaxed

or

[PDO connection pooling]

pdo_odbc.connection_pooling = relaxed

 pdo.dsn.*

Data Source Name (DSN) contains the information related to the connectivity to a
database through an ODBC or CLI driver. It contains the database name, database
driver, user name, password, and other information. You can make an alias for the
DSN string in the php.ini. To create an alias, make an entry for each alias
starting with pdo.dsn followed by the name of the alias that is equated to the DSN.
The DSN in this scenario can be for both, cataloged and non-cataloged DB2
databases. The following example shows the entry for the DSN alias assuming you
want to connect to the SAMPLE database:

302 Getting started with DB2 application development

For pdo_ibm:

[DSN alias for pdo_db2]

pdo.dsn.dealerbase="ibm:sample"

For pdo_odbc:

[DSN alias for pdo_db2]

pdo.dsn.dealerbase=”odbc:sample”

Once the entry has been made in the php.ini file, we can connect to the
databases referring to the alias name as shown below:
$dbh = new PDO("dealerbase");

8.3.3.1 Program flow

PDO programming uses object-oriented concepts. When a connection is made to a DB2
database, an instance of the PDO base class is created. This instance acts as a database
handle, which is later used when further activities are carried on against the database.
Different objects are created when operating with a database, and can be classified as:

 Connection object (instance of PDO)

 Statement object (instance of PDOStatement)

 Exception (instance of PDOException)

The typical program flow of a PDO program during transaction processing is:

1. Connect to the database.

2. Prepare and execute the statement.

3. Process the results.

4. Free the resources.

8.3.3.2 Connecting to a database

A connection to a database is obtained when the constructor of the PDO class is invoked
using new PDO(). There are four sets of parameters for the constructor:

 Data Source Name (DSN)

 User name

 Password

 Driver options

DSN contains the information required to connect to a database, which includes the type of
driver used (CLI/ODBC in the case of DB2), the name of the data source, and the
connection credentials (the user name and password). The DSN parameters required
depend on whether you are connecting to a cataloged database, or a non-cataloged one. If

Chapter 8 - Application development with PHP 303

you are connecting to a DB2 database, it is better to use cataloged connections. Below
are examples of how to specify the DSN assuming the database name is SAMPLE, the
user ID is db2inst1, and the password is 123:

 DSN for cataloged connection

For pdo_ibm:
ibm:DSN=sample;UID=db2inst1;PWD=123

For pdo_odbc:
odbc:DSN=sample;UID=db2inst1;PWD=123

 DSN for non-cataloged connection

For pdo_ibm:
ibm:DSN={IBM DB2 ODBC
DRIVER};HOSTNAME=localhost;PORT=50000;DATABASE=sample;PROTOCOL=TCPIP
;UID=db2inst1;PWD=123;

For pdo_odbc:
odbc:DSN={IBM DB2 ODBC
DRIVER};HOSTNAME=localhost;PORT=50000;DATABASE=sample;PROTOCOL=TCPIP
;UID=db2inst1;PWD=123;

An example of a connection using the cataloged method is provided in Listing 8.14 below.

<?php

try {

/* Use one of the following connection string */

/* For PDO_IBM */

 $constrng = 'ibm:DSN=sample;UID=db2inst1;PWD=123';

/* for PDO_ODBC */

 $constrng = 'odbc:DSN=sample;UID=db2inst1;PWD=123';

 $dbh = new PDO($constrng);

 echo 'Connected';

 } catch (PDOexception $exp) {

 echo 'Exception: ' . $exp->getMessage();

}

?>

Listing 8.14 – Cataloged connection to a database

In Listing 8.14, the new PDO() method establishes a new connection.

T o write a program to connect to the databas e, us ing non-cataloged connection, follow the
s ame technique as discus sed in s ection 8.3.2.2.2 earlier.

The DSN name can be provided to a PDO program in three ways:

 As a parameter to the constructor.

304 Getting started with DB2 application development

Using this method, the DSN is provided as a string in the program. However, this
makes the program dependent on the database. Every time the database location
or password is changed, the corresponding entry has to be changed in all programs
referring to this database. Listing 8.15 provides an example using this method.

<?php

/* Use one of the following connection string */

/* The connection below is for pdo_ibm */

$constring = 'ibm:sample';

/* The connection below is for pdo_odbc */

$constring = 'odbc:sample';

try {

$dbh = new PDO($constrng, '', '');

echo 'Connected';

} catch (PDOexception $exp) {

echo 'Exception: ' . $exp->getMessage();

}

?>

Listing 8.15 – DSN as a parameter to the constructor

 In a file

Using this method, the DSN is provided in a file and the file is referenced inside the
program. If the DSN parameter value changes, only the file has to be changed. You
do not need to change the program every time the DSN is changed. For example,
in Listing 8.16 below, assume you have created a file named dsnfile and stored it
in /usr/local directory.

<?php

$constrng = 'uri:file:///usr/local/dsnfile';

try {

$dbh = new PDO($constrng, '', '');

echo 'Connected';

} catch (PDOexception $exp) {

echo 'Exception: ' . $exp->getMessage();

}?>

Listing 8.16 – Creating and storing a file

 Using aliasing in php.ini

Similar to the ibm_db2 extension, you can use both persistent and non-persistent
connections in PDO_IBM/PDO_ODBC. If connection pooling is enabled by setting
the pdo_odbc.connection_pooling to either strict or relaxed, we should not be
making persistent connections, since PDO will not free the connection to the ODBC
layer for the connection pooling to happen. It will be better to use connection
pooling over persistent connections. To make a non-persistent connection, we

Chapter 8 - Application development with PHP 305

create an instance of PDO using the DSN, user name, and password as shown in
Listing 8.17 below.

<?php

/* Use one of the following connection strings */

/* The connection below is for pdo_ibm */

$constring = 'ibm:sample';

/* The connection below is for pdo_odbc */

$constring = 'odbc:sample';

try {

$dbh = new PDO($constrng, 'db2inst1', '123');

echo 'Connected';

} catch (PDOexception $exp) {

echo 'Exception: ' . $exp->getMessage();

}

?>

Listing 8.17 – Making a Non-persistent connection

To make a persistent connection use the following new PDO format:
$dbh = new PDO($constrng, 'db2inst1', '123',
array(PDO::ATTR_PERSISTENT=> true));

8.3.3.3 Preparing and executing the statement

Before you prepare and execute SQL statements, you need to decide the following
characteristics about the transaction:

 Type of cursor used

 How to catch the error

 Isolation level to use

8.3.3.3.1 Type of cursor to be used

Like the ibm_db2 extension, PDO also supports two kinds of cursors:

Forward-only cursor
This cursor is the default cursor in the PDO driver. It is the fastest cursor available. Make
sure that the cursor is closed using the method PDOStatement::closeCursor after
fetching all the rows and before launching another query. The Forward-only cursor can be
set using PDO::ATTR_CURSOR with the value of PDO::CURSOR_FWDONLY in the
PDOStatement::prepare. Listing 8.20 provides an example.

$sql = "SELECT c_id, c_name, c_email FROM customer WHERE c_name =

306 Getting started with DB2 application development

:name";

try {

$sth = $dbh->prepare($sql, array(PDO::ATTR_CURSOR,

PDO::CURSOR_FWDONLY));

$sth->execute(array(':name' => 'Myname'));

print_r($sth->fetchAll());

} catch (PDOexception $exp) {

echo 'Exception: ' . $exp->getMessage();

}

Listing 8.20 – Using Forward only cursor

Scrollable cursor

We can specify the scrollable cursor by setting the PDO::ATTR_CURSOR to
PDO::CURSOR_SCROLL. Listing 8.21 provides an example.

$sql = "SELECT c_id, c_email FROM customer WHERE c_name = :name";

try {

$sth = $dbh->prepare($sql, array(PDO::ATTR_CURSOR,

PDO::CURSOR_SCROLL));

$sth->execute(array(':name' => 'Daniel'));

while ($row = $sth->fetch(PDO::FETCH_NUM, PDO::FETCH_ORI_NEXT)) {

$data = $row[0] . "\t" . $row[1] . "\t" . $row[2] . "\n";

echo $data;

}

$sth->closeCursor();

} catch (PDOexception $exp) {

echo 'Exception: ' . $exp->getMessage();

}

Listing 8.21 – Using a scrollable cursor

8.3.3.3.2 Catching errors in PDO

PDO has exception handlers to catch an exception and display its details. This handlers
have a “try and catch” construct similar to other programming languages.

When an exception is raised by a PDO program, an instance of PDOException is created.
The PDOException class is an extension of the Exception class and has three modes of
operation. The error handling modes are forced by setting the PDO attribute
PDO::ATTR_ERRMODE. Table 8.2 describes the values it can take.

Value Description

PDO::ERRMODE_SILENT This is the default mode of error handling in
PDO. The respective error code and

Chapter 8 - Application development with PHP 307

messages are set in both the statement
object (PDOStatement) and the database
object (PDO) when an error happens. For
statements using this mode, the error is not
caught and the next statement is executed
after the function fails.

PDO::ERRMODE_WARNING This mode is useful when you are
developing or testing your PDO application.
Along with the setting of the error code and
message, it raises an E_WARNING.

You can suppress this by using a “@” in
front of the function name.

PDO::ERRMODE_EXCEPTION This is the best way to handle errors in a
PDO program. Once the error happens, an
exception is thrown which prevents the
execution of later functions in the try block.
The control goes to the catch block where
the exception is handled. Error information
and a stack trace are provided.

Table 8.2 - Error handling modes set in parameter PDO::ATTR_ERRMODE

Listing 8.18 below provides an example of setting the error handling mode to
PDO::ERRMODE_EXCEPTION and how an exception is handled using a try and catch
block. The program purposedly issues an incorrect SQL statement that uses a column that
does not exist in the table. When the error happens, the PDOexception is thrown and the
details of the exception object is printed using the getMessage() method.

<?php

/* Use one of the following connection string */

/* The connection below is for pdo_ibm */

$constring = 'ibm:sample';

/* The connection below is for pdo_odbc */

$constring = 'odbc:sample';

$dbh = new PDO($constrng, 'db2inst1', '123');

$dbh->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

$sql = "SELECT c_id FROM customer WHERE notexistingcol = :name ";

$sth = $dbh->prepare($sql);

try {

$sth->execute(array(':name' => 'ABC));

$row = $sth->fetchAll();

print_r($row);

308 Getting started with DB2 application development

$sth->closeCursor();

} catch (PDOexception $exp) {

echo 'Exception: ' . $exp->getMessage();

}

?>

Listing 8.18 – Exception handling using PDO::ERRMODE_EXCEPTION

When the exception is generated, the getMessage() method produces an output that
looks like this:

Exception : SQLSTATE[42S22]: Column not found: -206 [IBM][CLI
Driver][DB2/LINUX] SQL0206N "NOTEXISTINGCOL" is not valid in the context
where it is used. SQLSTATE=42703 (SQLExecute[-206] at /root/Desktop/php-
5.1.2/ext/pdo_odbc/odbc_stmt.c:133)

The methods called errorCode() and errorInfo() could be used to get more
information about the error:

PDO::errorCode()gives the information about the SQLSTATE of the error.
PDO::errorInfo() gives all the information about the error, such as SQLSTATE,
SQLCODE, and error message from the database server.

8.3.3.3.3 Isolation level to use

Considerations of which isolation level to use in PHP with PDO_IBM/PDO_ODBC are the
same as the ones described for the ibm_db2 extension earlier.

8.3.3.3.4 Preparing and executing SQL statements

PDO provides mechanisms by which you can prepare and execute SQL statements in a
single step, and also in separate steps.

Preparing and executing SQL statements in a single step

Normally, we use this method for execution of SQL statements which are not executed
repeatedly in the same program. We have two kinds of SQL statements:

 SQL statements returning result sets

The function PDO::query is used for preparing and executing the SQL statement
which returns a result set indexed by both column position and column name.
Listing 8.19 is an example for the query function. You see that each row in the
result set returned by the query is fetched into an array named $row and the value
is printed.

<?php

/* Use one of the following connection string */

/* The connection below is for pdo_ibm */

Chapter 8 - Application development with PHP 309

$constring = 'ibm:sample';

/* The connection below is for pdo_odbc */

$constring = 'odbc:sample';

$dbh = new PDO($constrng, 'db2inst1', '123');

$sql = 'SELECT c_id, c_name FROM customer';

try {

foreach ($dbh->query($sql) as $row) {

echo $row[0] . ' ' . $row['C_NAME'];

}

} catch (PDOexception $exp) {

print_r($sth->errorInfo());

echo 'Exception: ' . $exp->getMessage();

}

?>

Listing 8.19 – Prepare and execute SQL returning result set

 SQL statements not returning result sets

PDO has a different way of preparing and executing SQL queries which do not
return a result set. PDO::exec is used for this type of SQL statement. PDO::exec
returns the number of rows affected by the function. The SQL statements, such as
DELETE, INSERT, and UPDATE are executed using PDO::exec, and it returns the
number of rows affected by this function.

<?php

/* Use one of the following connection string */

/* The connection below is for pdo_ibm */

$constring = 'ibm:sample';

/* The connection below is for pdo_odbc */

$constring = 'odbc:sample';

$dbh = new PDO($constrng, 'db2inst1', '123');

$num = $dbh->exec("INSERT INTO customer (c_name, c_email) VALUES
('Piotr',

'aa123@123.com')");

echo 'Number of rows affected is: ' . $num;

?>

Listing 8.20 – Preparing and executing SQL that does not return a result set

Preparing and executing SQL statements in separate steps

If you plan to execute the same SQL multiple times with different parameters, it is better to
prepare once, and execute many times. It is better for performance, and is more secure
when compared to the combined preparation and execution method, since it checks for the
data type every time a new parameter is bound against the database, therefore, avoiding
situations such as SQL injection.

310 Getting started with DB2 application development

Parameter markers are of two types in PDO:

 Named parameter markers

You can give a name to the parameter marker with ":" prefixed to the name of the
parameter. This parameter marker value is bound to the SQL to complete and then
execute it.

 Nameless parameter markers

The ? symbol is used in the SQL so that DB2 understands that the values for this
parameter marker will be bound later.

You cannot use both named and nameless parameter markers in the same statement.

There are three steps involved in preparing and executing an SQL statement:

1. Preparing the SQL statement

The PDO function PDO::prepare is used to prepare an SQL statement with or without
parameter markers. In this function, the option of selecting which cursor to use is done
using the driver option. You can also set this option later using the setAttribute
method. For example, to set the cursor to scrollable while preparing the statement, you
can use:

$sth = $dbh->prepare($sql, array(PDO::ATTR_CURSOR,
PDO::CURSOR_SCROLL));

The default cursor in PDO_IBM/PDO_ODBC is forward only. If you have set the cursor to
scrollable, you change the cursor back to forward only by setting the attribute
PDO::ATTR_CURSOR to PDO::CURSOR_FWDONLY.

2. Binding the parameters

There are two ways to bind parameters of an SQL statement:

Using the bind function

You can use either PDOStatement::bindParam or PDOStatement::bindValue for
this task. These two methods can be called for the instance of PDOstatement, which we
get after preparing the SQL statement using PDO::prepare. We need to specify the type
of data which is bound using the function. The types are:

 PDO::PARAM_INT for integer data type

 PDO::PARAM_STR for string data type

 PDO::PARAM_LOB for large objects

 PDO::PARAM_NULL for binding a null value

Chapter 8 - Application development with PHP 311

Listing 8.21 shows how to use bindParam and bindValues along with named parameter
markers.

<?php

/* Use one of the following connection string */

/* The connection below is for pdo_ibm */

$constring = 'ibm:sample';

/* The connection below is for pdo_odbc */

$constring = 'odbc:sample';

$dbh = new PDO($constrng, '', '');

$cid = 100;

$name = 'ABC';

$sql = "SELECT c_id, c_name FROM customer WHERE c_id > :id AND c_name NOT
LIKE :name";

$dbh->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

try {

$sth = $dbh->prepare($sql);

$sth->bindValue(':id', $cid, PDO::PARAM_INT);

$sth->bindParam(':name', $name, PDO::PARAM_STR, 10);

$sth->execute();

$result = $sth->fetchAll();

print_r ($result);

} catch (PDOexception $exp) {

print_r($sth->errorInfo());

echo 'Exception: ' . $exp->getMessage();

}

?>

Listing 8.21 – Using the bind function

We can have an additional length parameter which can force the length of the parameter
which is bound using the PDOStatement::bindParam.

Binding by passing parameter values in an array

Listing 8.22 is an example for using the nameless parameter marker in a PDO program.

<?php

/* Use one of the following connection string */

/* The connection below is for pdo_ibm */

$constring = 'ibm:sample';

/* The connection below is for pdo_odbc */

$constring = 'odbc:sample';

$dbh = new PDO($constrng, '', '');

$cid = 100;

$name = 'ABC';

312 Getting started with DB2 application development

$sql = "SELECT c_id, c_name FROM customer WHERE c_id > ? AND c_name NOT

LIKE ?";

$dbh->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

try {

$sth = $dbh->prepare($sql);

$rc = $sth->bindValue(1, $cid, PDO::PARAM_INT);

$rc = $sth->bindParam(2, $name, PDO::PARAM_STR, 10);

$rc = $sth->execute();

$result = $sth->fetchAll();

print_r($result);

} catch (PDOexception $exp) {

print_r($sth->errorInfo());

echo 'Exception: ' . $exp->getMessage();

}

?>

Listing 8.22 – Binding by passing parameter values in an array

3. Executing the statement

The PDOStatement::execute is used to execute a prepared statement. The variables can
be bound using a binding function, or the statement could be bound along with execution
by passing a parameter as an array to this function. Listing 8.23 shows how to use a
named parameter marker in the execute function.

<?php

/* Use one of the following connection string */

/* The connection below is for pdo_ibm */

$constring = 'ibm:sample';

/* The connection below is for pdo_odbc */

$constring = 'odbc:sample';

$dbh = new PDO($constrng, '', '');

$id = 10;

$sql = "select c_name from customer where c_id > :id";

$dbh->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

try {

$sth = $dbh->prepare($sql);

$rc = $sth->execute(array(':id' => $id));

$result = $sth->fetchAll();

print_r($result);

} catch (PDOexception $exp) {

print_r($sth->errorInfo());

echo 'Exception: ' . $exp->getMessage();

}

Chapter 8 - Application development with PHP 313

?>

Listing 8.23 – Using PDOStatement::execute with a named parameter marker

8.3.3.3.5 Creating and calling stored procedures

You can create SQL stored procedures using PHP with PDO just like you execute any
other SQL. But if you need to call the stored procedure from the client, you need to take
care of binding the parameters depending on their type. There are three types of
parameters in a stored procedure and they are IN, OUT, and INOUT. In the bind parameter,
the data type constant and the parameter are associated with bitwise OR operator (|). The
parameter type PDO::PARAM_INPUT_OUTPUT is used for the OUT and INOUT parameters.
No parameter type is needed for the IN parameter. Listing 8.24 shows a stored procedure
with all three types of parameters and returning result sets. Once the stored procedure is
executed, the variables which are bound with the stored procedure parameter markers will
be populated with the values from the stored procedure execution.

<?php

/* Use one of the following connection string */

/* The connection below is for pdo_ibm */

$constring = 'ibm:sample';

/* The connection below is for pdo_odbc */

$constring = 'odbc:sample';

$dbh = new PDO($constrng, 'db2inst1', '123');

$id = 10;

$sql = 'CALL getdetails(?, ?, ?)';

$dbh->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

$amount = 0;

$c_id = 140;

$quantity = 100;

try {

$sth = $dbh->prepare($sql);

// Input parameter

$sth->bindParam(1, $c_id, PDO::PARAM_INT);

// Output parameter

$sth->bindParam(2, $amount, PDO::PARAM_INT|PDO::PARAM_INPUT_OUTPUT);

// Input output parameter

$sth->bindParam(3, $quant, PDO::PARAM_INT|PDO::PARAM_INPUT_OUTPUT);

$sth->execute();

echo 'The INOUT parameter is: ' . $quant . ' and the OUT parameter is: ' .

$amount;

$rowset = $sth->fetchAll(PDO::FETCH_NUM);

print_r($rowset);

} catch (PDOexception $exp) {

314 Getting started with DB2 application development

print_r($sth->errorInfo());

echo 'Exception: ' . $exp->getMessage();

}

?>

Listing 8.24 – Calling stored procedure in PHP with PDO_IBM/PDO_ODBC

8.3.3.3.6 Handling transactions

PDO, by default, runs in autocommit mode. That is, all queries are either committed (if
successful) or rolled back (if unsuccessful). You can use methods like
PDO::beginTransaction to make multiple SQL queries be a part of a single
transaction. This function turns off the autocommit mode of the PDO application. Once the
transaction completes, it can be committed using the PDO::commit function or rolled back
using PDO::rollback.

Listing 8.25 shows PHP handling a transaction with DB2 PDO_IBM or PDO_ODBC. You
can see that when an error happens, the exception is thrown as the error handling mode is
set to PDO::ERRMODE_EXCEPTION. In the catch block, the transaction is rolled back and
the error is printed. If no error occurs, the transaction is committed and completed.

<?php

/* Use one of the following connection string */

/* The connection below is for pdo_ibm */

$constring = 'ibm:sample';

/* The connection below is for pdo_odbc */

$constring = 'odbc:sample';

$dbh = new PDO($constrng, 'db2inst1', '123');

$dbh->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

try {

$dbh->beginTransaction();

$dbh->exec("

INSERT INTO customer (c_name, c_email) VALUES ('ABC', 'a123@123.com')

");

$dbh->exec("

INSERT INTO customer (c_name, c_email) VALUES ('DEF', '1a23@123.com')

");

$dbh->exec("

INSERT INTO customer (c_name, c_email) VALUES ('GHI', '1n23@123.com')

");

$dbh->commit();

} catch (PDOexception $exp) {

print 'Rolling back transaction';

$dbh->rollback();

print_r($dbh->errorInfo());

Chapter 8 - Application development with PHP 315

echo 'Exception: ' . $exp->getMessage();

}

?>

Listing 8.25 – PHP with IBM_PDO/PDO_ODBC

8.3.3.4 Processing the results

PDO offers two ways to fetch data:

1. Buffered fetch

Buffered fetch allows you to fetch all the rows in the result set returned by an SQL query
into an array. If the query is to return a huge result set, we do not recommend to use this
method since it will consume a lot of system resources.

2. Non-buffered fetch

Using PDOstatement::fetch, you can fetch each row at a time and manipulate the
result set. The PDOStatement::fetch has different options to fetch the column for
different data. The following sections describe these options.

Using FETCH_BOUND and bindColumn

This method allows each column returned by the result set to be assigned to a variable.
After performing PDOStatement::fetch, each of the corresponding values of the
variable which was bound is updated to the value of the result set. The constant
PDO::FETCH_BOUND is a parameter for the fetch, so that the bound column variables are
populated by the fetch function. Listing 8.26 shows an example for the fetch of bound
columns.

<?php

/* Use one of the following connection string */

/* The connection below is for pdo_ibm */

$constring = 'ibm:sample';

/* The connection below is for pdo_odbc */

$constring = 'odbc:sample';

$dbh = new PDO($constrng, '', '');

$id = 10;

$sql = "select c_id, c_name from customer where c_id > :id";

$dbh->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

try {

$sth = $dbh->prepare($sql);

$sth->execute(array(':id' => $id));

$sth->bindColumn(1, $id);

$sth->bindColumn(2, $name);

316 Getting started with DB2 application development

while ($row = $sth->fetch(PDO::FETCH_BOUND)) {

echo 'id is: ' . $id . ' and name is: ' . $name;

}

} catch (PDOexception $exp) {

print_r($sth->errorInfo());

echo 'Exception: ' . $exp->getMessage();

}

?>

Listing 8.26 – Fetching data using FETCH_BOUND

Using the Fetch function with no parameters passed

This is the default option. The fetch function returns each row of the result set with the
columns indexed by its position. Listing 8.27 provides an example.

while ($row = $sth->fetch()) {

echo 'id is: ' . $row[0] . ' and name is: ' . $row[1];

}

Listing 8.27 – Example using the Fetch function

Using FETCH_ASSOC

We can fetch the rows of the result set into an array indexed by the column name of the
result set, which is returned by the query. Listing 8.28 provides an example.

while ($row = $sth->fetch(PDO::FETCH_ASSOC)) {

echo 'id is: ' . $row['C_ID'] . ' and name is: ' . $row['C_NAME'];

}

Listing 8.28 – Example using the Fetch_Assoc function

Using FETCH_BOTH

This fetch with parameter PDO::FETCH_BOTH passed a parameter to
PDOStatement::fetch and will return an array for each row indexed by both column
names and the position. Listing 8.29 provides an example.

while ($row = $sth->fetch(PDO::FETCH_BOTH)) {

echo 'id is: ' . $row[0] . ' and name is: ' . $row['C_NAME'];

}

Listing 8.29 – Example using Fetch_Both

Using scrollable cursors

Chapter 8 - Application development with PHP 317

We can scroll through the cursor if we are using scrollable cursor and passing the cursor
PDO::FETCH_ORI_NEXT constant to fetch the next row from the result set. Listing 8.30
provides an example.

$sql = "SELECT * FROM customer";

try {

$offset = 0;

$sth = $dbh->prepare($sql, array(PDO::ATTR_CURSOR, PDO::CURSOR_SCROLL));

$sth->execute();

while ($row = $sth->fetch(PDO::FETCH_NUM, PDO::FETCH_ORI_NEXT)) {

$data = $row[0] . "\t" . $row[1] . "\t" . $row[2] . "\n";

echo $data;

}

$sth->closeCursor();

} catch (PDOexception $exp) {

print_r($sth->errorInfo());

echo 'Exception: ' . $exp->getMessage();

}

Listing 8.30 – Using scrollable cursors

Using fetch into objects

You can fetch the data directly into objects by providing the constants PDO::FETCH_LAZY,
and PDO::FETCH_OBJ. In PDO::FETCH_LAZY, the object variable name that is used to
access the columns is made as they are accessed. We can refer to the columns both by
column names or the respective positions. Listing 8.31 provides an example.

while ($row = $sth->fetch(PDO::FETCH_LAZY)) {

print_r($row->C_NAME);

}

while ($row = $sth->fetch(PDO::FETCH_OBJ)) {

print_r($row->C_NAME);

}

Listing 8.31 – Using Fetch to refer columns

8.3.3.5 Freeing the resources

You need to close the cursor every time a fetch is done so that the statement resource can
be reused. The method used to close the cursor is PDOStatement::closeCursor. The
connection resource can be freed by assigning it to a null value. An example is provided in
Listing 8.32.

// Connect to the database, use one of the following

// for PDO_IBM

$dbh = new PDO('ibm:sample', '', '');

318 Getting started with DB2 application development

// for PDO_ODBC

$dbh = new PDO('odbc:sample', '', '');

// Perform database operations here

...

// Free the connection

$dbh = null;

Listing 8.32 – Freeing the connection resource

8.4 Optimizing DB2 usage with PHP
Once your PHP application is up and running, you can tune both your application and DB2
to get the best performance. DB2 has an effective cost-based optimizer to make sure that
each query you write gets executed in the best possible manner depending on your
environment.

8.4.1 Design considerations for increasing the PHP-DB2 performance

The following points need to be considered while designing and coding you application:

 Use the prepare and then execute method for executing SQL statements
which are repeatedly executed.

 Use connection pooling in PDO driver and persistent connection in the ibm_db2
driver or enable connection concentrator in DB2.

 Commit often as long as your logic allows you to. This releases locks allowing for
more concurrency.

 Push more logic to the database layer and use user defined functions, stored
procedures, and SQL/XML, to reduce network traffic and save computing
resources.

 Make optimal use of the storage space available; store large tables, in table spaces
spread over different disks, and store DB2 logs in different disks.

 Index your table columns effectively using the DB2 Design Advisor.

 Change your database and database manager configuration to optimize db2
for your environment using the Configuration Advisor wizard.

 RUNSTATS regularly on all tables along with system catalog tables.

 Make your buffer pool use 75% of available memory if possible.

 Use monitoring tools to monitor the DB2 activity.

 Use the least restrictive isolation level that maintains the data integrity
requirements of the application.

Chapter 8 - Application development with PHP 319

8.5 Exercises
In this exercise, we will practice writing a small PHP script to access data in the SAMPLE
database.

Before running the exercise, login onto the server as the instance owner (for example
db2inst1 on Linux or db2admin on Windows), and then:

1. Run the following command to create the SAMPLE database if you haven’t done so
before: db2sampl

2. Write a PHP script to insert and retrieve data from the table EMPLOYEE.

3. To Run the PHP script in the Apache web server, on Windows, copy the PHP file,
db2employee.php, to the C:/Program Files/Apache Group/Apache2/htdocs
directory.

4. The sample script for the exercise is provided in the script db2employee.php
accompanying the book. You can modify the user ID, password and host in the
script appropriately and test it by using the following URL to run this PHP script
with a Web browser: http://localhost/db2employee.php

8.6 Summary
In this chapter, we studied how to setup an environment for PHP applications to run on
DB2. You learned some basic concepts involving PHP and DB2 application development
which included the usage of the ibm_db2 extension and the pdo_ibm/pdo_odbc driver to
prepare and execute SQL on DB2 through PHP.

8.7 Review questions
1. What is the difference between freeing of resources using db2_connect and

db2_pconnect?

2. What is connection pooling? When is it beneficial?

3. How do you enable PHP support in Apache HTTP Server 2.x?

4. How do you determine the configuration file path for your PHP installation?

5. What steps need to be followed to port an application previously written for Unified
ODBC to ibm_db2?

6. Below are different FETCH methods used with the ibm_db2 extension EXCEPT:

A. db2_fetch_array

B. db2_fetch_assoc

C. db2_fetch_both

D. db2_fetch_column

320 Getting started with DB2 application development

E. None of the above

7. What is ibm_db2?

A. A driver

B. An extension

 C. An adapter

 D. A data object

 E. None of the above

8. SQL stored procedures using PDO use which of the following type of parameter?

A. INPUT

B. OUTPUT

C. EXECUTE

D. INOUT

E. None of the above.

9. Which of the following files hold the configuration details in PHP?

A. httpd.conf

B. php_conf

C. php.ini

D. httpd.ini

E. None of the above

10. Which is the best way to execute SQL statements in terms of security and
performance?

A. Prepare and then execute

B. Execute

C. Prepare

D. Prepare and execute together

E. None of the above

9
Chapter 9 – Application development with Perl
Perl (Practical Extraction and Reporting Language) is a platform independent,
interpreted scripting language free and available with many operating systems, such as
Windows, Linux, UNIX and Mac OS X. As an open source language, the Perl interpreter
can be freely downloaded in source code or binary form.

Because of its powerful text processing features, for example its strong support of regular
expressions, Perl has been widely used not only for report generating applications, but also
for standalone or Web-based database applications. You can easily generate dynamic
SQL queries, and fetch and process the returned data using Perl scripts.

In this chapter you will learn about:

 Setting up the Perl environment to work with DB2

 Connecting to a DB2 database from a Perl application

 Developing Perl applications to access DB2 data

Note:

If you are new to the Perl programming language, review the free ebook Getting Started
with Perl which is part of this book series.

9.1 Perl - DB2 applications: The big picture
A Perl application uses the Perl Database Interface (DBI) to access most of relational
databases, including DB2. The Perl DBI is an open standard application programming
interface (API) that enables a Perl application to access different databases using the
same syntax without knowing details of each specific database. These details are handled
by the underlying DataBase Drivers (DBD), which are provided by the database vendors
supporting the Perl DBI.

Figure 9.1 illustrates how a Perl script accesses different databases via the DBI module
and the DBD drivers.

http://www.ibm.com/db2/books�
http://www.ibm.com/db2/books�

322 Getting started with DB2 application development

Figure 9.1 - A Perl script uses DBI and DBD drivers to access databases

As shown in Figure 9.1, the DBI module provides a database independent interface
standing between a Perl application and one or more database driver modules. An
application only needs to know about the interface, while the underlying DBD drivers
provided by databases will do the actual work. For a Perl - DB2 application, the driver is the
DBD::DB2 driver, which provides the details for accessing a DB2 database.

Since the Perl DBI Module defines the standard database access interface, you can easily
port an application written in DBI for accessing one DBMS, such as Oracle, to accessing
another DBMS, such as IBM DB2. Moreover, the Perl DBI Module uses an interface that is
quite similar to the ODBC and JDBC interfaces, which makes it easy to port Perl
applications written in DBI to ODBC and JDBC interface, or vice versa.

Note:

For more information about Perl DBI, refer to http://dbi.perl.org/

For the latest DBD::DB2 driver and related information, visit
http://www.ibm.com/software/data/db2/perl/ and http://search.cpan.org/~ibmtordb2/

9.2 Setting up the environment
In order to access a DB2 database from a Perl application, you need to set up a Perl
environment to work with DB2. The following 3 steps are required:

1. Install the Perl language environment

http://dbi.perl.org/�
http://www.ibm.com/software/data/db2/perl/�
http://search.cpan.org/~ibmtordb2/�

Chapter 9 - Application development with Perl 323

You need to install Perl 5.8 or later.

On Linux/UNIX/Mac OS X, Perl is normally shipped as a standard component of the OS
installation.

On Windows, you can download the ActiveState’s free Perl binary distribution ActivePerl
from http://www.activestate.com/activeperl/. ActivePerl is also available for free on
Linux/UNIX. You can download the binaries from the website
http://www.activestate.com/activeperl/downloads/ and install Perl by running the
Windows Installer on Windows or install.sh on Linux/UNIX.

Alternatively, you can download the source code of Perl interpreter from
http://dev.perl.org/ and then use appropriate C compilers to generate the Perl binaries for
your platform. Refer to the above Web site for details about building and installing Perl
from source.

After installation, you can check the version of Perl by running perl -v. If the version
is lower than 5.8, you need to upgrade to 5.8 or later.

2. Install the Perl DBI module.

This is a prerequisite for any RDBMS including DB2 with its DBD::DB2 driver module.

If you are using ActivePerl distribution and have internet access, you can install a binary
version of the DBI module through ActivePerl’s Perl Package Manager by issuing the
following command:

ppm install DBI

The Perl Package Manager will download the DBI module and install it automatically.

Alternatively if you have internet access, you can run the following to build and install the
DBI module from the source:

perl -MCPAN -e "install DBI"

The above command will download the DBI source code, then build and install it
automatically through the CPAN module. Note that you need a C compiler for building
the source. For details about the CPAN module, refer to
http://www.perl.com/doc/manual/html/lib/CPAN.html.

If you don’t have internet access, you can download the latest release of Perl DBI
module source code from http://search.cpan.org/~timb/DBI at a later time, and then build
the source and install the DBI module following the instructions shown in Listing 9.1 for
Linux/UNIX and Listing 9.2 for Windows. You need a C compiler for building the source.

the source is DBI-<x.xxx>.tar.gz, where x.xxx means version.

zcat DBI-<x.xxx>.tar.gz|tar xvf –

cd DBI-<x.xxx>

perl Makefile.PL

make

http://www.activestate.com/activeperl/�
http://www.activestate.com/activeperl/downloads/�
http://dev.perl.org/�
http://www.perl.com/doc/manual/html/lib/CPAN.html�
http://search.cpan.org/~timb/DBI�

324 Getting started with DB2 application development

make test

make install

 Listing 9.1 – Install Perl DBI module from source on Linux/UNIX

#unpack/unzip the source file DBI-<x.xxx>.tar.gz using winzip

cd DBI-<x.xxx>

perl Makefile.PL

nmake

nmake test

nmake install

Listing 9.2 – Install Perl DBI module from source on Windows

Note:

For more information about the Perl DBI API, visit http://search.cpan.org/~timb/DBI/DBI.pm

3. Install an IBM DB2 data server client

After installing all the above software, you will be able to install the Perl DB2 driver
DBD::DB2. This is discussed in the next sections.

9.2.1 Perl adapters and drivers

At the time of writing, the latest release of the DBD::DB2 driver module is 1.78. For more
information about the DBD::DB2 driver, visit http://www.ibm.com/db2/perl/ and
http://search.cpan.org/~ibmtordb2/.

If you are using ActivePerl distribution on Windows and have the internet connection, you
can install the DBD::DB2 module through ActivePerl’s Perl Package Manager by issuing
the following command:

For Perl version 5.8:

 ppm install http://theoryx5.uwinnipeg.ca/ppms/DBD-DB2.ppd

For Perl Version 5.10:

 ppm install http://cpan.uwinnipeg.ca/PPMPackages/10xx/DBD-DB2.ppd

Alternatively you can build and install the driver from source. You will need a C compiler.
Download the latest release of DBD::DB2 module source from
http://www.cpan.org/authors/id/I/IB/IBMTORDB2 and follow the instructions in Listing 9.3
(for Linux/UNIX) and Listing 9.4 (for Windows).

the source is DBD-DB2-<x.xx>.tar.gz, where x.xx means version.

http://search.cpan.org/~timb/DBI/DBI.pm�
http://www.ibm.com/db2/perl/�
http://search.cpan.org/~ibmtordb2/�
http://www.cpan.org/authors/id/I/IB/IBMTORDB2�

Chapter 9 - Application development with Perl 325

zcat DBD-DB2-<x.xx>.tar.gz|tar xvf –

cd DBD-DB2-<x.xx>

export DB2_HOME=/home/db2inst1/sqllib #for example

perl Makefile.PL

make

make test
make install

Listing 9.3 – Install the DBD::DB2 driver from source in Linux/UNIX

#unpack/unzip the source file DBD-DB2-<x.xx>.tar.gz using winzip

cd DBD-DB2-<x.xx>

perl Makefile.PL

nmake

nmake test

nmake install

Listing 9.4 – Install the DBD::DB2 driver from source in Windows

9.3 Developing Perl DB2 applications
In this section you will learn how to develop a Perl application that will access DB2 data by
calling the Perl DBI API.

9.3.1 Connecting to a DB2 database

First, enable Perl to load the Perl DBI module that provides the standard DBI APIs used to
access a database. This can be done using this line in your application:

use DBI;

Then, connect to the DB2 database by calling the DBI->connect method of the DBI
package using this syntax:
$dbhandle = DBI->connect($data_source, $userID, $password, \%attr);

Table 9.1 explains some of the parameters of the DBI->connect method.

Name Description

$data_source A database connection string with the format of
‘dbi:DB2:dbalias’,where dbalias represents one of the following:

1) A DB2 Database alias cataloged in your DB2 client, or

2) A connection string that includes the database name, host name, port
number, protocol, user ID, and password in the format of
“DATABASE=database; HOSTNAME=hostname; PORT=port;
PROTOCOL=TCPIP; UID=username; PWD=password;”. This format

326 Getting started with DB2 application development

can be used for connecting to a remote database via TCPIP directly
without first cataloging it on the client

$userID The user ID used to connect to the database, it’s optional if username
is specified in $data_source connection string

$password The password for the user ID to connect to the database. it’s optional if
password is specified in $data_source connection string

\%attr Optional, a reference to the list of database connection attributes

Table 9.1 - Parameters for the DBI->connect method

The DBI->connect method will automatically load the DBD::DB2 module if it was not
loaded earlier, and return a database handle if the connection succeeds. The database
handle will be used for all future function calls made on the DB connection.

For example, to connect to the SAMPLE database, make the connection as shown in Listing
9.5:

Use DBI;

my $dbhandle = DBI->connect("dbi:DB2:sample", "db2admin", "password",
{AutoCommit=>0});

Listing 9.5 - Connect to SAMPLE database cataloged on the client

In the above listing, the database user ID is db2admin, the password is password and the
AutoCommit connection attribute is set off, which means it is turned off. This means you
can explicitly issue a commit or rollback for a transaction for this connection. By default
AutoCommit is on. After successful execution, the DBI->connect returns a database
handle in the variable $dbhandle.

If the SAMPLE database is a remote database on a machine host2 where the instance is
listening to port 50000 and it has not been cataloged in your client, you can make a
connection to it via TCP/IP directly as shown in Listing 9.6

use DBI;

my $dbhandle = DBI->connect("dbi:DB2:DATABASE=sample; HOSTNAME=host2;
PORT=50000; PROTOCOL=TCPIP;UID=db2admin;PWD=password", {AutoCommit=>0});

Listing 9.6 - Connect to the remote SAMPLE database via TCP/IP directly

9.3.2 Retrieving data
After connecting to the database, you can issue SELECT SQL statements to retrieve data
from the database.

If the SELECT statement is not known at the time the application is written, refer to section
9.3.4 on how to run a SQL that contains variable inputs or parameter markers.

If the SELECT statement is known, follow the steps below:

1. Connect to the database by calling the DBI->connect method.

Chapter 9 - Application development with Perl 327

2. Prepare a SELECT SQL statement by calling the database handle’s prepare
method, which returns a statement handle if the SQL is successfully prepared.

For example, you can call the prepare method with an SELECT statement passed in
as a string argument as follows:

$sthandle = $dbhandle->prepare(

 "SELECT firstnme, lastname

 FROM employee WHERE workdept='A00'");

Where:

$dbhandle is the database handle returned from step 1 and $dbhandle->prepare
returns a statement handle in the variable $sthandle if the statement is successfully
prepared.

3. Execute the prepared SELECT statement by calling the execute method using the
statement handle. After a successful execution of the SQL, the statement handle will
be associated with the result set.

For example, you can execute the statement prepared in the previous step by using
the following Perl statement:

$rc = $sthandle->execute();

4. Fetch rows from the result set associated with the statement handle by calling
fetchrow_array()method on the statement handle, which returns a row as an
array with one value for each column.

For example, you can fetch the rows from the above statement handle $sthandle as
shown in Listing 9.7:

while (($firstnme, $lastname) = $sthandle->fetchrow_array()) {

 print "$firstnme $lastname\n";

}

Listing 9.7 – Fetch rows from the result set

Note:

In addition to fetchrow_array, the statement handle also provides many other data
fetching methods, such as fetchrow_arrayref, fetchrow_hashref,
fetchall_arrayref, fetchall_hashref, to support flexible ways of fetching rows
from a result set. For more information about these functions, refer to
http://search.cpan.org/~timb/DBI/DBI.pm.

The above code snippets are part of the script select.pl included in the
Exercise_Files_DB2_Application_Development.zip file accompanying the book.

http://search.cpan.org/~timb/DBI/DBI.pm�

328 Getting started with DB2 application development

You can test the code by modifying the user ID and password in the script appropriately
and run it as:

perl select.pl

The result of executing this script is illustrated as in Figure 9.2:

Figure 9.2 - Executing select.pl

9.3.3 Inserting, updating, and deleting data
To issue INSERT/UPDATE/DELETE SQL statements that are known at the time the
application is written, you can call the database handle’s do() method. Otherwise, to run
SQL statements that contain variable inputs or parameter markers refer to section 9.3.4.

The syntax for the do() method is as follows:

$cnt = $dbh->do($statement);

Table 9.2 describe the parameters of the do() method in more detail.

Name Description

$statement A statement string

$cnt The number of rows affected by the SQL statement or undef on error. A
return value of -1 means the number of rows is not known, not
applicable, or not available.

Table 9.2 - Parameters for the do() method of the database handle

Listing 9.8 provides several examples that illustrate how to use the do method to issue
INSERT/UPDATE/DELETE statements and also run CREATE/DROP TABLE DDLs.

(1) $cnt = $dbhandle->do (“CREATE TABLE product(product_id CHAR(6),

 name CHAR(30))");

(2) $cnt = $dbhandle->do ("INSERT INTO product VALUES

 ('000001','computer'),('000002',’TV’)")

Chapter 9 - Application development with Perl 329

(3) print "Returns for insert: $cnt \n";

(4) $cnt = $dbhandle->do ("UPDATE product SET name = 'notebook'

 WHERE product_id='000001'");

(5) print "Returns for update: $cnt \n";

(6) $cnt = $dbhandle->do ("DELETE FROM product WHERE

 product_id='000003'");

(7) print "Returns for delete: $cnt \n";

(8) $cnt = $dbhandle->do ("DROP TABLE product");

Listing 9.8 – execute INSERT/UPDATE/DELETE statements

Items in Listing 9.8 are explained as follows:

(1) Call the method $dbhandle->do to create the table product

(2) Call the method $dbhandle->do to insert rows into the product table

(3) Print the number of rows inserted

(4) Call the method $dbhandle->do to update some rows in the table

(5) Print the number of rows updated

(6) Delete some rows from the table

(7) Print the number of rows deleted

(8) Drop the table.

The above code snippets are part of the script ins_upd_del.pl included in the exercise
files accompanying the book. You can test the code by modifying the user ID and
password in the script appropriately and run it as follows:

perl ins_upd_del.pl

The result of executing the script ins_upd_del.pl is illustrated as in Figure 9.3:

Figure 9.3 Executing ins_upd_del.pl

330 Getting started with DB2 application development

9.3.4 Executing a SQL statement with parameter markers

In this section, you will learn how to issue an SQL statement that includes parameter
markers or variable inputs. A parameter marker in an SQL statement, is represented by the
question mark (?) character or a colon followed by a name (:name).

To run a SQL statement with parameter markers, you can follow these steps:

1. Connect to the database by calling the DBI->connect method

2. Prepare the statement by calling the prepare method on the database handle, which
returns a statement handle if prepare is successful. For example, you can prepare a
SELECT statement containing a parameter marker as follows:

$sthandle = $dbhandle->prepare('SELECT empno, lastname, job, salary
 FROM employee WHERE workdept = ?');

The SELECT statement above contains a parameter marker "?" in the predicate
"workdept = ?", where the parameter marker "?" represents a variable input for a
department number that is not known until the SQL is run. If the SQL statement is
successfully prepared, the prepare method returns a statement handle and assigns it
to the variable $sthandle.

3. Call bind_param method on the statement handle to bind parameters to local Perl
variables.

The syntax of bind_param method is:

$sth->bind_param($p_num, $bind_value, \%attr)

Table 9.3 provides a description of the parameters of bind_param.

Name Description

$p_num Specifies the 1-indexed position of the parameter in the SQL
containing the parameter markers.

$bind_value A Perl variable or value to be bound to the parameter specified by
parameter-number

\%attr Optional: it can be used to indicate the parameter’s type, precision,
scale.

Table 9.3 - Parameters for the bind_param method of the statement handle

For example, you can call bind_param to bind the value "A00" to the parameter in
the prepared SELECT statement shown earlier as follows:

$sthandle->bind_param(1,"A00");

After a successful execution, the value "A00" will be bound to the parameter marker
(?) in the SQL’s predicate "workdept = ?".

Chapter 9 - Application development with Perl 331

4. Call execute method on the statement handle to execute this statement. If it’s a
SELECT statement or a CALL to a stored procedure returning result sets (calling
stored procedures will be discussed further in later sections), the statement handle will
be associated with the result set after a successful call to the execute method. You
can then use fetch functions, such as fetchrow_array(), to retrieve rows from the
result set as discussed in the previous section 9.3.2.

For example, you can execute the above SELECT statement as follows:

$sthandle->execute();

After successful execution of the SQL statement, a result set is associated with the
statement, you can then begin fetching rows from the result set.

The above code snippets are part of the script param.pl included as part of the exercise
files accompanying the book. In addition to SELECT statement, the script also contains an
example of executing an UPDATE statement with parameter markers. If you want to test the
code snippets, you can modify the user ID and password in the script appropriately and run
it as:

perl param.pl

The result of executing the script param.pl is illustrated in Figure 9.4:

Figure 9.4 - Executing param.pl

9.3.5 Calling a stored procedure

In order to call a DB2 stored procedure from a Perl application, you need to perform the
following steps:

1. Connect to the database by calling the DBI->connect method.

2. Prepare the CALL stored procedure statement by calling the prepare method on the
database handle, which returns a statement handle if prepare is successful.

332 Getting started with DB2 application development

For example, let's say you want to call the SQL procedure sp_get_employees
shown in Listing 9.9.

CREATE PROCEDURE sp_get_employees (IN dept_no CHAR(3), OUT dept_name
VARCHAR(36))

DYNAMIC RESULT SETS 1

BEGIN

DECLARE emp_cursor CURSOR WITH RETURN TO CLIENT FOR

 SELECT firstnme, lastname FROM employee WHERE workdept=dept_no;

 OPEN emp_cursor;

 SELECT deptname INTO dept_name FROM department WHERE deptno=dept_no;

END @

Listing 9.9 – sp_get_employees.db2

sp_get_employees has two parameters, the input parameter dept_no and the
output parameter dept_name. It also returns one result set to the client which is
defined in the cursor emp_cursor.

You can prepare the CALL statement as follows:

$sthandle = $dbhandle->prepare("CALL sp_get_employees(?,?)");

The two parameters are represented as the parameter markers "?" in the CALL
statement. After a successful prepare, the statement handle is returned in the variable
$sthandle.

3. Call bind_param or bind_param_inout method on the statement handle to bind
parameters to local Perl variables or values. bind_param can be used for binding IN
parameters only, while bind_param_inout is used for binding IN/INOUT/OUT
parameters.

Refer to the previous section for the syntax of bind_param. The syntax of
bind_param_inout method is:

$rv = $sth->bind_param_inout($p_num, \$bind_value, $max_len, \%attr)

Table 9.4 provides details about the parameters of bind_param_inout

Name Description

$p_num Specifies the 1-indexed position of the parameter in the CALL
statement.

$bind_value A Perl variable or value to be bound to the parameter specified by
$p_num. If it’s OUT/INOUT parameter, a variable is used, otherwise
it can be a variable or a value.

$max_len Specifies the minimum amount of memory to allocate to
$bind_value.

Chapter 9 - Application development with Perl 333

\%attr Optional: it can be used to indicate the parameter’s type, precision,
scale.

Table 9.4 - Parameters for the bind_param_inout method of the statement handle

For example, given the prepared CALL statement in step 2, you can call
bind_param to bind the value "A00" to the first input parameter of the procedure and
call bind_param_inout to bind the variable $deptname to the second output
parameter as in Listing 9.10 below:

$sthandle->bind_param(1,"A00");
$sthandle->bind_param_inout (2, \$deptname, 36,
{'TYPE'=>SQL_VARCHAR});

Listing 9.10 – bind the parameters

4. Call the execute method on the statement handle to execute this CALL statement. If
the SQL procedure is to return one or more result sets, a successful call to execute
will associate the result sets with the statement handle. You can then use fetch
functions, such as fetchrow_array() to retrieve rows from the result set as
discussed in the previous section 9.3.2. If there are multiple result sets, you can use
db2_more_results method of the statement handle, for example $sth-

>{db2_more_results}, to move to the next result set.

To execute the CALL statement prepared in previous steps, issue:

$sthandle->execute();

After successful execution of the CALL statement, a result set is associated with the
statement. You can then begin fetching rows from the result set.

The above code snippets are part of the script sp.pl included with the exercise files
accompanying this book. If you want to test the code snippets, you need to run the
following commands to first create the SQL procedure sp_get_lastname as defined in
the db2 script sp_get_employees.db2 accompanying the book:

db2 connect to sample

db2 -td@ -f sp_get_employees.db2

db2 terminate

You should also modify the user ID and password in the sp.pl script appropriately and
then run it as:

perl sp.pl

The result of executing the script sp.pl is illustrated in Figure 9.5.

334 Getting started with DB2 application development

Figure 9.5 - Executing sp.pl

9.4 Exercises
Exercise #1

In this exercise, you will setup a Perl DB2 environment on a SUSE Linux Enterprise Server
10 SP1, assuming a valid DB2 V9.7 product has been installed first. Please note that you
have to be the root user to perform the setup. The setup procedure is similar if you are
using other operating systems.

1. Install Perl 5.8 or later.

Perl 5.8.8 comes with the standard installation of SUSE Linux Enterprise Server 10
SP1, so it’s not required to install the Perl language environment separately in this
exercise.

You can run the following command in the shell to check the version of your Perl
language:
perl –v

If your version of Perl is lower than 5.8, follow section 9.2 on how to install Perl
language on your platform.

2. Install the Perl DBI module

 Download the latest Perl DBI source file from http://search.cpan.org/~timb/DBI/

At the time of this writing, the latest version of DBI source is DBI-1.611.tar.gz

 Login to the Linux server as the root user and perform the following commands in
the directory where the source file DBI-1.611.tar.gz is located:

tar xvfz DBI-1.611.tar.gz
cd DBI-1.611
perl Makefile.PL

http://search.cpan.org/~timb/DBI/�

Chapter 9 - Application development with Perl 335

make
make test
make install

3. Install DBD::DB2 module

 Download the latest DBD::DB2 source file from
http://www.ibm.com/software/data/db2/perl/

At the time of this writing, the latest version of DBD::DB2 source is DBD-DB2-
1.78.tar.gz

 As root, perform the following commands:

export DB2_HOME=/home/db2inst1/sqllib
perl Makefile.PL
make
make test
make install

Note:

/home/db2inst1 is the home directory of the DB2 instance owner user and
/home/db2inst1/sqllib is where the instance binary files are located. This assumes
the instance owner has been set to db2inst1.

Exercise #2

In this exercise, you will practice writing a small script to access data from the SAMPLE
database.

1. Log on to the server as the instance owner (for example db2inst1 or db2admin on
Windows).

2. If the SAMPLE database has not been created earlier, run the following command from
a DB2 command window or Linux shell to create it.
db2sampl

3. Write a Perl script to print out all the employees who are working in the department of
“SOFTWARE SUPPORT”. At the same time increase the salary by 5% for each
employee who was hired before '1996-01-01' in this department.

4. If you have problems creating this script, the solution is provided in the script
perl_ex1.pl accompanying the book. You can modify the user ID and password in
the script appropriately and test it out as follows:

perl perl_ex1.pl

http://www.ibm.com/software/data/db2/perl/�

336 Getting started with DB2 application development

9.5 Summary
In this chapter, you have learned how to set up a Perl environment to work with DB2, and
how to execute SQL statements and call stored procedures from Perl applications by
calling the standard Perl DBI interface.

9.6 Review questions
1. Which API can a Perl application use to access a DB2 database?

2. What’s the relationship between the Perl DBI and the database DBD drivers?

3. Which of the following is the standard database interface for a Perl script to access a
DB2 database?

A. CLI

B. Embedded Perl

C. Perl DBI

D. JDBC

E. None of the above

4. Which of the following are the steps you can use to execute a SQL with parameter
marker?

A. prepare, bind_param, execute

B. prepare, bind_variable, do

C. prepare, bind_param, do

D. prepare, do, fetchrow_array

E. None of the above

5. Which of the following functions can be used to execute a SQL directly without first
preparing it?

A. exec_immediate

B. execute

C. do

D. execute_imm

E. None of the above

10
Chapter 10 –Application development with
Python
Python is a platform independent interpreted programming language which is free and
available on many operating systems including Windows, Linux, UNIX and Mac OS X.

Python is an open source language environment managed by the Python Software
Foundation (http://www.python.org/). Python’s object-oriented features, and flexible data
typing, together with its extensive standard libraries, makes it a popular language for rapid
application development, including database applications.

In this chapter you will learn about:

 Setting up the Python environment to work with DB2

 Connecting to a DB2 database from a Python application

 Developing Python applications to access DB2 data

Note:

If you are new to the Python programming language, review the free eBook Getting Started
with Python which is part of this book series.

This chapter assumes you have created the SAMPLE database included with DB2. If you
haven't, create it using the command db2sampl.

10.1 Python - DB2 applications: The big picture
Python applications access DB2 data servers through Python DB2 APIs and their
drivers/adapters. Depending on the database API you want to work with, there are different
types of drivers/adapters you can choose from. The high level view of these APIs and their
drivers/adapters is illustrated in the Figure 10.1.

http://www.python.org/�
http://www.ibm.com/db2/books�
http://www.ibm.com/db2/books�

338 Getting started with DB2 application development

Figure 10.1- High level view of Python DB2 APIs and drivers/adapters to access DB2

As shown in Figure 10.1, there are four different types of database APIs and their
drivers/adapers you can choose in a Python application to access a DB2 data server. The
APIs and their drivers/adapters are explained in the next sections.

10.1.1 IBM defined API and ibm_db driver

This is a set of proprietary Python database APIs defined by IBM. The ibm_db driver is an
implementation of the API. Through this API, you can not only issue SQL statements, call
stored procedures, and use pureXML, but also access DB2 metadata information in a
Python application.

The ibm_db driver is implemented as a Python module C extension to DB2’s native
CLI/ODBC interface; therefore, it can provide maximum performance and most advanced
features. In later sections, we discuss about this driver in more detail.

Note:

The ibm_db API specification can be found at http://code.google.com/p/ibm-db/wiki/APIs

10.1.2 Python Database API and ibm_db_dbi driver

Python Database API is a set of open standard database APIs defined for a Python
application. The ibm_db_dbi driver is simply a Python coded wrapper built upon the
ibm_db driver to provide database APIs conforming to the standard Python Database API
Specification, and similarly to ibm_db driver it enables you to issue SQL statements and
call stored procedures through these standard APIs. Because this API conforms to the
standard specification, it does not offer some of the advanced features that the ibm_db API
supports. However, if you have an application written with a driver that supports Python
Database API Specification, you can easily switch to ibm_db_dbi.

At the time of this writing, Python Database API Specification v2.0 is supported by
ibm_db_dbi driver.

Note:

http://code.google.com/p/ibm-db/wiki/APIs�

Chapter 10 - Application development with Python 339

The Python Database API is a standard specification for the implementation of a Python
interface to a database management system. You can find details about Python Database
API Specification at the http://www.python.org/dev/peps/pep-0249/.

10.1.3 SQLAlchemy and ibm_db_sa adapter

SQLAlchemy is an open source Python SQL toolkit and Object Relational Mapper that
gives application developers the full power and flexibility of SQL. The core of SQLAlchemy
is called "SQL expression language" which allows users to access a database via Python
functions and expressions using function-based query construction, instead of using
normal SQL statements. The ibm_db_sa adapter is a Python coded DB2 adapter built
upon the ibm_db_dbi driver and provides the support for SQLAlchemy APIs.

At the time of writing, SQLAlchemy 0.4 specification APIs are supported by the ibm_db_sa
adapter.

Note:

You can find more information about SQLAlchemy, including the API reference at
http://www.sqlalchemy.org/

10.1.4 Django framework and ibm_db_django adapter

Django is a popular open source Python web framework for rapid application development.
Similar to SQLAlchemy, Django framework APIs enables you to access database via
Python functions and expressions rather than using normal SQL statements. The
ibm_db_django adapter is a Python coded DB2 adapter built upon the ibm_db_dbi driver
and provides the support for the Django framework APIs.

At the time of this writing, Django 1.2 specification APIs are supported.

Note:

You can find more information about Django framework, including API reference at
http://www.djangoproject.com/.

10.2 Setting up the environment
To set up the Python environment to work with DB2, follow these steps:

1. Install Python 2.5 or greater.

You can install Python using one of the following options:

 Install it using ActivePython binary distribution.

ActivePython is a free Python binary distribution provided by ActiveState Software
and is available on most operating systems. You can download it from the website
http://www.activestate.com/activepython/downloads/ and install Python by running
the Windows Installer on Windows or install.sh on Linux/UNIX.

http://www.python.org/dev/peps/pep-0249/�
http://www.sqlalchemy.org/�
http://www.djangoproject.com/�
http://www.activestate.com/activepython/downloads/�

340 Getting started with DB2 application development

 On Windows, you can alternatively download the free Python Windows Installer
from http://www.python.org/download/ and install it by running the Windows
Installer.

 Of course, for all the operating systems, you can alternatively build from the source
which can be freely downloaded from http://www.python.org/download/.

For example, to build and install Python 2.5.4 on Linux from the source, you can
download the source Python-2.5.4.tgz and unpack it with "tar -zxvf
Python-2.5.4.tgz", then change to the Python-2.5.4 directory and run the
"./configure", "make", "make install" commands to compile and install
Python.

You can verify the Python version by running:

python –V

2. Install setuptools

setuptools is a free program to download, build, install, upgrade, and uninstall
Python packages. It can be downloaded from http://pypi.python.org/pypi/setuptools/
and you can install it following the instructions from this site. You may need it later to
install some of the Python DB2 drivers.

3. Install an IBM DB2 data server client

After installing the above software, you will be able to install the Python DB2 adapters and
drivers.

10.2.1 Python adapters & drivers

All Python-DB2 adapters and drivers can be freely downloaded from
http://code.google.com/p/ibm-db/downloads/list. Alternatively the ibm_db/ibm_db_dbi
drivers and source are also available at http://pypi.python.org/pypi/ibm_db.

As discussed in previous section, you can decide which drivers or adapters to install based
on the database APIs you want to use. For example, if you want to issue raw SQL
statements through either the IBM defined API or Python Database API, you can just install
the ibm_db and ibm_db_dbi drivers. If you want to use SQLAlchemy or the Django
framework, you will have to install not only the ibm_db_sa or ibm_db_django adapter, but
also the ibm_db/ibm_db_dbi driver which these adapters are built upon.

The install procedures for each driver or adapter are explained in the next sections.

10.2.1.1 Installing the ibm_db and ibm_db_dbi drivers

The ibm_db and ibm_db_dbi drivers are bundled in one installation package known as
the ibm_db package. They should be installed together. At the time of writing, the latest
release of these drivers is 1.0.2, and they are supported on Linux and Windows.

http://www.python.org/download/�
http://www.python.org/download/�
http://pypi.python.org/pypi/setuptools/�
http://code.google.com/p/ibm-db/downloads/list�
http://pypi.python.org/pypi/ibm_db�

Chapter 10 - Application development with Python 341

Follow this procedure to install and setup these two drivers:

1. Install the ibm_db package

If you have internet access, issue the following command as shown in Figure 10.2
on Windows: easy_install ibm_db

Figure 10.2- install ibm_db/ibm_db_dbi from the internet using easy_install

As shown in Figure 10.2, the easy_install command downloads the package from
the internet and installs the two drivers under the site-packages directory where
setuptools is installed. easy_install is a program provided by the setuptools
package that was installed earlier.

If you do not have internet access, download the appropriate Python egg file for
your platform from http://code.google.com/p/ibm-db/downloads/list, and issue the
following command:

easy_install <egg_file_name>

where <egg_file_name> includes the path to the egg file.

For example, you can install the drivers using the downloaded egg file ibm_db-
1.0.2-py2.5-win32.egg as shown in the Figure 10.3.

http://code.google.com/p/ibm-db/downloads/list�

342 Getting started with DB2 application development

Figure 10.3 - install ibm_db/ibm_db_dbi from an egg file using easy_install

You can also build and install the driver from source code. Download the code
from http://pypi.python.org/pypi/ibm_db/. The instructions are available in the
README file shipped with the driver source code. You will need a C compiler on
your platform in order to compile the C programs included in the source code.

2. Create an environment variable named PYTHONPATH, and specify the path to
where the ibm_db egg is installed. For example:

- On Windows:

PYTHONPATH=<setuptools_install_path>\site-
packages\<ibm_db-xx.egg>

- On Linux (BASH shell):

export PYTHONPATH=<setuptools_install_path>/site-
packages/<ibm_db-xx.egg>

3. From a command prompt, test your setup by typing python to get into the Python
interactive interpreter and entering code similar to Listing 10.1 to test a connection.

(1) import ibm_db

(2) ibm_db_conn = ibm_db.connect('SAMPLE', 'db2admin', 'password')

(3) import ibm_db_dbi

(4) conn = ibm_db_dbi.Connection(ibm_db_conn)

(5) conn.tables('SYSCAT', '%')

Listing 10.1 - Test the installation by connecting to a DB2 database

In Listing 10.1:

(1) Imports the ibm_db module

(2) Makes a connection to the SAMPLE database using the function
ibm_db.connect, where "db2admin" is the user id and "password" is the

http://pypi.python.org/pypi/ibm_db/�

Chapter 10 - Application development with Python 343

password. You should replace these values appropriately. We discuss more
about ibm_db.connect in later sections.

(3) Imports the ibm_db_dbi module

(4) Calls the function ibm_db_dbi.Connection

(5) Lists all the tables with the schema SYSCAT

10.2.1.2 Installing the ibm_db_sa adapter

At the time of writing, the latest release 0.1.6 of ibm_db_sa adapter which supports
SQLAlchemy 0.4 is available on Linux and Windows.

Follow this procedure to install and setup the ibm_db_sa adapter:

1. Install the ibm_db_sa package

If you have internet access, issue the following command:

easy_install ibm_db_sa

This command will download the package from the internet and install the driver
under the site-packages directory. Note that since the adapter is dependent
upon the ibm_db/ibm_db_dbi drivers and also the SQLAlchemy package,
easy_install will download and install them if they have not been installed
before.

For example, in Windows you can install the adapter from the internet as illustrated
in Figure 10.4.

344 Getting started with DB2 application development

Figure 10.4 - Install ibm_db_sa from the internet using easy_install

As shown in Figure 10.4, the easy_install command downloads the ibm_db_sa
package and all the prerequisite packages such as ibm_db/ibm_db_dbi and
SQLAlchemy from the internet if they were not installed before and installs them
under the site-packages directory where setuptools is installed.

If you do not have internet access, download the Python egg file from
http://code.google.com/p/ibm-db/downloads/list, and issue the following command:

easy_install <egg_file_name>

where <egg_file_name> includes the path to the egg file.

For example:

easy_install ibm_db_sa-0.1.6-py2.5.egg

Note that you should first install the dependent ibm-db and SQLAchemy package
before you install ibm_db_sa package if you don’t have internet access.

http://code.google.com/p/ibm-db/downloads/list�

Chapter 10 - Application development with Python 345

2. From the command prompt, test your setup by typing python to launch the Python
interpreter and entering code similar to Listing 10.2 to test a DB2 connection.

(1) import sqlalchemy

 from sqlalchemy import *

(2) db2 = sqlalchemy.create_engine('ibm_db_sa://db2admin:password
@localhost:50000/SAMPLE')

(3) metadata = MetaData()

(4) users = Table('users', metadata,

 Column('user_id', Integer, primary_key = True),

 Column('user_name', String(16), nullable = False),

 Column('email_address', String(60), key='email'),

 Column('password', String(20), nullable = False)

)

(5) metadata.bind = db2

(6) metadata.create_all()

Listing 10.2 - Test the installation by connecting to a DB2 database

In Listing 10.2:

(1) Imports the sqlalchemy package

(2) Creates a db2 database Engine object, where "SAMPLE" is the SAMPLE database
you are connecting to, "db2admin" is the user id, "password" is the password,
and "localhost:50000" is the local instance listening at port 50000. You should
replace them with your own values appropriately.

(3) Creates a MetaData object metadata

(4) Defines a table named USERS

(5) Binds the metadata object to db2 engine

(6) Issues CREATE statements for all tables

10.2.1.3 Installing ibm_db_django adapter

At the time of writing, the latest release 0.2.1 of the ibm_db_django adapter which supports
Django 1.2, is available on Linux and Windows.

The procedure to install and setup the ibm_db_django adapter is as follows:

1. Install the Django framework

Since the adapter ibm_db_django is dependent upon the Django framework
package, you have to install the Django framework before installing the
ibm_db_django adapter.

Install Django following the instructions from the Django Web site at
http://docs.djangoproject.com/en/dev/topics/install/#installing-an-official-release

http://docs.djangoproject.com/en/dev/topics/install/#installing-an-official-release�

346 Getting started with DB2 application development

If you are using Django 1.0.2, you also need to apply a patch in Django in order to
remove non-standard SQL generation issuse. For versions greater than 1.0.2 no
patch is required. The details about the patch is located at
http://code.djangoproject.com/ticket/9862

Extract creation.py file from the patch zip file at
http://code.djangoproject.com/changeset/9703?format=zip&new=9703

Copy this creation.py to the Django installation directory at site-
packages/django/db/backends/

2. Install the ibm_db/ibm_db_dbi drivers 0.7.2.5 or higher if they have not been
installed. For details, refer to the previous section "Installing the ibm_db and
ibm_db_dbi drivers".

3. Install the ibm_db_django package

Download the ibm_db_django source code ibm_db_django-x.x.x.tar.gz
from http://code.google.com/p/ibm-db/downloads/list, where x.x.x refers to the
version of the driver.

Uncompress the gz file ibm_db_django-x.x.x.tar.gz

Issue the following command to install:

cd ibm_db_django

python setup.py install

4. Verify the installation of the ibm_db_django adapter by testing the connection to
DB2

Create a new Django project by executing:

django-admin.py startproject myproj

Go to the newly created directory, and edit the settings.py file as illustrated in
Listing 10.3.

(1) DATABASE_ENGINE = 'ibm_db_django'

(2) DATABASE_NAME = 'SAMPLE'

(3) DATABASE_USER = 'db2admin'

(4) DATABASE_PASSWORD = 'password'

Listing 10.3 - settings.py

where:

(1) "ibm_db_django" means you want to access a DB2 database server. This is a
new format starting with django adapter version 0.1.2. For earlier django
adapter versions, use DATABASE_ENGINE = 'db2' instead.

(2) "SAMPLE" refers to the SAMPLE database.

http://code.djangoproject.com/ticket/9862�
http://code.djangoproject.com/changeset/9703?format=zip&new=9703�
http://code.google.com/p/ibm-db/downloads/list�

Chapter 10 - Application development with Python 347

(3) "db2admin" is the user ID, you can replace it with your own.

(4) "password" is the password, you can replace it with your own.

Run the test suite as:

python manage.py test

Note:

The open source project home for all the above four Python DB2 drivers can be found at
the http://code.google.com/p/ibm-db/

10.3 Developing Python DB2 applications

.

For simplicity purposes, this section focuses only on the ibm_db driver, which provides the
maximum performance and most advanced features support for accessing DB2 data
servers. For all other drivers or adapters, refer to their API specifications.

10.3.1 Connecting to a DB2 database
You must first include the following line in your Python script to import the ibm_db driver
module:

import ibm_db

Then, connect to a DB2 database by calling the function ibm_db.connect with the
following syntax:

IBM_DBConnection ibm_db.connect (string dsn, string user, string
password[, array options])

Table 10.1 explains the parameters of ibm_db.connect.

Name Description

dsn Database connection string in the format of "DATABASE=database;
HOSTNAME=hostname; PORT=port; PROTOCOL=TCPIP;
UID=username; PWD=password;"

user The username used to connect to the database; specify an empty string
"" if username is specified in the dsn string

password The password for the username connecting to the database; specify an
empty string "" if password is specified in the dsn string

options Optional: A dictionary of connection options that affect the behavior of
the connection.

Table 10.1 - Parameters for function ibm_db.connect

348 Getting started with DB2 application development

For example, if SAMPLE is a database alias cataloged locally in your client, you can make a
connection to it as shown in Listing 10.4:

import ibm_db

conn = ibm_db.connect("SAMPLE","db2admin","password")

Listing 10.4 – Connect to the locally cataloged SAMPLE database

If the SAMPLE database is a remote database on a machine host2 with the instance
listening at port 50000 and it has not been catalogued in your client, you can make a
connection to it via TCP/IP directly as shown in Listing 10.5

import ibm_db

conn = ibm_db.connect("DATABASE=SAMPLE; HOSTNAME=host2; PORT=50000;
PROTOCOL=TCPIP; UID=db2admin; PWD=password;", "", "")
Listing 10.5 – Connect to the remote SAMPLE database via TCP/IP directly

If the connection attempt is successful, the function ibm_db.connect returns an
ibm_db.IBM_DBConnection object, which will be used in the future to perform further
database operations specific to this connection, such as executing SQL statements to
retrieve, insert, update or delete data.

Note:

The ibm_db driver also supports the creation of persistent connections, which remain
active in the connection pool after being closed and allows subsequent connection request
to reuse an existing connection if they have an identical set of credentials. For detailed
information, check the API specification for function ibm_db.pconnect at
http://code.google.com/p/ibm-db/wiki/APIs

10.3.2 Retrieving data

If the SQL statement is not known at the time the application is written, refer to section
10.3.4 on how to run a SQL that contains variable inputs or parameter markers.

If the SQL statement is known, follow the steps below to select and fetch data:

1. Connect to the database with the ibm_db.connect function, which returns a database
connection object if connection is successful.

2. Execute the SQL SELECT statement directly by calling the function
ibm_db.exec_immediate, which returns a statement object that is associated with
the result set if the SQL statement executes successfully.

The syntax of function ibm_db.exec_immediate is shown below:

IBM_DBStatement ibm_db.exec_immediate(IBM_DBConnection connection,
string statement [, array options])

Table 10.2 explains the different parameters of ibm_db.exec_immediate.

http://code.google.com/p/ibm-db/wiki/APIs�

Chapter 10 - Application development with Python 349

Name Description

connection A valid database connection object as returned from
ibm_db.connect()

Statement An SQL statement in string format. The statement cannot contain any
parameter markers, i.e the statement should be known at the time it is
written.

options Optional: A dictionary containing statement options. You can use this
parameter to request a scrollable cursor for database servers that
support this type of cursor. By default, a forward-only cursor is returned.

Table 10.2 - Parameters for function ibm_db.exec_immediate

For example, you can call ibm_db.exec_immediate function to run a SELECT
statement passed in as a string argument as shown below:

stmt = ibm_db.exec_immediate(conn, 'SELECT firstnme, lastname FROM
employee fetch first 2 rows only')

Where the function takes the connection object conn returned in step 1 as the first
function argument, and returns a statement object stmt which is associated with the
query’s result set if the execution is successful.

3. Fetch rows from the result set by calling ibm_db.fetch_tuple(), which returns a tuple
representing the next or requested row in the result set. Each column value is indexed
by the 0-indexed column position in the tuple.

The syntax of function ibm_db.fetch_tuple is shown as follows:

array ibm_db.fetch_tuple(IBM_DBStatement stmt, [, int row_number])

Table 10.3 explains the different parameters of ibm_db.fetch_tuple

Name Description

Stmt A valid statement object containing a result set.

row_number Optional: 1-indexed row number for a specific row that you want to fetch
from the result set. Passing this parameter results in a warning if the
result set uses a forward-only cursor

Table 10.3 - Parameters for function ibm_db.fetch_tuple

The function returns False if there are no more rows left in the result set, or if the row
requested by row_number does not exist in the result set.

For example, you can fetch and print all the rows from the result set as shown in Listing
10.6.

(1) mytuple = ibm_db.fetch_tuple(stmt)

(2) while mytuple != False:

350 Getting started with DB2 application development

(3) print "First Name: %s, Last Name: %s" % (mytuple[0], mytuple[1])

(4) mytuple = ibm_db.fetch_tuple(stmt)

Listing 10.6 – Fetch rows from the result set

Items in Listing 10.6 are explained as follows:

(1) The function ibm_db.fetch_tuple returns each row from the result set as a
tuple and assigns it to the variable mytuple;

(2) Loop until the function returns False if there are no rows left in the result set;

(3) Print each columns’ value from the returned row by using the 0-indexed column
position, such as mytuple[0], mytuple[1];

(4) Fetch the next row into the variable mytuple.

Note:

In addition to ibm_db.fetch_tuple, the ibm_db driver also provides 3 other data
fetching functions that support flexible ways of fetching result sets:
ibm_db.fetch_assoc, ibm_db.fetch_both and ibm_db.fetch_row. For more
information review http://code.google.com/p/ibm-db/wiki/APIs.

If you would like to test all the above code snippets, edit the Python script select.py
included in the exercise files accompanying this book and replace the user ID and
password with your own. Then run the script as follows:

python select.py

The result of executing the above script is illustrated in Figure 10.5.

Figure 10.5 Executing the script select.py

Note:

All the scripts used in this chapter are included in the directory samples/chapter10 in
the zip file Exercise_Files_DB2_Application_Development.zip that
accompanies this book.
To run the scripts, you may need to first create the SAMPLE database using the db2sampl
utility. Also replace the user name and password in the scripts with your own ones.

http://code.google.com/p/ibm-db/wiki/APIs�

Chapter 10 - Application development with Python 351

10.3.3 Inserting, updating and deleting data
Similar to the SELECT statement, an INSERT, UPDATE or DELETE SQL statement that is
already known at the time the application is written can be executed directly by calling the
function ibm_db.exec_immediate. For a SQL statement that contains variable inputs or
parameter markers, refer to section 10.3.4.

After successful execution of the SQL statements, you can use the ibm_db.num_rows
function to return the number of rows that the SQL statement affected.

Let’s take a look at the example in Listing 10.7.

(1) stmt = ibm_db.exec_immediate(conn, "CREATE TABLE PRODUCT(product_id
char(6), name char(30))")

(2) stmt = ibm_db.exec_immediate(conn, "Insert into PRODUCT values
('000001','computer'), ('000002','TV')")

(3) print "Returns for insert: ", ibm_db.num_rows(stmt)

(4) stmt = ibm_db.exec_immediate (conn, "update PRODUCT set name =
'notebook' where product_id='000001'")

(5) print "Returns for update: ", ibm_db.num_rows(stmt)

(6) stmt = ibm_db.exec_immediate (conn, "delete from PRODUCT where
product_id='000003'")

(7) print "Returns for delete: ", ibm_db.num_rows(stmt)

(8) stmt = ibm_db.exec_immediate (conn, "drop table PRODUCT")

Listing 10.7 - the script ins_upd_del.py

Items in Listing 10.7 are explained as follows:

(1) Calls the function ibm_db.exec_immediate to create the table PRODUCT

(2) Calls the function ibm_db.exec_immediate to insert rows into the PRODUCT table

(3) Prints the number of rows that were inserted

(4) Updates some rows in the table

(5) Prints the number of rows that were updated

(6) Deletes some rows in the table

(7) Prints the number of rows deleted

(8) Drops the table.

The above code snippets are part of the script ins_upd_del.py included in the exercise
files accompanying the book. You can test the code by modifying the user ID and
password in the script appropriately and run it as:

python ins_upd_del.py

The result of executing the script is illustrated in Figure 10.6.

352 Getting started with DB2 application development

Figure 10.6 - Executing the script ins_upd_del.py

10.3.4 Execute a SQL statement with parameter markers

In previous two sections, you have learned how to use function
ibm_db.exec_immediate to execute SQL statements which is known at application
written time. Now let’s examine how to run a SQL statement which might contain variable
inputs whose values are not known until at the run time.

The question mark (?) character will be used as the parameter marker for each variable
input in the SQL statement string. The procedure to prepare and execute such SQL
statements is explained below:

1. Connect to the database with the ibm_db.connect function, which returns a database
connection object if connection is successful.

2. Prepare the SQL string with the parameter markers using the ibm_db.prepare
function, which returns a IBM_DBStatement statement object if the prepare attempt is
successful.

The syntax of function ibm_db.prepare is:

IBM_DBStatement ibm_db.prepare(IBM_DBConnection connection, string
statement [, array options])

Table 10.4 describes the parameters of the function ibm_db.prepare

Name Description

connection A valid database connection object returned from ibm_db.connect()

Statement An SQL statement in string format, which may optionally contain
input/output parameter markers, whose values are not known until the
SQL is run.

options Optional: A dictionary containing statement options. You can use this
parameter to request a scrollable cursor for database servers that
support this type of cursor. By default, a forward-only cursor is returned.

Table 10.4 - Parameters of the function ibm_db.prepare

Chapter 10 - Application development with Python 353

The function returns a statement object if the SQL is successfully prepared, otherwise it
raises an exception.

For example, you can prepare a SELECT statement containing a parameter marker as
follows:

stmt = ibm_db.prepare(conn, "SELECT empno, lastname, job, salary FROM
employee WHERE workdept = ?")

As shown above, the connection object conn is passed in as the first function argument,
while the second argument is a SELECT string which contains a parameter marker in the
predicate "workdept = ?", where the parameter marker "?" represents a variable input for
a department number that is not known until the SQL is run. If the function
ibm_db.prepare successfully prepares the SQL statement, it returns a statement object
and assigns it to the variable stmt.

3. Bind input values to parameter markers in the SQL by calling the ibm_db.bind_param
function for each parameter marker.

The syntax of function ibm_db.bind_param is:

Py_True/Py_None ibm_db.bind_param(IBM_DBStatement stmt, int
parameter-number, string variable [, int parameter-type [, int data-
type [, int precision [, int scale [, int size[]]]]]])

Table 10.5 describes the parameters of function ibm_db.bind_param

Name Description

stmt A prepared statement returned from ibm_db.prepare()

Parameter-
number

Specifies the 1-indexed position of the parameter in the prepared
statement.

variable A Python variable to be bound to the parameter specified by parameter-
number

Parameter-
type

Optional: The type of the parameter marker. It can be an input parameter
(SQL_PARAM_INPUT), an output parameter (SQL_PARAM_OUTPUT),
or as a parameter that accepts input and returns output
(SQL_PARAM_INPUT_OUTPUT). To avoid memory overhead, you can
also specify PARAM_FILE to bind the Python variable to the name of a
file that contains large object (BLOB, CLOB, or DBCLOB) data. By
default, it’s SQL_PARAM_INPUT.

data-type Optional: A constant specifying the SQL data type that the Python
variable should be bound as: one of SQL_BINARY, DB2_CHAR,
DB2_DOUBLE, or DB2_LONG

precision Optional: Specifies the precision that the variable should be bound to the
database.

354 Getting started with DB2 application development

scale Optional: Specifies the scale that the variable should be bound to the
database

size Optional: Specifies the size that should be retrieved from an INOUT/OUT
parameter

Table 10.5 - Parameters for function ibm_db.bind_param

The function returns True if the bindings are successful, otherwise it raise an exception if
failure.

For example, you can call ibm_db.bind_param to bind the value "A00" to the
parameter marker in the SELECT statement prepared in step 2 as follows:

ibm_db.bind_param(stmt, 1, "A00")

After successful execution, the value "A00" would be bound to the parameter marker (?) in
the SQL’s predicate "workdept = ?".

4. Execute the SQL statement by calling ibm_db.execute()function.

The syntax of function ibm_db.execute is as follows:

Py_True/Py_False ibm_db.execute(IBM_DBStatement stmt [, tuple
parameters])

Table 10.6 describes the parameters of ibm_db.execute()

Name Description

stmt A prepared statement returned from ibm_db.prepare()

parameters Optional: A tuple of input parameters matching any parameter markers
contained in the prepared statement. It’s optional if you have called the
function bind_param to bind the parameters.

Table 10.6 - Parameters for function ibm_db.execute

The function returns True if the SQL is executed successfully, otherwise it raises an
exception. If the SQL to run is a SELECT statement or a CALL to a stored procedure
(calling stored procedures will be discussed more in later sections) that returns one or
more result sets, the result sets will be associated with the statement object. You can then
use various fetch functions, such as ibm_db.fetch_tuple, to retrieve rows from the
result set as discussed in the previous section 10.3.4.

For example, you can execute the SELECT statement prepared in previous steps as
follows:

ibm_db.execute(stmt)

After successful execution of the SQL statement, a result set is associated with the
statement. You can then begin fetching rows from the result set.

Chapter 10 - Application development with Python 355

The above code snippets are part of the script param.py included in the exercise files
accompanying this book. In addition to SELECT statements, the script also contains an
example of executing an UPDATE statement with parameter markers. If you want to test the
code snippets, you can modify the user ID and password in the script appropriately and run
it as:

python param.py

The result of executing the script param.py is illustrated in Figure 10.7.

Figure 10.7 - Executing the script param.py

10.3.5 Call a stored procedure

To call a stored procedure from a Python application, you can follow the steps below:

1. Create a database connection object by connecting to the database with the
ibm_db.connect function.

2. Invoke the stored procedure by calling the function ibm_db.callproc, which returns a
tuple with the first item as the statement object and the rest of items as the modified
copy of the parameters. The statement object contains the result sets returned from a
stored procedure if there is any, while the OUT and INOUT parameters are replaced with
possibly new values, and the input parameters are left unchanged. If there is multiple
result sets, you can call ibm_db.next_result method by passing the original
statement resource as the first argument, for example stmt1 =
ibm_db.next_result(stmt), to move to the next result set.

The syntax of ibm_db.callproc is:

tuple ibm_db.callproc (IBM_DBConnection connection, string procname,
[,tuple parameters])

 Table 10.7 describes the parameters of ibm_db.callproc

356 Getting started with DB2 application development

Name Description

connection A valid database connection object as returned from
ibm_db.connect()

procname The name of the stored procedure to call

parameters Optional: the tuple of parameters must contain one entry for each
parameter that the procedure expects. It’s optional if the stored
procedure has no parameter.

Table 10.7 - Parameters for function ibm_db.callproc

Note:

At the time of writing, the function ibm_db.callproc is a new function to add support for
calling a stored procedure. You should use this function to call any store procedure. The
functions prepare/bind_param/execute can also be used to call a stored procedure
with IN parameters via the CALL statement.

For example, say you have a SQL procedure sp_get_employees as defined in Listing
10.8.

CREATE PROCEDURE sp_get_employees (IN dept_no CHAR(3), OUT dept_name
VARCHAR(36))

DYNAMIC RESULT SETS 1

BEGIN

DECLARE emp_cursor CURSOR WITH RETURN TO CLIENT FOR SELECT firstnme,

 lastname FROM employee WHERE workdept=dept_no;

 OPEN emp_cursor;

 SELECT deptname INTO dept_name FROM department WHERE deptno=dept_no;

END @

Listing 10.8 – sp_get_employees.db2

The above SQL procedure has two parameters, dept_no is the input parameter and
dept_name is the output parameter, and it is also to return one result set as defined in the
cursor emp_cursor to the client.

You can then call the stored procedure as illustrated in Listing 10.9.

 deptno=’A00’

 deptname=’’

Chapter 10 - Application development with Python 357

(1) stmt, deptno,deptname=ibm_db.callproc(conn, "sp_get_employees",

 (deptno, deptname))

(2) mytuple = ibm_db.fetch_tuple(stmt)

 while mytuple != False:

 print "First Name is : %s, Last Name is : %s" % (mytuple[0],

 mytuple[1])

 mytuple = ibm_db.fetch_tuple(stmt)

Listing 10.9 – calling function ibm_db.callproc

Where:

(1) deptno is the Python variable containing the input value for the parameter dept_no of
the stored procedure, and deptname is the variable to contain the output value of the
parameter dept_name. After successful execution, the function returns a statement
object in the variable stmt, and the variable deptname is modified to have the value of
the output parameter while the input variable deptno is untouched. Since the SQL
procedure is also returning one result set, the statement object will contain the result set
returned from the SQL procedure.

(2) Fetch the rows from the result set associated with the statement object as you have
done in previous sections.

Above code snippets are part of the script sp.py accompanying the book. If you want to
test the code snippets, you need to run the following commands to first create the SQL
procedure sp_get_lastname as defined in the db2 script sp_get_employees.db2
accompanying the book:

db2 connect to sample

db2 -td@ -f sp_get_employees.db2

db2 terminate

You should also modify the user ID and password in the sp.py script appropriately and
run it as:

python sp.py

The result of executing the script sp.py is illustrated in Figure 10.8:

358 Getting started with DB2 application development

Figure 10.8 - Executing the script sp.py

10.4 Exercises
In this exercise, you will practice writing a small Python script to access data in the SAMPLE
database.

1. Log on to the server as the instance owner (for example db2inst1 on Linux or
db2admin on Windows)

2. Run the following command to create the SAMPLE database if you haven’t done so
before: db2sampl

3. Write a Python script to print out all the employees who are working in the department
of “SOFTWARE SUPPORT”. At the same time increase the salary by 5% for each
employee who was hired before '1996-01-01' in this department.

4. If you have problems creating this script, the solution is provided in the script
python_ex1.py accompanying the book. You can modify the user ID and password
in the script appropriately and test it out as follows:

python python_ex1.py

10.5 Summary
In this chapter, we have discussed different types of Python DB2 drivers/adapters and APIs
that you can use to access DB2 data servers from Python applications. Details are also
provided on how to execute SQL statements and call stored procedures from Python
applications by calling the ibm_db driver/APIs.

10.6 Review questions
1. What are the drivers or adapters that a Python application can use to access a DB2

database?

Chapter 10 - Application development with Python 359

2. What’s the main difference between ibm_db and ibm_db_dbi drivers?

3. Which drivers or adapters support using Python functions and expressions to construct
a query, instead of using normal SQL statements?

4. Which of the following APIs provides the best support for DB2 advanced features, such
as using pureXML and accessing metadata?

A. ibm_db

B. ibm_db_dbi

C. ibm_db_sa

D. ibm_db_django

E. None of the above

5. Which of the following are the steps you can use to execute a SQL with parameter
marker?

A. prepare, bind_param, execute

B. prepare, bind_variable, exec_immediate

C. prepare, bind_param, exec_immediate

D. prepare, execute, fetchrow

E. None of the above

6. Which of the following functions can be used to execute a SQL directly without first
preparing it?

A. execute

B. exec_immediate

C. execute_immediate

D. execute_imm

E. None of the above

7. Which of the following functions can be used to call a stored procedure?

A. exec_proc

B. execute_call

C. callproc

D. procall

E. None of the above

A
Appendix A – Solutions to the review
questions
Chapter 1

1. Stored procedures improve performance because they reduce network traffic.

2. Users can extend the SQL language by developing User-defined functions (UDFs)

3. CLI is a superset of ODBC

4. Static SQL knows the entire SQL statement at precompile time. Dynamic SQL will
get this information at runtime.

5. Type 2 requires a DB2 client to be installed

6. D. All of the above

7. E. All of the above

8. C. ODBC and JDBC always use dynamic SQL

9. C. DB2 .NET Data provider

10. D. ibm_db_python

Chapter 2

1. Relational database technology has been available for close to 30 years. The
technology is very robust, reliable, secure and good for performance to retrieve
information. XML is data like other data, so it makes sense to store it in a
database, but making some changes/modifications to the database engine so it
can handle XQuery.

2. The two types are: XML-enabled databases ("old" technology), and Native XML
databases (like DB2)

3. pureXML characteristics: (1) XML has been stored in the database in hierarchical
format (which is the format of XML documents). (2) There is a second part of the
DB2 engine that can handle XML natively using XQuery/XPath.

362 Getting started with DB2 application development

4. Normally your code will be smaller which means there would be less instructions to
execute, and less instructions to maintain. Your code is smaller because there is
no need to do any parsing in your code to build a tree in order to navigate through
an XML document. The parsing has been done when the XML document was first
inserted into the database.

5. There are two ways: (1) Simply use a SQL INSERT statement, where you pass the
XML document in single quotes. (2) Use the DB2 IMPORT utility when you want to
insert from a file.

6. E. All of the above. SQL by itself, can also retrieve XML data, only that it would
retrieve the entire XML document. If you only want part of it, then you must use
SQL/XML or XQuery.

7. E. XMLNAVIGATE

8. C. XMLQUERY is not an XQuery function but an SQL/XML function

9. C. Use the TRANSFORM expression

10. E. None of the above. XML indexes can also be created for values. An XML
Schema repository is stored inside the DB2 database, and an XML document can
be validated with a BEFORE trigger.

Chapter 3

1. The benefits of stored procedures are:

 Reduces network traffic; therefore allow for better performance

 Centralizes logic in the database, therefore generic stored procedures can be
written that can be used by many client applications

 Allows users to perform operations on objects they don't have explicit access
to. Through the stored procedure, there is controlled access.

2. No. Scalar UDFs cannot perform UPDATE operations. For such operations, use a
TABLE function.

3. You can invoke a scalar UDF in two ways:

 Using values statement

 Using a SELECT statement

4. No. A BEFORE trigger cannot UPDATE. Before triggers can be used for checking
validity of your data before INSERTs. For UPDATE operations as part of the
trigger action, use AFTER triggers.

Appendix B - Troubleshooting 363

5. The SPECIFIC keyword provides a unique name to a stored procedure. Stored
procedures can be overloaded, and using this unique name can help manage the
procedures.

6. B. Present. This is not a valid trigger

7. D. IBM Data Studio cannot be used to create triggers.

8. E. Both C and D are valid. The 'AS' keyword is optional.

9. B. XML is used as the underlying technology for Web services regardless of
whether they are SOAP or REST based.

10. B. Starting with DB2 9.7, UDFs and Triggers have full SQL PL support. Prior to
DB2 9.7, they only supported inline SQL PL, a subset of the SQL PL language.

Chapter 4

1. JDBC is the standard to access databases using Java for dynamic SQL. SQLJ is
the standard for embedded static SQL statements.

2. JDBC Type 2 and Type 4

3. db2jcc.jar is the driver file that is JDBC 3.0 specification compliant, while
db2jcc4.jar supports part of JDBC 4.0 specification and earlier.

4. An iterator in SQLJ is equivalent to a result set in JDBC. It returns several rows
that can be processed on a loop by the program.

5. A default context is a context that would be used by default when not specified in a
SQLJ program. For example, if you specify that 'ctx1' is the default connection
context, and later on you don't provide it in your statements, then this default
context is used.

6. E. None of the above. db2jcc.jar and db2jcc4.jar both include a JDBC Type 2 and
JDBC Type 4 driver

7. D. All of the above. pureQuery can also be used even if an ORM is in place. It
compliments the ORM.

8. D. JDBC, SQLJ, and pureQuery can be combined

9. D. ResultSetStatement is not a valid method.

10. A. Executive context does not exist. It should be execution context.

Chapter 5

1. CLI/ODBC is an alternative to embedded dynamic SQL, but unlike embedded
SQL, it does not require host variables or a precompiler. Applications can be run

364 Getting started with DB2 application development

against a variety of databases without having to be compiled against each of these
databases.

2. A cursor is a named control structure used by an application program to point to a
specific row within an ordered set of rows.

3. A parameter marker, denoted by a question mark (?), is a place holder in an SQL
statement whose value is obtained during statement execution.

4. An ODBC/CLI handle is a pointer to a variable which is used for passing
references to the variable between parts of the program.

5. SQL_SUCCESS

 SQL_SUCCESS_WITH_INFO

 SQL_INVALID_HANDLE

 SQL_ERROR

6. C. File extension of embedded C++ application on windows will be .sqx

7. B. db2bfd –s is the command that can dump the SQL statements from a bind file

8. C. db2 list system odbc data sources

9. A. SQLAllocHandle () API is used for allocating all the handles.

10. A. Allocate environment handle -> allocate connection handle -> allocate statement
handle -> free statement handle-> free connection handle -> free environment
handle is the correct flow of handle allocations.

Chapter 6

1. The FieldCount property returns the total number of columns in the current row while
HasRows property indicates whether DataReader has one or more rows by returning
true or false

2. In Step 1 for the connectivity settings, you need to additionally catalog the DB2
database as an ODBC data source.

3. Data Access in ADO.NET relies on two components: DataSet and Data Provider.

DataSet

The dataset is a disconnected, in-memory representation of data. It can be considered
as a local copy of the relevant portions of the database. The DataSet is persisted in
memory and the data in it can be manipulated and updated independent of the
database. When the use of this DataSet is finished, changes can be made back to the
central database for updating. The data in DataSet can be loaded from any valid data
source like DB2.

Data Provider

Appendix B - Troubleshooting 365

The Data Provider is responsible for providing and maintaining the connection to the
database. A DataProvider is a set of related components that work together to provide
data in an efficient and performance driven manner. Each DataProvider consists of
component classes.

4. You can run 32-bit .NET applications on a 64-bit Windows instance, using a 32-bit
edition of the IBM Data Server Provider for .NET. To get a 32-bit IBM Data Server
Provider for .NET on your 64–bit computer, you can install the 32–bit version of IBM
Data Server Driver Package.

5. To use the IBM Database Add-Ins for Visual Studio, download it from
http://www.ibm.com/db2/express/download.html. After you install a DB2 product,
install the IBM Database Add-Ins for Visual Studio by double clicking on the
executable db2exc_vsai_xxx_WIN_x86.exe, where xxx represents a version
number that matches the version number of the DB2 server.

6. A

7. C

8. D

9. B

10. C

Chapter 7

1. Ruby on Rails is a popular framework for developing Web applications. It is based on the
MVC architecture, and follows several philosophies such as "Convention over
configuration" and "Don't repeat yourself" which allows developers to quickly deliver nice
applications.

2. ibm_db is a gem that includes the Ruby driver and Rails adapter for DB2. It can be
installed using this command:

gem install ibm_db

3. Rails' support for DB2 is provided through the ibm_db gem. This gem contains a driver
(written in C) that allows Ruby to communicate with DB2, and an adapter written in Ruby
that enables ActiveRecord to work with DB2. ActiveRecord is the ORM layer that maps
object oriented classes to relational tables.

4. This file allows you to configure your connection to a DB2 database by specifying the
host name, port, user ID, password, adapter name, and so on.

5. Yes, we can. DB2 enables the use of XQuery, so any data in your XML document is
easily accessible.

6. C. The older versions of the same library must be deleted before the new one is installed

7. A. Ruby. A gem is a standardized package format. Ruby is the programming language.

http://www.ibm.com/db2/express/download.html?S_CMP=ECDDWW01&S_TACT=DOCBOOK07�

366 Getting started with DB2 application development

8. C. IBM_DB adapter utilizes the IBM Driver for ODBC and CLI to connect to IBM data
servers.

9. A. The Account is optional.

10. B.

Chapter 8

1. As the name suggests, the non persistent connection disconnects and frees up the
connection resources after each db2_close, or connection resource is set to NULL, or
the script ends.

In the case of persistent connections, the connection resources are not freed up after
a db2_close or the script is exited. Whenever a new connection is requested, PHP
tries to reuse the connection with the same credentials

2. Connection pooling helps database application performance due to the reduction of
new connections by reusing the old connections established before. It can be beneficial
when the connections made have a short duration.

3. Enable PHP support in Apache HTTP Server 2.x by adding the following lines to the
httpd.conf file, where phpdir refers to the PHP install directory:

LoadModule php5_module 'phpdir/php5apache2.dll'

AddType application/x-httpd-php .php

PHPIniDir 'phpdir'

4. To determine the configuration file path issue the php -i command and look for the

php.ini keyword

5. The ibm_db2 extension API makes porting an application that was previously written
for Unified ODBC almost as easy as globally changing the “odbc_” function name to
“db2_” throughout the source code of your application.

6. D

7. B

8. D

9. C

10. A

Chapter 9

1. Perl Database Interface (DBI)

Appendix B - Troubleshooting 367

2. The standard Perl DBI provides the database interface to the Perl applications, while in
the background it will load the DBD drivers and the DBD drivers are the ones who
actually do the work on behalf of databases.

3. C

4. A

5. C

Chapter 10

1. ibm_db, ibm_db_dbi, ibm_db_sa, ibm_db_django

2. ibm_db implements a set of proprietary database APIs defined by IBM itself, while
ibm_db_dbi is a wrapper built upon ibm_db driver to support the standard Python
Database API specification

3. ibm_db_sa and ibm_db_django

4. A

5. A

6. B

7. C

B
Appendix B – Troubleshooting
This appendix discusses how to troubleshoot problems that may be encountered when working with DB2.
Figure B.1 provides a brief overview of the actions to take should a problem arise.

Problem!

db2 ? <code>

Review Administration
Notification Log

Review db2diag.log

Search for APARs, or
known problems

Review system with
Operating System

commands

Collect Traces, dumps,
trap files, core files and
contact IBM DB2 Tech

Support

Figure B.1 – Troubleshooting overview

Note:

370 Getting started with DB2 application development

For more information about troubleshooting, watch this video:
http://www.channeldb2.com/video/video/show?id=807741:Video:4462

B.1 Finding more information about error codes
To obtain more information about an error code received, enter the code prefixed by a question mark in
the Command Editor input area and click the Execute button. This is shown in Figure B.2.

Figure B.2 – Finding more information about DB2 error codes

The question mark (?) invokes the DB2 help command. Below are several examples of how to invoke it
for help if you receive, for example, the SQL error code “-104”. All of the examples below are equivalent.

db2 ? SQL0104N

db2 ? SQL104N

db2 ? SQL-0104

db2 ? SQL-104

db2 ? SQL-104N

B.2 SQLCODE and SQLSTATE
An SQLCODE is a code received after every SQL statement is executed. The meanings of the values are
summarized below:

 SQLCODE = 0; the command was successful

 SQLCODE > 0; the command was successful, but returned a warning

 SQLCODE < 0; the command was unsuccessful and returned an error

The SQLSTATE is a five-character string that conforms to the ISO/ANSI SQL92 standard. The first two
characters are known as the SQLSTATE class code:

http://www.channeldb2.com/video/video/show?id=807741:Video:4462�

Appendix B - Troubleshooting 371

 A class code of 00 means the command was successful.

 A class code of 01 implies a warning.

 A class code of 02 implies a not found condition.

 All other class codes are considered errors.

B.3 DB2 Administration Notification Log
The DB2 administration notification log provides diagnostic information about errors at the point of failure.
On Linux and UNIX platforms, the administration notification log is a text file called <instance name>.nfy
(e.g. “db2inst.nfy”). On Windows, all administration notification messages are written to the Windows
Event Log.

The DBM configuration parameter notifylevel allows administrators to specify the level of information
to be recorded:

 0 -- No administration notification messages captured (not recommended)

 1 -- Fatal or unrecoverable errors

 2 -- Immediate action required

 3 -- Important information, no immediate action required (the default)

 4 -- Informational messages

B.4 db2diag.log
The db2diag.log provides more detailed information than the DB2 Administration notification log. It is
normally used only by IBM DB2 technical support or experienced DBAs. Information in the db2diag.log
includes:

 The DB2 code location reporting an error.

 Application identifiers that allow you to match up entries pertaining to an application on the
db2diag.logs of servers and clients.

 A diagnostic message (beginning with "DIA") explaining the reason for the error.

 Any available supporting data, such as SQLCA data structures and pointers to the location of any
extra dump or trap files.

On Windows (other than Vista), the db2diag.log is located by default under the directory:

C:\Documents and Settings\All Users\Application
Data\IBM\DB2\DB2COPY1\<instance name>

On Windows Vista, the db2diag.log is located by default under the directory:

C:\ProgramData\IBM\DB2\DB2COPY1\<instance name>

On Linux/UNIX, the db2diag.log is located by default under the directory:

372 Getting started with DB2 application development

/home/<instance_owner>/sqllib/db2dump

The verbosity of diagnostic text is determined by the dbm cfg configuration parameter DIAGLEVEL. The
range is 0 to 4, where 0 is the least verbose, and 4 is the most. The default level is 3.

B.5 CLI traces
For CLI, Java, PHP, and Ruby on Rails applications, you may turn on the CLI trace facility to troubleshoot
your application. This can be done by making changes to the db2cli.ini file at the server where your
application is running. Typical entries in the db2cli.ini file are shown below in Listing B.1.

[common]

trace=0

tracerefreshinterval=300

tracepathname=/path/to/writeable/directory

traceflush=1

Listing B.1 - db2cli.ini file entries to turn on CLI Tracing

Low level tracing (db2trc) is also available, but this is typically only useful for DB2 technical support.

B.6 DB2 Defects and Fixes
Sometimes a problem you encounter may be caused by a defect in DB2. IBM regularly releases fix packs
which contain code fixes for defects (APARs). The fix pack documentation contains a list of the fixes
contained in the fix pack. When developing new applications, we always recommend using the latest fix
pack to benefit from the latest fixes. To view your current version and fix pack level: from the Control
Center, select the About option from the Help menu; or from the Command Window, type db2level.
Note that fix packs and official IBM DB2 technical support are not offered with DB2 Express-C, With DB2
Express-C, fixes are incorporated into the image itself rather than applied as fix packs.

References
[1] ZIKOPOULOS, P. IBM® DB2® Universal Database™ and the Microsoft® Excel Application
Developer… for Beginners, dbazine.com article, April 2005 http://www.dbazine.com/db2/db2-
disarticles/zikopoulos15

[2] ZIKOPOULOS, P. DB2 9 and Microsoft Access 2007 Part 1: Getting the Data..., Database Journal
article, May 2008 http://www.databasejournal.com/features/db2/article.php/3741221

[3] BHOGAL, K. Use Microsoft Access to interact with your DB2 data, developerWorks article, May 2006.
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0605bhogal/

[4] CHUN, J., CIRONE P. DB2 packages: Concepts, examples, and common problems, developerWorks
article, June 2006 http://www.ibm.com/developerworks/data/library/techarticle/dm-0606chun/index.html

[5] CHEN Whei-Jen et all. DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and
.NET August 2006 - SG24-7301-00 http://www.redbooks.ibm.com/abstracts/sg247301.html?Open

Resources

Web sites

1. DB2 Express-C web site:
www.ibm.com/db2/express
Use this web site to download the image for DB2 Express-C servers, DB2 clients, DB2 drivers,
manuals, access to the team blog, mailing list sign up, etc.

2. DB2 Express-C forum: www.ibm.com/developerworks/forums/dw_forum.jsp?forum=805&cat=19
Use the forum to post technical questions when you cannot find the answers in the manuals
yourself.

3. DB2 Information Center
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp
The information center provides access to the online manuals. It is the most up to date source of
information.

4. developerWorks
http://www-128.ibm.com/developerworks/db2
This Web site is an excellent resource for developers and DBAs providing access to current
articles, tutorials, etc. for free.

5. alphaWorks®
http://www.alphaworks.ibm.com/
This Web site provides direct access to IBM's emerging technology. It is a place where one can find
the latest technologies from IBM Research.

http://www.dbazine.com/db2/db2-disarticles/zikopoulos15�
http://www.dbazine.com/db2/db2-disarticles/zikopoulos15�
http://www.databasejournal.com/features/db2/article.php/3741221�
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0605bhogal/�
http://www.ibm.com/developerworks/data/library/techarticle/dm-0606chun/index.html�
http://www.redbooks.ibm.com/abstracts/sg247301.html?Open�
http://www.ibm.com/db2/express/download.html?S_CMP=ECDDWW01&S_TACT=DOCBOOK07�
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=805&cat=19�
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp�
http://www-128.ibm.com/developerworks/db2�
http://www.alphaworks.ibm.com/�

374 Getting started with DB2 application development

6. planetDB2

www.planetDB2.com
This is a blog aggregator from many contributors who blog about DB2.

7. DB2 Technical Support

If you purchased the 12 months subscription license of DB2 Express-C, you can download fixpacks
from this Web site.
http://www.ibm.com/software/data/db2/support/db2_9/

8. ChannelDB2

ChannelDB2 is a social network for the DB2 community. It features content such as DB2 related
videos, demos, podcasts, blogs, discussions, resources, etc. for Linux, UNIX, Windows, z/OS, and
i5/OS.
http://www.ChannelDB2.com/

http://www.planetdb2.com/�
http://www-306.ibm.com/software/data/db2/support/db2_9/�
http://www.channeldb2.com/�

Resources 375

Books
1. Free Redbook: DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Whei-Jen Chen, John Chun, Naomi Ngan, Rakesh Ranjan, Manoj K. Sardana,
August 2006 - SG24-7301-00
http://www.redbooks.ibm.com/abstracts/sg247301.html?Open

2. Understanding DB2 – Learning Visually with Examples V9.5
Raul F. Chong, et all. January 2008
ISBN-10: 0131580183

3. DB2 9: pureXML overview and fast start by Cynthia M. Saracco, Don Chamberlin, Rav Ahuja
June 2006 SG24-7298
http://www.redbooks.ibm.com/abstracts/sg247298.html?Open

4. DB2® SQL PL: Essential Guide for DB2® UDB on Linux™, UNIX®, Windows™, i5/OS™, and
z/OS®, 2nd Edition
Zamil Janmohamed, Clara Liu, Drew Bradstock, Raul Chong, Michael Gao, Fraser McArthur,
Paul Yip
ISBN: 0-13-100772-6

5. Free Redbook: DB2 pureXML Guide

Whei-Jen Chen, Art Sammartino, Dobromir Goutev, Felicity Hendricks, Ippei Komi, Ming-Pang
Wei, Rav Ahuja, Matthias Nicola. August 2007
http://www.redbooks.ibm.com/abstracts/sg247315.html?Open

6. Information on Demand - Introduction to DB2 9 New Features

Paul Zikopoulos, George Baklarz, Chris Eaton, Leon Katsnelson
ISBN-10: 0071487832
ISBN-13: 978-0071487832

Contact emails
General DB2 Express-C mailbox: db2x@ca.ibm.com

General DB2 on Campus program mailbox: db2univ@ca.ibm.com

http://www.redbooks.ibm.com/abstracts/sg247301.html?Open�
http://www.redbooks.ibm.com/abstracts/sg247298.html?Open�
http://www.redbooks.ibm.com/abstracts/sg247315.html?Open�
mailto:db2x@ca.ibm.com�
mailto:db2univ@ca.ibm.com�

Getting started with DB2 application development couldn't be
easier.

Read this book to:

 Discover DB2® application development using DB2 Express-C
 Write SQL, XQuery, and understand pureXML® technology
 Learn how to develop DB2 stored procedures, functions and data

Web services
 Learn how to work with DB2 and JavaTM, C/C++, .NET, PHP, Ruby on

Rails, Perl, and Python
 Troubleshoot DB2 database-related problems
 Practice with hands-on exercises

DB2 Express-C from IBM is the no-charge edition of DB2 data server for managing
relational and XML data with ease. No-charge means DB2 Express-C is free to
download, free to develop your applications, free to deploy into production, and even
free to embed and distribute with your solution. And, DB2 does not place any
artificial limits on the size of databases, number of databases, or number of users.

DB2 Express-C runs on Windows®, Linux®, Solaris, and Mac OS X systems, and
provides application drivers for a variety of programming languages and frameworks
including C/C++, Java, .NET, Ruby on Rails, PHP, Perl, and Python. If you require
even greater scalability or more advanced functionality, you can seamlessly deploy
applications built using DB2 Express-C to other DB2 editions such as DB2 Workgroup
and DB2 Enterprise.

This free edition of DB2 is ideal for developers, consultants, ISVs, DBAs, students, or
anyone who intends to develop, test, deploy, or distribute database applications.
Join the growing DB2 Express-C user community today and take DB2 Express-C for
a test drive. Start discovering how you can create next generation applications and
deliver innovative solutions.

To learn more or download DB2 Express-C, visit ibm.com/db2/express

To socialize and watch related videos, visit channelDB2.com

This book is part of the DB2 on Campus book series, free eBooks for the community.
Learn more at db2university.com

Price: 24.99USD

http://www.ibm.com/db2/express/download.html?S_CMP=ECDDWW01&S_TACT=DOCBOOK07�
http://www.channeldb2.com/�
http://www.db2university.com/�

	Preface
	Who should read this book?
	How is this book structured?
	A book for the community
	Conventions
	What’s next?

	About the authors
	Contributors
	Acknowledgements
	Chapter 1 – Introduction to DB2 application development
	1.1 DB2 application development: The big picture
	1.2 Server-side development
	1.2.1 Stored procedures
	1.2.2 User-defined functions
	1.2.3 Triggers

	1.3 Client-side development
	1.3.1 Embedded SQL
	1.3.2 Static SQL vs. Dynamic SQL
	1.3.3 CLI and ODBC
	1.3.4 JDBC, SQLJ and pureQuery
	1.3.5 OLE DB
	1.3.6 ADO.NET
	1.3.7 PHP
	1.3.8 Ruby on Rails
	1.3.9 Perl
	1.3.10 Python

	1.4 XML and DB2 pureXML
	1.5 Web services
	1.6 Administrative APIs
	1.7 Development tools
	1.7.1 Visual Studio
	1.7.2 Eclipse
	1.7.3 Access and Excel

	1.8 Development environments
	1.8.1 DB2 Offerings on the Cloud
	1.8.2 DB2 Express-C virtual appliance for VMWare

	1.9 Sample programs
	1.10 Exercises
	1.11 Summary
	1.12 Review questions

	Chapter 2 – DB2 pureXML
	2.1 Using XML with databases
	2.2 XML databases
	2.2.1 XML-enabled databases
	2.2.2 Native XML databases

	2.3 XML in DB2
	2.3.1 pureXML technology advantages
	2.3.2 XPath basics
	2.3.3 XQuery basics
	2.3.4 Inserting XML documents
	2.3.5 Querying XML data
	2.3.6 Joins with SQL/XML
	2.3.7 Joins with XQuery
	2.3.8 Update and delete operations
	2.3.9 XML indexing

	2.4 Working with XML Schemas
	2.4.1 Registering your XML Schemas
	2.4.2 XML Schema validation
	2.4.3 Other XML support

	2.5 Exercises
	2.6 Summary
	2.7 Review questions

	Chapter 3 – Stored procedures, UDFs, triggers, and data Web services
	3.1 Stored procedures: The big picture
	3.2 Working with IBM Data Studio
	3.2.1 Creating a project
	3.2.2 Creating a stored procedure

	3.3 SQL PL stored procedures basics
	3.3.1 Stored procedure structure
	3.3.2 Optional stored procedure attributes
	3.3.3 Parameters
	3.3.4 Comments in an SQL PL stored procedure
	3.3.5 Compound statements
	3.3.6 Variable declaration
	3.3.7 Assignment statements
	3.3.8 Cursors
	3.3.9 Flow control
	3.3.10 Errors and condition handlers
	3.3.11 Calling stored procedures
	3.3.12 Dynamic SQL

	3.4 Java Stored Procedures
	3.5 User-defined functions: The big picture
	3.5.1 Scalar functions
	3.5.2 Table functions

	3.6 Triggers: The big picture
	3.6.1 Types of triggers

	3.7 Data Web services
	3.8 Exercises
	3.9 Summary
	3.10 Review questions

	Chapter 4 – Application development with Java
	4.1 Java - DB2 applications: The big picture
	4.2 Setting up the environment
	4.2.1 DB2 JDBC and SQLJ drivers

	4.3 JDBC Programming
	4.3.1 Connecting to a DB2 database
	4.3.2 Executing SQL statements
	4.3.3 Receiving results
	4.3.4 Handling SQL errors and warnings
	4.3.5 Closing the connection
	4.3.6 Working with XML

	4.4 SQLJ Programming
	4.4.1 SQLJ Syntax
	4.4.2 Connection contexts
	4.4.3 Execution contexts
	4.4.4 Iterators
	4.4.5 Working with JDBC and SQLJ combined
	4.4.6 Preparing an SQLJ program

	4.5 pureQuery
	4.6 Exercises
	4.7 Summary
	4.8 Review questions

	Chapter 5 – Application development with C/C++
	5.1 C/C++ DB2 applications: The big picture
	5.2 Setting up the environment
	5.2.1 Supported compilers
	5.2.2 Setting up the C/C++ environment

	5.3 Developing a C/C++ application with embedded SQL
	5.3.1 Source file extensions
	5.3.2 SQL data types in C/C++
	5.3.3 Steps to develop an embedded SQL C/C++ application
	5.3.4 Sample embedded SQL C/C++ application
	5.3.5 Building embedded SQL C/C++ applications

	5.5 Developing a C/C++ application with ODBC/CLI
	5.5.1 Additional environment setup for CLI/ODBC applications
	5.5.2 Handles
	5.5.3 Steps to develop an ODBC/CLI application
	5.5.4 Building ODBC/CLI applications

	5.6 Working with XML in C/C++ applications with DB2
	5.7 Exercises
	5.8 Summary
	5.9 Review questions

	Chapter 6 – Application Development with .NET
	6.1 .NET with DB2 applications: The big picture
	6.2 The ADO.NET data architecture
	6.2.1 Data providers for ADO.NET
	6.2.2 DataSet for ADO.NET

	6.3 Setting up the environment
	6.3.1 IBM Database Add-Ins for Visual Studio
	6.3.2 Using Visual Studio with DB2

	6.4 Developing .NET - DB2 applications
	6.4.1 Connecting to a DB2 database with the IBM Data Server Provider for .NET
	6.4.2 Connecting to a DB2 database with the OLE DB .NET Data Provider

	6.5 Data Manipulation using .NET
	6.5.1 Building and Running the sample program

	6.6 Exercises
	6.7 Summary
	6.8 Review questions

	Chapter 7 - Application development with Ruby on Rails
	7.1 Ruby on Rails applications with DB2: The big picture
	7.2 Setting up the RoR environment
	7.2.1 Installing Ruby
	7.2.2 Installing Rails
	7.2.3 Creating your first RoR application and starting the Web server
	7.2.4 Working with a DB2 database: The ibm_db gem

	7.3 Developing RoR applications
	7.3.1 Developing a sample application: A book catalog
	7.3.2 Customizing the layout

	7.4 Exercises
	7.5 Summary
	7.6 Review questions

	Chapter 8 – Application development with PHP
	8.1 PHP - DB2 Applications: The big picture
	8.2 Setting up the environment
	8.2.1 Setting up the PHP environment manually

	8.3 PHP - DB2 application development
	8.3.1 PHP extensions to use with DB2
	8.3.2 PHP development with the ibm_db2 extension
	8.3.3 PHP development with PDO_IBM/PDO_ODBC

	8.4 Optimizing DB2 usage with PHP
	8.4.1 Design considerations for increasing the PHP-DB2 performance

	8.5 Exercises
	8.6 Summary
	8.7 Review questions

	Chapter 9 – Application development with Perl
	9.1 Perl - DB2 applications: The big picture
	9.2 Setting up the environment
	9.2.1 Perl adapters and drivers

	9.3 Developing Perl DB2 applications
	9.3.1 Connecting to a DB2 database
	9.3.2 Retrieving data
	9.3.3 Inserting, updating, and deleting data
	9.3.4 Executing a SQL statement with parameter markers
	9.3.5 Calling a stored procedure

	9.4 Exercises
	9.5 Summary
	9.6 Review questions

	Chapter 10 –Application development with Python
	10.1 Python - DB2 applications: The big picture
	10.1.1 IBM defined API and ibm_db driver
	10.1.2 Python Database API and ibm_db_dbi driver
	10.1.3 SQLAlchemy and ibm_db_sa adapter
	10.1.4 Django framework and ibm_db_django adapter

	10.2 Setting up the environment
	10.2.1 Python adapters & drivers

	10.3 Developing Python DB2 applications
	10.3.1 Connecting to a DB2 database
	10.3.2 Retrieving data
	10.3.3 Inserting, updating and deleting data
	10.3.4 Execute a SQL statement with parameter markers
	10.3.5 Call a stored procedure

	10.4 Exercises
	10.5 Summary
	10.6 Review questions

	Appendix A – Solutions to the review questions
	Appendix B – Troubleshooting
	B.1 Finding more information about error codes
	B.2 SQLCODE and SQLSTATE
	B.3 DB2 Administration Notification Log
	B.4 db2diag.log
	B.5 CLI traces
	B.6 DB2 Defects and Fixes

	References
	Resources
	Web sites
	Books
	Contact emails

