
“svnbook” — 2005/4/14 — 14:55 — page i — #1i
i

i
i

i
i

i
i

Subversion Version Control

B

RUCE

 P

ERENS

’ O

PEN

 S

OURCE

 S

ERIES

http://www.phptr.com/perens

◆

Java™ Application Development on Linux®

Carl Albing and Michael Schwarz

◆

C++ GUI Programming with Qt 3

Jasmin Blanchette and Mark Summerfield

◆

Managing Linux Systems with Webmin: System Administration and Module Development

Jamie Cameron

◆

The Linux Book

David Elboth

◆

Understanding the Linux Virtual Memory Manager

Mel Gorm8n

◆

PHP 5 Power Programming

Andi Gutm8ns, Stig Bakken, and Derick Reth8ns

◆

Linux® Quick Fix Notebook

Peter Harrison

◆

Linux Desk Reference, Second Edition

Scott Hawkins

◆

Implementing CIFS: The Common Internet File System

Christopher Hertel

◆

Open Source Security Tools: A Practical Guide to Security Applications

Tony Howlett

◆

Apache Jakarta CommonsReusable Java™ Components

Will Iverson

◆

Embedded Software Development with eCos

Anthony Massa

◆

Rapid Application Development with Mozilla

Nigel McFarlane

◆

Subversion Version Control: Using the Subversion Version Control System in Development
Projects

William Nagel

◆

Linux Assembly Language Programming

Bob Neveln

◆

Intrusion Detection with SNORT: Advanced IDS Techniques Using SNORT, Apache, MySQL,
PHP, and ACID

Rafeeq Ur Rehm8n

◆

Cross-Platform GUI Programming with wxWidgets

Julian Smart and Kevin Hock with Stefan Csomor

◆

Samba-3 by Example: Practical Exercises to Successful Deployment

John H. Terpstra

◆

The Official Samba-3 HOWTO and Reference Guide

 John H. Terpstra and Jelmer R. Vernooij, Editors

◆

Real World Linux Security, Second Edition

Bob Toxen

perens_series_7x9.25.fm Page 1 Tuesday, March 29, 2005 4:29 PM

“svnbook” — 2005/4/14 — 14:55 — page iii — #2i
i

i
i

i
i

i
i

Subversion Version Control

Using The Subversion Version Control System in

Development Projects

William Nagel

Prentice Hall Professional Technical Reference

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

“svnbook” — 2005/4/14 — 14:55 — page iv — #3i
i

i
i

i
i

i
i

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the U.S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.phptr.com

Library of Congress Cataloging-in-Publication Data

Nagel, William A.
Subversion version control : using the Subversion version control system in development projects

/ William Nagel.
p. cm.
Includes index.
ISBN 0-13-185518-2 (pbk. : alk. paper)
1. Computer software–Development. 2. Open source software. I. Title.
QA76.76.D47N35 2005
005.1–dc22

2005005872

Copyright © 2005 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction, stor-
age in a retrieval system, or transmission in any form or by any means, electronic, mechanical, pho-
tocopying, recording, or likewise.

For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
One Lake Street
Upper Saddle River, NJ 07458

ISBN 0-13-185518-2
Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.
First printing, May 2005

“svnbook” — 2005/4/14 — 14:55 — page i — #4i
i

i
i

i
i

i
i

To Sara,

and the wonderful life we’ll have together

“svnbook” — 2005/4/14 — 14:55 — page ii — #5i
i

i
i

i
i

i
i

“svnbook” — 2005/4/14 — 14:55 — page vii — #6i
i

i
i

i
i

i
i

Contents

Preface xvii

Acknowledgments xxi

Part I An Introduction to Version Control and Subversion 1

Chapter 1 An Introduction to Version Control 3

1.1 What Is Version Control? 4

1.2 Why Use It? 4

1.2.1 Data Integrity 4

1.2.2 Productivity 5

1.2.3 Accountability 5

1.2.4 Software Engineering Process Support 5

1.2.5 Development Branching 6

1.2.6 Record Keeping 6

1.2.7 Distribution of Work 6

1.2.8 Rapid Development 7

1.3 The Elements of Version Control 7

1.3.1 The Repository and Working Directory 7

1.3.2 Revisions 8

1.3.3 Logs 9

1.3.4 Tagging 10

1.3.5 Branching 10

1.3.6 Locking versus Merging 11

1.4 Summary 12

vii

“svnbook” — 2005/4/14 — 14:55 — page viii — #7i
i

i
i

i
i

i
i

viii Contents

Chapter 2 An Introduction to Subversion 15

2.1 Why Subversion? 15

2.1.1 A Software Engineering Tool 15

2.1.2 Open Source Solutions 16

2.1.3 Major Features of SVN 17

2.2 Limitations of Subversion 21

2.3 Summary 23

Chapter 3 Installing Subversion 25

3.1 Installing on Linux 25

3.1.1 Subversion’s Prerequisites 25

3.1.2 Downloading the Source 27

3.1.3 Compiling and Installing 27

3.2 Installing on Mac OS X 29

3.2.1 Installing OS X Binaries 29

3.2.2 Compiling Subversion on OS X 29

3.2.3 Using Fink 30

3.3 Installing on Windows 30

3.4 Configuring SVN to Use Apache 31

3.4.1 Loading the Modules 31

3.4.2 Setting Up Access 32

3.4.3 Using Apache 2 and Apache 1 Together 33

3.5 Configuring to Use Svnserve 34

3.5.1 Running as a Daemon 34

3.5.2 Running withinetd 35

3.5.3 Tunneling over SSH 36

3.6 Summary 36

Chapter 4 Basic Subversion Usage 37

4.1 Creating the Repository 37

4.2 Getting Files into the Repository 38

4.3 Creating a Working Copy 40

4.4 Editing Files 40

4.5 Committing Changes 42

4.6 Viewing the Logs 42

4.7 Creating a Tag 43

4.8 Creating a Branch 44

“svnbook” — 2005/4/14 — 14:55 — page ix — #8i
i

i
i

i
i

i
i

Contents ix

4.9 Merging a Branch 46

4.10 Handling Conflicts 48

4.11 Summary 51

Part II Subversion from a Client User’s Perspective 53

Chapter 5 Working with a Working Copy 55
5.1 The Subversion Client 55

5.1.1 Common Command Options 56

5.1.2 Paths 57

5.2 Checking Out and Maintaining a Working Copy 57

5.2.1 Keeping Up-to-Date 59

5.3 Modifying and Committing Data 61

5.3.1 Adding New Files 63

5.3.2 Removing Files 64

5.3.3 Moving Things Around 65

5.4 Getting Information about the Repository 67

5.4.1 Getting Information on the Current State 67

5.4.2 Getting the Repository’s History 72

5.5 Changing the Working Copy Target 76

5.6 Resolving Conflicts 76

5.7 Branching, Tagging, and Merging 78

5.7.1 Creating a Branch or Tag 78

5.7.2 Merging a Branch 80

5.8 Troubleshooting the Working Copy 82

5.9 Summary 83

Chapter 6 Using Properties 85
6.1 Storing Metadata 85

6.1.1 Editing Properties 86

6.1.2 Automatically Setting Properties 86

6.1.3 Committing Properties 87

6.1.4 Storing Revision Properties 87

6.2 Retrieving Metadata 87

6.2.1 Listing Properties 88

6.2.2 Outputting Multiple Binary Properties 89

6.2.3 Getting Revision Properties 89

“svnbook” — 2005/4/14 — 14:55 — page x — #9i
i

i
i

i
i

i
i

x Contents

6.3 Built-in Properties 90

6.3.1 File Properties 90

6.3.2 Revision Properties 95

6.4 Summary 96

Chapter 7 Configuring the Client 97
7.1 Finding the Configuration Files 97

7.2 Editing the Configuration Files 97

7.2.1 Theconfig File 98

7.2.2 Theservers File 101

7.3 Summary 104

Chapter 8 Integrating with Other Tools 105
8.1 Accessing SVN through a GUI Client 105

8.1.1 RapidSVN 105

8.1.2 TortoiseSVN 107

8.1.3 ViewCVS 108

8.1.4 WebSVN 110

8.2 Accessing Directly from an IDE 111

8.2.1 Visual Studio.Net 111

8.2.2 Eclipse 112

8.3 Using Autoversioning with WebDAV 114

8.4 Summary 116

Part III Subversion from an Administrator’s Perspective 117

Chapter 9 Organizing Your Repository 119
9.1 Laying Out the Repository 119

9.1.1 The Two Basic Layouts 119

9.1.2 Organizing the Trunk 121

9.1.3 Organizing Branches 122

9.1.4 Organizing Tags 124

9.2 Planning for Growth 126

9.2.1 Merging and Splitting a Repository 127

9.3 Migrating an Existing Repository 129

9.3.1 The Basic Migration Process 130

9.3.2 Migrating from CVS 130

“svnbook” — 2005/4/14 — 14:55 — page xi — #10i
i

i
i

i
i

i
i

Contents xi

9.3.3 Migrating from SourceSafe 133

9.3.4 Migrating from Other VCSs 134

9.3.5 What If There’s No Migration Tool? 134

9.4 Summary 136

Chapter 10 Administrating the Repository 137

10.1 Controlling Access to the Repository 137

10.1.1 Direct Access Control 138

10.1.2 svnserve Access Control 138

10.1.3 HTTP/HTTPS Access Control 140

10.1.4 Authenticating against a Windows Domain Controller 146

10.2 Backing Up the Repository 149

10.2.1 Hotcopying the Repository 149

10.2.2 Dumping the Repository 150

10.2.3 Automating Your Backups 151

10.2.4 Recovering 153

10.3 Unwedging Your Repository 154

10.4 Upgrading Subversion 156

10.5 Summary 156

Chapter 11 The Joy of Automation 159

11.1 An Introduction to Hooks 160

11.1.1 Available Hook Scripts 160

11.1.2 What a Hook Script Can Do 162

11.1.3 What a Hook Script Can’t Do 163

11.1.4 Tips for a Good Hook Script 164

11.1.5 The Pre-made Subversion Scripts 167

11.2 Making the Most of Hook Scripts 167

11.2.1 Automatically Send E-mails 167

11.2.2 Send Notifications via RSS 172

11.2.3 Implement Fine-grain Access Controls 185

11.2.4 Enforce Policy 187

11.2.5 Log Revision Property Changes 188

11.2.6 Make Tags Immutable 189

11.3 Taking Advantage of Metadata 191

11.3.1 The Subversion Commands 191

11.4 The Subversion API 198

“svnbook” — 2005/4/14 — 14:55 — page xii — #11i
i

i
i

i
i

i
i

xii Contents

11.4.1 svntag 198

11.5 Summary 206

Part IV The Software Development Process 207

Chapter 12 Development Process Policies 209
12.1 Effective Branching and Tagging 209

12.1.1 Branch and Tag Creation and Organization 209

12.1.2 Merging Policies 216

12.2 Checking In Code 217

12.3 Log Data 219

12.3.1 Policies for Informative Logs 220

12.3.2 Parseable Log Messages 221

12.3.3 What Not to Include 222

12.4 Project Builds 223

12.4.1 Configuration 223

12.4.2 Daily Builds 224

12.4.3 Integration 226

12.5 Testing and Quality Assurance 227

12.5.1 The Parts of Testing 227

12.6 Communication 230

12.6.1 Communicating through Subversion 230

12.6.2 Communicating about Subversion 232

12.7 Enforcing Policies 232

12.8 Summary 233

Chapter 13 Integrating SVN with the Development Process 235
13.1 SVN in Different Developers’ Workflows 235

13.1.1 The Methodical Programmer 235

13.1.2 The Collaborator 236

13.1.3 The Lone Hacker 237

13.1.4 The Guru 238

13.1.5 The Rookie 239

13.1.6 The Hobbyist Programmer 239

13.2 Using SVN in Peer Reviews 240

13.2.1 Tracking Peer Review Status 240

13.2.2 Distributing Material for Peer Reviews 242

“svnbook” — 2005/4/14 — 14:55 — page xiii — #12i
i

i
i

i
i

i
i

Contents xiii

13.2.3 Performing Peer Reviews 244

13.3 Tying Revisions to Issue Tracking 246

13.3.1 Issue-tracking Properties 246

13.3.2 Automating Interaction with Issue Tracking 247

13.4 Summary 249

Chapter 14 Case Studies in Development Processes 251
14.1 Archetypal Studies 251

14.1.1 Managed Chaos 251

14.1.2 Rapid Development 254

14.1.3 Central Planning 256

14.1.4 Small Teams 258

14.2 Real-world Studies 260

14.2.1 KeyGhost Ltd. 260

14.2.2 Error Free Software 261

14.2.3 Teledata Communications 263

14.2.4 GladeSoft 265

14.2.5 ExCo 266

14.2.6 Wye Corp 268

14.2.7 ZedCom 270

Part V Reference 271

Chapter 15 Command Reference 273
15.1 svn 273

15.1.1 svn add 275

15.1.2 svn blame (praise, annotate, ann) 276

15.1.3 svn cat 277

15.1.4 svn checkout (co) 278

15.1.5 svn cleanup 279

15.1.6 svn commit (ci) 279

15.1.7 svn copy (cp) 281

15.1.8 svn delete (del, remove, rm) 282

15.1.9 svn diff (di) 284

15.1.10svn export 286

15.1.11svn help (?, h) 287

15.1.12svn import 287

“svnbook” — 2005/4/14 — 14:55 — page xiv — #13i
i

i
i

i
i

i
i

xiv Contents

15.1.13svn info 289

15.1.14svn list (ls) 289

15.1.15svn log 291

15.1.16svn merge 292

15.1.17svn mkdir 294

15.1.18svn move (mv, rename, ren) 295

15.1.19svn propdel (pdel, pd) 297

15.1.20svn propedit (pedit, pe) 298

15.1.21svn propget (pget, pg) 299

15.1.22svn proplist (plist, pl) 301

15.1.23svn propset (pset, ps) 302

15.1.24svn resolved 303

15.1.25svn revert 304

15.1.26svn status (stat, st) 305

15.1.27svn switch (sw) 306

15.1.28svn update (up) 307

15.2 svnadmin 308

15.2.1 svnadmin create 309

15.2.2 svnadmin dump 310

15.2.3 svnadmin help (?, h) 310

15.2.4 svnadmin hotcopy 310

15.2.5 svnadmin list-dblogs 311

15.2.6 svnadmin list-unused-dblogs 311

15.2.7 svnadmin load 311

15.2.8 svnadmin lstxns 312

15.2.9 svnadmin recover 312

15.2.10svnadmin rmtxns 313

15.2.11svnadmin setlog 313

15.2.12svnadmin verify 313

15.3 svnlook 314

15.3.1 svnlook author 314

15.3.2 svnlook cat 315

15.3.3 svnlook changed 315

15.3.4 svnlook date 316

15.3.5 svnlook diff 316

15.3.6 svnlook dirs-changed 317

15.3.7 svnlook help (?, h) 317

“svnbook” — 2005/4/14 — 14:55 — page xv — #14i
i

i
i

i
i

i
i

Contents xv

15.3.8 svnlook history 317

15.3.9 svnlook info 318

15.3.10svnlook log 318

15.3.11svnlook propget (pget, pg) 318

15.3.12svnlook proplist (plist, pl) 319

15.3.13svnlook tree 319

15.3.14svnlook uuid 320

15.3.15svnlook youngest 320

15.4 svnversion 320

15.5 svndumpfilter 321

15.5.1 svndumpfilter exclude 322

15.5.2 svndumpfilter include 322

15.5.3 svndumpfilter help (?, h) 323

Index 325

“svnbook” — 2005/4/14 — 14:55 — page xvi — #15i
i

i
i

i
i

i
i

“svnbook” — 2005/4/14 — 14:55 — page xviii — #17i
i

i
i

i
i

i
i

xviii Preface

it didn’t eat my code. Thus, after a suitable period of testing, CVS was unceremoniously
chucked and replaced by Subversion. I’ve never regretted the change. In fact, the only
thing regrettable is the hours of my life wasted fighting with CVS.

Writing the Book

When I was first approached about writing a book on Subversion, my first thought was,
“Why?” There’s already an excellent Subversion manual, written by several of the principle
Subversion authors (who presumably know more about Subversion’s inner workings than I
do), and it’s freely available at that. So, I almost turned down the opportunity to write this
book because I couldn’t imagine why anyone would want to read it. What could I possibly
add that wasn’t already written? Then I got to thinking back to my college days, when I
learned version control through trial and error (mostly error). I had the manual to CVS,
but it covered how to use CVS, not how to use version control. It was a good manual, it
just wasn’t complete. The Subversion manual is similar; although it is far, far better than
the documentation available for CVS, it’s still primarily a technical manual. As a technical
manual, it is excellent. As a guide to realizing Subversion’s full potential in relation to your
software development project, it isn’t complete. Therefore, I’ve written this book to be the
guide I never had when I was learning how to use version control.

Of course, this book aims to cover the nuts and bolts of Subversion as completely
as possible—you can’t very well use Subversion to develop software if you can’t use
Subversion—but it does so in the context of how to do the things you want to do in day-
to-day software development. The book also goes a step further: It explains how to expand
on the built-in capabilities of Subversion to make the system work for you. In some places,
that takes the form of example scripts or configurations. In others, it is merely ideas that
you can expand to fityour software development process. This is not a book to sell a pro-
cess. I do make suggestions here and there of what I think will work in certain situations,
but you don’t need to buy into my “exhalted process” to get the most from this book. In-
stead of showing you how you should develop your software, I show you how Subversion
can make your process easier.

The Layout of the Book

The book is split into five sections, each covering Subversion from a different perspective.

Part I: An Introduction to Version Control and Subversion

This first part looks at Subversion from the beginner’s perspective. It explains what version
control is, why it is useful, and how Subversion fits into the version control world. It shows
you how to install and set up Subversion, and it walks you through Subversion’s essential
features.

Chapter 1 An introduction to the essential concepts that make up a version control system.

“svnbook” — 2005/4/14 — 14:55 — page xix — #18i
i

i
i

i
i

i
i

Preface xix

Chapter 2 An introduction to Subversion’s features and how they compare to some other
common version control systems.

Chapter 3 A basic guide to installing Subversion on Linux, Windows, and Mac OS X.

Chapter 4 A tutorial walkthrough of Subversion, from creating your first repository to
basic branching and merging.

Part II: Subversion from a Client User’s Perspective

The second part of the book examines Subversion from the perspective of the client user. It
takes a detailed look at using the most important Subversion client commands, as well as
properties, user configuration, and integration with a variety of external tools.

Chapter 5 Walk through a Subversion working copy and the commands used to interact
with it. Most of the common Subversion client commands are covered in this chapter.

Chapter 6 How to use the Subversion tools to work with properties attached to versioned
files.

Chapter 7 A look at Subversion client configuration and customization for an individual
work environment.

Chapter 8 An overview of many of the client tools that Subversion can integrate and in-
teract with.

Part III: Subversion from an Administrator’s Perspective

This is a look at Subversion from the admin’s perspective. In this section, I talk about
repository administration and organization. I show how to use automation to help integrate
Subversion into your development process, and I examine the nuts and bolts of such things
as repository security and migration from another version control system.

Chapter 9 Tips on repository organization, as well as how to migrate an old repository to
Subversion with minimal loss of history and metadata.

Chapter 10 Basic repository administration: security, backup, and repository maintenance.

Chapter 11 An in-depth look at automation in Subversion, using hook scripts, metadata,
and the Subversion API. Includes a number of example scripts that you can use in
your project.

Part IV: The Software Development Process

This part takes a look at Subversion from the project manager’s perspective. It looks at the
software development process and how Subversion can fit into a variety of different types
of projects, with many different policies and philosophies.

“svnbook” — 2005/4/14 — 14:55 — page xx — #19i
i

i
i

i
i

i
i

xx Preface

Chapter 12 An overview of different policies adopted by many development projects and
how Subversion can be used to complement those policies.

Chapter 13 An examination of the software development process and how Subversion can
be integrated into that process.

Chapter 14 Case studies that examine both archetypal and real-world projects and their
use of Subversion.

Part V: Reference

The final section is a Subversion command reference. When you need to look up something
quickly, it can be difficult to sift through paragraphs of expositional language. This section
takes the essential technical information from the Subversion commands and makes it easy
to find quickly.

“svnbook” — 2005/4/14 — 14:55 — page xxi — #20i
i

i
i

i
i

i
i

Acknowledgments

I would like to thank everyone who made this book possible. First, my parents for giving me
the support to become the person I am today, and for not dropping me off at an orphanage
(however tempting the option may have been). And the rest of my family and friends—
especially my lovely fiancée, Sara—who never ceased to support me, no matter how many
times I said, “Sorry, I can’t. I have to work on my book.” I’d also like to thank my
coworkers at Stage Logic who never complained when I fled work early or skipped out on
a few days. I’d especially like to thank Ralph Rodkey for helping me to research some of
the Windows-specific aspects of Subversion; Drew Hintz for loaning me his laptop to play
around with Windows myself; and Zach Lute, because I told him I would, even though I
can’t remember why.

I am grateful to Martin Streicher of Linux Magazine for giving me my first opportunity
as a published writer, and for giving me the opportunity to write the article on Subversion
that ultimately led to this book. I am also grateful to Jill Harry at Prentice Hall for giving
the opportunity to write this book and for supporting me the whole way. Of course, she
couldn’t have done it alone, so I’d also like to thank Brenda Mulligan, John Fuller, Robin
O’Brien, Ebony Haight, Lara Wysong, Kelli Brooks, and the rest of the Prentice Hall team
who have worked very hard to make this book a reality.

This book is not just the work of one mind, either. Without the many who reviewed
and commented on my book along the way, it would be a much lesser book. I would like
to thank Michael Ching, Stuart Robertson, and Gustavo Niemeyer for their reviews of the
book’s concept. I’d also like to thank Michael Ching and Gustavo Niemeyer, as well as Ben
Reser and Chris Pavicich for their invaluable input on the book after it was written. I’m
also grateful to thank Mike Treaster for his commentary on several early chapters from the
perspective of a non-version control expert; to Jason Reese for his commentary from the
perspective of someone who thought version control was a song by Prince; to Jim Markham
for his valuable input on the book’s layout and writing style in the early chapters; and to
Ted Gould for reading those early chapters, even if he never got around to actually telling
me what he thought.

Many thanks also goes out to those people who contributed their real-world experiences
to allow me to prepare the case studies near the end of the book: Mark Grosberg of Glade-
Soft, Felix Collins of KeyGhost, Robert Allan Zeh of Error Free Software, Mark Bohlman

xxi

“svnbook” — 2005/4/14 — 14:55 — page xxii — #21i
i

i
i

i
i

i
i

xxii Acknowledgments

of Teledata Communications, Ron Bieber, Chris Wein, and John Szakmeister. And, of
course, many thanks goes to Stuart Robertson of Absolute Systems for his contributions of
the RSS feed script and Samba/Windows Domain Controller configuration steps.

Without Subversion, this book would not be. So, a sincerely grateful thanks goes out to
everyone who has contributed to Subversion and made it the great version control system
that it is today.

I’ve tried hard to ensure that everyone who helped me with this book has been thanked.
However, I may have inadvertently left someone out. To that person, I extend an extra
thanks for putting up with my faulty memory.

Finally, thanks goes to K.C. Sanborn, whose continued inability to grasp the concept
of a SCSI bus has helped me keep a proper perspective on the place of computers in the
world.

“svnbook” — 2005/4/14 — 14:55 — page 1 — #22i
i

i
i

i
i

i
i

Part I

An Introduction to
Version Control

and
Subversion

“svnbook” — 2005/4/14 — 14:55 — page 2 — #23i
i

i
i

i
i

i
i

“svnbook” — 2005/4/14 — 14:55 — page 3 — #24i
i

i
i

i
i

i
i

Chapter 1

An Introduction to
Version Control

“Hey, Jane, could you send me a copy of those changes you made last Tuesday?”

“Bob, this function doesn’t work anymore. Did you change something?”

“Sorry, I can’t seem to find those old classes. I guess you’ll just have to re-implement
them.”

“Ok, we’ve all been working hard for the last week. Now let’s integrate everyone’s
work together.”

Do any of these comments sound familiar? If you’ve ever worked on a disorganized
project, they may very well be frighteningly common. They’re key indicators of a process
where information is not under control, and in software development, information control
is crucial to a successful project. It is crucial because that’s what software development is.
Any nontrivial software project is a complex system, often involving numerous different
developers. For all of those developers to accomplish something, they must know what they
need to accomplish, and that is very difficult to accomplish without controlled distribution
of information between developers.

Organized software development involves a large bag of tools and techniques. At the
core of those tools is the ability to keep the source code—without which, software devel-
opment is simply nothing—maintained and accessible to the people who need that access.
Enter the version control system, which assumes the role of tracking, maintaining, and
storing the revision history of a development project’s source.

Version control is not a simple task, nor are all version control systems created equal.
In the world of open source, the Subversion version control system is rapidly emerging as
a major contender for not only open source development projects, but also small, medium,
and maybe even a few large software companies. For instance, the open source Samba
project has begun using Subversion, as has the Apache Software Foundation. Additionally,
although there are no numbers showing just how many commercial companies are using
Subversion, the Subversion Web site contains numerous testimonials from users who have

3

“svnbook” — 2005/4/14 — 14:55 — page 4 — #25i
i

i
i

i
i

i
i

4 Chapter 1 An Introduction to Version Control

successfully deployed Subversion in a commercial setting. Also, according to Jason Rob-
bins attigris.org (the site hosting the Subversion project), the version 1.0 release of
Subversion in February of 2004 sparked an enormous increase in downloads of Subversion
(more than 29,000 in May, 2004, for example).

To help you to make the most of this rising star, I will not just show how to use Sub-
version in this book. I will instead show you how to use Subversion effectively as a core
part of your software development process, through examples and explanations of things
you will actually do during real-world, every-day usage of the system, as well as ideas for
integrating Subversion into your total development process.

Before learning how to use Subversion, it is imperative that you have a solid grasp of
the basic concepts of version control. If you have used a version control system extensively
before, you may want to skip to Chapter 2, “An Introduction to Subversion.” If you would
like to learn more about what typical version control systems can do, and how they can
benefit your process, please read on.

1.1 What Is Version Control?

Most major software development projects involve many different developers working con-
currently on a variety of (overlapping) sets of files, over a long period of time. It is therefore
critical that the changes made by these developers be tracked, so that you can always tell
who is responsible for any changes, as well as what your source files looked like an hour
ago, a week ago, or a year ago. Furthermore, it’s just as important (if not even more impor-
tant) to be able to merge the contributions of those many developers into a single whole.
This is where a version control system comes into play.

The basic functionalities of any version control system are to keep track of the changing
states of files over time and merge contributions of multiple developers. They support this,
for the most part, by storing a history of changes made over time by different people. In this
way, it is possible to roll back those changes and see what the files looked like before they
were applied. Additionally, a version control system will provide facilities for merging the
changes, using one or more methods ranging from file locking to automatic integration of
conflicted changes.

1.2 Why Use It?

You know what version control is; why do you need it? Especially for a small team project,
what benefit does a good version control system provide that outweighs the cost of setting
up and learning how to use it? Let’s look at some of the reasons why version control is
critical in any development project, small or large.

1.2.1 Data Integrity

A good version control system helps to protect the integrity of your data. By keeping a
revision history, there is no worry that if code is removed in an edit on one day, it will be
lost when it is determined a week later to have in fact been necessary.

“svnbook” — 2005/4/14 — 14:55 — page 5 — #26i
i

i
i

i
i

i
i

1.2 Why Use It? 5

Having a central project repository can also help with data backup. If developers regu-
larly commit their data to the versioning system, it can be backed up nightly in one chunk
and offloaded to backup storage, with few worries that weeks worth of unfinished data will
be sitting on a developer’s desktop, waiting for the inevitable hard drive failure.

1.2.2 Productivity

By freeing developers from the drudgery of by-hand integration of work, a version control
system can greatly increase productivity. As projects grow larger than one or two people,
even the most well organized of processes will lose countless man hours toward integrating
the work of multiple developers. With a version control system, developers are able to test
changes against the latest work of their peers, identifying and fixing conflicts before they
become unmanageable. They are also able to experiment more easily, free to branch and
modify code without worrying about whether their changes will affect the stability of the
main project or the work of others. If an experimental change breaks something, it can
quickly and easily be rolled back or compared with the original code to see what changed.

A version control system also protects against productivity lost to re-implemented
work, not only by avoiding losses of data that was incorrectly deemed to be unneces-
sary, but also by making each developer’s work readily available to other developers on
the project. If developers are able to easily see where the others working on the project are
going with their work, they will be less likely to duplicate effort. Even in a well-organized
project, it can be easy for two developers working on closely related sections to acciden-
tally implement the same piece of functionality. If all developers regularly commit their
work to a repository, this becomes much less likely to happen.

1.2.3 Accountability

In any development process, it is important to know exactly who added each bit of code
to a project, as well as when they did it, and who has made modifications since then. This
sort of fine-grained accountability is important not only for technical reasons (for example,
who to go to if a section needs to be fixed), but also for purposes of legal defense. In re-
cent times, there have been a number of high profile cases, involving both open source and
closed source projects, that have hinged around allegations of source code being illegiti-
mately placed into other projects. In light of the potential liability that the maintainers of a
project could have in these sorts of cases, having a version control system that makes each
contributer accountable for his own contributions seems to be a prudent precaution to take,
especially if you are maintaining an open source project, where little may be known about
the contributer, and money to fight a legal battle may be tight or nonexistent.

1.2.4 Software Engineering Process Support

Good software (even open source projects) are developed with a software engineering pro-
cess. By software engineering, I mean the application of disciplined development policies
aimed at ensuring that the end product of the process will meet the desired goals in a timely
manner, and with the highest possible standards of quality.

“svnbook” — 2005/4/14 — 14:55 — page 6 — #27i
i

i
i

i
i

i
i

6 Chapter 1 An Introduction to Version Control

A good software engineering process involves a number of different processes and poli-
cies, such as good overall project design, peer review of project components, tracking of
bugs and other issues, and quality assurance testing. None of these are explicitly supported
by most version control systems, but many version control system features (such as hook
scripts and logs) can be an important tool in supporting a project’s software engineering
policies. For example, a version control system (VCS) may be set to automatically e-mail
an issue tracking system in order to report a bug fix, or a system could log peer reviews,
and through the use of hook scripts, disallow any code that hasn’t been peer reviewed to be
merged onto the project’s main source trunk.

1.2.5 Development Branching

As projects progress over time, branches will naturally occur. Old releases will need to be
supported with bug fixes. New projects may be spun off from existing code bases to serve
emerging markets. Whatever the reason, branches will happen, and unless the relationship
between branches is carefully maintained, they will tend to diverge irreconcilably. Issues
that are fixed in one branch will go unfixed in another. Features implemented in a diver-
gent branch will be unusable in the main trunk. In general, keeping even a semblance of
consistency between different branches of development will be a maintenance nightmare.

If used in an organized and consistent manner, the branching features built into most
version control systems can greatly reduce the headaches associated with maintaining di-
vergent branches of development on a project. By using the commit logs generated by the
system, as well as its capability to merge changes from one branch to another, changes that
are applicable to multiple branches can be cleanly implemented on a single branch and then
applied to the other branches. Similarly, a new feature added to a branch can be migrated
to other branches where it may be useful.

1.2.6 Record Keeping

A version control system will help to enforce policies that can ensure a project keeps quality
records for later use. In addition to the aforementioned records of who committed each
change, repository commit logs are invaluable for storing plain-English descriptions not
only of what changes were made in a given commit, but why they were made. In many
cases, commit logs can even be verified against certain patterns, to enforce guidelines for
logs entries that are in place for the project.

In addition to providing a record of what has gone into each commit, logs kept by a
version control system can be used for a variety of applications. For example, they could
be used to create a changelog at a release, or to automatically tie into an issue tracking
system.

1.2.7 Distribution of Work

In our modern Internet age, life is becoming more and more distributed, and nowhere is
this more true than in software development. Open source projects are (almost by defini-
tion) developed in a distributed nature, by developers all over the world, but even in the

“svnbook” — 2005/4/14 — 14:55 — page 7 — #28i
i

i
i

i
i

i
i

1.3 The Elements of Version Control 7

closed source corporate world, distributed development can be a major issue. Regardless
of whether a developer is telecommuting from across town or an outsourcing firm in India,
distributed development can be difficult to deal with.

Version control can make dealing with distributed development easier, by automating
much of the workload of exchanging and merging the work of different developers. As de-
velopers work on their projects from remote corners of the globe, the repository makes the
latest work of their coworkers readily accessible at any time. Combined with good commu-
nication habits, using something like e-mail or instant messaging, distributed development
can become almost as painless as being the next cube over.

1.2.8 Rapid Development

Recent software development methodologies have been moving toward rapid, flexible de-
velopment, with processes like Extreme Programming (XP) and Agile Development being
adopted with increasing frequency. These rapid development methods accentuate policies
of small incremental change and frequent refactoring, which cry out for version control. By
using good version control practices, a project will maintain extremely useful code histo-
ries that delineate the many twists and turns rapidly developed code can take. Additionally,
the central repository of a version control system is perfect for automating the frequent
systems builds called for by an Agile process.

1.3 The Elements of Version Control

So, version control is, in its essence, exactly what its name purports it to be: the tracking,
controlling, and merging of different versions (called revisions) of a project over time. In
practice, as with almost anything, this is not nearly as simple as it sounds. Version control
systems are complex software tools with a wealth of different features that vary widely from
system to system. Conceptually, though, they are in fact fairly simple, and most version
control systems can be grasped with an understanding of a few basic concepts.

1.3.1 The Repository and Working Directory

Most version control systems store versioned projects in a central repository. The reposi-
tory may simply be a structured directory on a server with each versioned file stored sep-
arately, or it may be a database containing entries for the various files in a project. It may
even be a complex distributed system that redundantly stores the versioned project all over
the world.

Regardless of what the repository looks like, the one commonality among version con-
trol systems is that developers do not work directly on the files in the repository. Instead,
they have some sort of working directory accessible from their development machine,
where they can make local modifications.

Working directories generally allow individual developers to work locally, adding and
testing changes as necessary, during the development process. Once a change or set of
changes is deemed complete, the developer is able to commit the changes back into the
repository, where they become a part of the project.

“svnbook” — 2005/4/14 — 14:55 — page 8 — #29i
i

i
i

i
i

i
i

8 Chapter 1 An Introduction to Version Control

Once a change has been committed to the repository, the other developers working
on the project are able to update their working copies to include the latest versions
of the project’s files. This allows the other developers to test the new changes with the
uncommitted local modifications in their own working directories, and fix things as
necessary—or demand that the developers responsible for the modifications fix their
changes, as appropriate.

1.3.2 Revisions

Version control systems don’t just store the most recent state of a project. Instead, they store
a history of changes to the project over time. Whenever a developer commits changes to a
project, those changes are stored in arevision. Depending on the version control system,
revisions will either be global points that refer to the state of the entire repository at a given
point, or they will exist as file-level revisions that refer to the state of an individual file.

In a file-level revision system, each file has a revision history independent of the rest of
the project. For example, let’s say a repository consists offoo.c andbar.c. If foo.c has
had ten different modifications committed, the version control system may give its revision
as ten, but listsbar.c as only being at revision five (if that is the number of modifications
committed forbar.c). This sort of revision scheme tends to be unwieldy, and can make
it difficult to keep track of the overall state of the project at a particular point in time.
For instance, being required to know that the repository consisted of revision 5 ofbar.c,
revision 10 offoo.c, and revision 8 ofReadMe.txt at 3:26 PM last Tuesday would be
a nightmare. To make the tracking of project states easier, most version control systems
allow you to refer to revisions by the state they existed in at a given date and time, or a
specific tag. Tags are essentially snapshots of the repository at a specific point, which can
be used as a reference (I talk more about tags in a little while).

Other version control systems (such as Subversion) have revisions that are global across
the entire repository. In this type of system, a modification committed to a single file would
increment the revisions of all files in the repository. Thus, “revision 10” would refer to a
snapshot of the whole system at the time of the tenth commit. Figure 1.1 shows an example
of a repository that uses global revision numbers. You will notice how the revision number
increases by one each time a commit occurs, even though the files are not the same for
each commit. This gives a huge advantage over file-level revisions, because you no longer
have a need to keep track of the relationships between different revisions of different files.
Consequently, explicit tags tend to become less necessary. For instance, with a file-level
system, you might make a tag before every significant feature, to allow you to roll back
the whole repository to a consistent pre-change point. When you have global revisions,
though, each revision is essentially a tag itself. This makes it much easier to move the
entire repository between revisions, or to compare revisions.

The differences between two revisions of a repository are often referred to aschange-
sets. In addition to allowing a developer to retrieve specific revisions from a repository,
most VCSs allow the retrieval of changesets. The changesets can usually consist of either
changes to the entire repository between two revisions, or changes to a specific subset of
files in the repository. Some VCS implementations will also allow one or more revisions

“svnbook” — 2005/4/14 — 14:55 — page 9 — #30i
i

i
i

i
i

i
i

1.3 The Elements of Version Control 9

Rev
isi

on
 1

Rev
isi

on
 2

Rev
isi

on
 3

Commit foo.c Commit bar.c Commit changes
to foo.c

Repository

Figure 1.1. A repository with global revision numbers.

to be grouped into a changeset that can be used later to roll back changes to a repository or
apply those changes to a different repository.

1.3.3 Logs

Keeping track of code changes is important. However, to truly keep an organized devel-
opment process going, it isn’t sufficient. It is useful to know that three lines of code were
added to a source file, but what you really want to know iswhy those lines of code were
added, and what logical change that addition makes to the project. That might not be too
hard to discern if the change is small, as with three lines, but if ten thousand lines are added,
using a diff to figure out what changed may be practically impossible.

One way to keep track of logical changes would be to keep notes on what is happening
in source code comment blocks. This keeps the information close to the source, but it
quickly becomes unwieldy. Comments can be hard to find, if someone simply wishes to
know what changed from one version to another. Additionally, logical changes that require
many small changes scattered throughout the project are especially difficult to document
concisely in source code comments.

Moreover, keeping track of logical changes can be invaluable when debugging a project.
In any actively developed project, it is inevitable that mysterious bugs will appear in places
that worked fine just a few days ago. When that happens, the first thing you’ll want to do
is figure out what changed since the point where the project last worked. If you don’t have
a good set of logs showing the logical changes made in that period of time, figuring out
where the offending modification lies may be an arduous job.

It would also be nice to be able to compile a change log, showing changes that have
occurred from one project release to another. Keeping track of this in source comments
would also be extremely difficult, and would probably require some sort of special tag-
ging to allow a script to extract changes. Another option would be to keep track of the
changes that occur in a separate file. Such a file would be hard to maintain, though, and
could easily become out of sync and inaccurate. A much better solution to tracking logical
project changes is to include a log along with each repository commit. The log would allow

“svnbook” — 2005/4/14 — 14:55 — page 10 — #31i
i

i
i

i
i

i
i

10 Chapter 1 An Introduction to Version Control

developers to enter the reason and substance of the change they are committing, in plain
English.

Not surprisingly, any version control system worth using keeps logs that can easily be
used for exactly the purposes described in the preceding. When a developer commits a set
of changes to a repository, the VCS will either read the log entry to attach to the commit
from an external source like a text file or command line parameter, or it will present the
developer with a text editor so that she can enter the log entry right then. If the log entry
is well structured, it can be used down the road to do things like automatically create a
changelog or list of fixed bugs.

1.3.4 Tagging

As I discussed earlier, most version control systems provide a means by which you can
tag revisions, so that they can be referred back to at a later date. This frees the developer
from reliance on references with poor contextual relation, such as revision numbers or
dates. Tags can be placed at development milestones, to allow development in a project to
continue, without hurting the ability for someone to later go back and see a snapshot of the
project’s source at that milestone. For example, if a tag is placed at each project release, it
is easy to go back at a later date to search out the cause of a bug that has been discovered,
even if the current code of the project has diverged and no longer contains the portion of
the project where the bug occurred.

1.3.5 Branching

Tags are useful, but what happens when the code that has been tagged needs to change,
thereby diverting from the main development trunk, such as in the preceding bug fix ex-
ample? It’s not sufficient to simply find the cause of a bug that has been discovered in
a previous release. In most cases, you will also want to fix that bug and release a patch
to your users. Typically, version control systems will support this type of divergence by
allowing you to create parallel paths of development for the repository (or a subset of it).
These parallel paths are usually referred to as branches.

At any given revision, a branch can be created, with development continuing from that
point in two parallel paths. Each branch can be worked on independently, and changes
committed to one branch will not affect any other branches of the project. Later, if the
developers decide that a change made on one branch would be useful on one or more of the
project’s other branches, it is usually possible to merge all or part of two branches together.

You can see an example of a repository that has branched in Figure 1.2. In this case, a
branch was created after the version 1.0 tag was created at the release of the product on the
main branch, which has allowed the version 1.x release of the project to continue making
releases (1.1, 1.2, and so on), which the main project branch moves on to develop release
2.0.

“svnbook” — 2005/4/14 — 14:55 — page 11 — #32i
i

i
i

i
i

i
i

1.3 The Elements of Version Control 11

Main Branch

Release 1.x Branch

Release 1.0 Release 2.0

Release 1.1

Figure 1.2. A repository with branches and tags.

1.3.6 Locking versus Merging

Up to this point, the discussion has focused mostly on the work of a single developer when
using a version control system. In a real development environment, though, a project can
easily involve dozens of developers working on the same general area of a system. Good
practice dictates that in the best of all worlds, no two developers will ever be modifying
exactly the same part of a system at the same time. In reality, however, most of us don’t
actually live in the best of all worlds, and a multitude of practical reasons can lead to two
developers needing to make changes on the same source file at the same time.

When the division of work on a project collides at one spot, there needs to be a way
to arbitrate who can modify the offending file or section. There are two primary ways
in which version control systems tend to handle these collisions: file locking and merging.
Most version control systems will use one of those two methods most of the time, but many
use a hybrid system that allows some combination of both methods to be used. Because
of the inherit limitations of locking (as discussed shortly), most modern VCSs will support
merging. There are many locking only systems, but they are almost universally older and
obsolete (with the notable exception of Microsoft’s Visual SourceSafe, which is still used
by many development shops).

In a file locking system, the developer locks a versioned file when beginning to make
changes. While the file is locked, no other developer will be allowed to make any changes.
Then, when the developer has finished, the changed file can be committed back into the
repository and the file can be unlocked.

The upside to file locking is that it enforces very organized division of work, in order to
minimize the number of times where two developers need to modify the same source file
or section simultaneously. It can also work better than merging when working with files
that are not easily merged automatically, such as graphics, or files in proprietary binary
formats. On the other hand, locking can disrupt development if progress is blocked by two
developers competing to work on the same file. The problem can be magnified further if

“svnbook” — 2005/4/14 — 14:55 — page 12 — #33i
i

i
i

i
i

i
i

12 Chapter 1 An Introduction to Version Control

one of those developers forgets to unlock the file when finished. In general, locking scales
very poorly and is unworkable for broad use by projects involving more than a few people.

The second method for handling collision avoidance/resolution is the use of automatic
or semi-automatic file merges. In this model, developers can modify files in their work-
ing copies of the repository without regard for what others are doing.1 Then, once the
developers have finished making their changes, they can commit those changes, and the
version control system will check to see if there are any collisions caused by two people
simultaneously editing a file. In many cases, the system will automatically merge two files
together; but if it can’t, most systems will provide the developer making the commit with
information about the conflicted area, to allow the developer to merge the changes by hand.

The main advantage of a merging system is that it frees developers to work indepen-
dently of other developers. This is especially advantageous in projects where multiple de-
velopers are likely to be working in different areas of the same file simultaneously (since
most version control locking is at the file level). It also scales better than locking, but it
can cause problems if communication between developers is poor, since frequent collisions
requiring hand-merging can lead to delays and wasted/duplicated effort.

Of course, neither locking or merging is a perfect approach to the integration of multiple
developers. For instance, file locking doesn’t provide any assurances that other sections
of the project won’t change in a way that is incompatible with the changes made to the
locked section, but similarly, file merging only catches conflicts that occur in the exact
same location of a given file. In light of these granular deficiencies in the methods used
in version control for managing integration, every version control system also relies on
the developers themselves to use the tools given to them alongside good practices that
will help ensure smooth integration of multiple developers. For instance, in most version
control systems, the recommended best practice is to always update your local working
copy and test it with the changes from other developers before committing a new revision
to the repository.

1.4 Summary

As you have seen, all version control systems provide a means to keep track of the changes
made to a collection of files over time; and since software development is usually a col-
laborative effort, they also provide facilities to merge the efforts of multiple developers.
Branching and tagging features of many VCSs allow the paths of development on a project
to be marked at critical points, as well as to branch off into different paths, for such cases as
fixing bugs on previous releases or allowing a developer to add and test new functionality
without breaking the main development trunk.

The benefits of using a version control system are many, and its use is critical for any
project of larger than trivial size. Beyond the obvious benefit of code tracking, a good
VCS will improve data integrity and record keeping, as well as aid developer productivity
and accountability for individual contributions. The VCS also allows projects to distribute

1. Canandshouldare two different issues completely. Developers should always communicate with their fellow
developers to know what they are working on.

“svnbook” — 2005/4/14 — 14:55 — page 13 — #34i
i

i
i

i
i

i
i

1.4 Summary 13

work more effectively over a large number of developers, and facilitates many of today’s
rapid development processes, such as XP and Agile Development.

Now that you have a firm grasp of the general features and benefits of version control,
you can turn to Chapter 2, “An Introduction to Subversion,” where I show how the Subver-
sion Version Control System implements the basic version control features, and how those
features measure up to Subversion’s predecessor CVS.

“svnbook” — 2005/4/14 — 14:55 — page 14 — #35i
i

i
i

i
i

i
i

“svnbook” — 2005/4/14 — 14:55 — page 15 — #36i
i

i
i

i
i

i
i

Chapter 2

An Introduction to
Subversion

In 1986, Dick Grune introduced the Concurrent Versioning System (CVS) as the first ver-
sion control system to support development of multiple files concurrently by multiple de-
velopers, using the merging paradigm to combine those developers’ work together when
they committed to the repository. From there, CVS went on to become immensely popular,
especially among open source projects, where it is the nearly ubiquitous choice for version
control. Despite its popularity, though, CVS has started to show its age, and suffers from
many shortcomings that can make it difficult to use. So, in an attempt to overcome these
shortcomings, the Subversion project was started in 2000, and in February of 2004 was
released as version 1.0. Since that release, Subversion has increased rapidly in popularity,
and appears to be poised to succeed at its goal of replacing CVS.

2.1 Why Subversion?

Subversion may be successful, but does that mean it’s right for your project? If you’re
currently using CVS, the answer is almost certainly yes; if you’re not using CVS, the
answer very well may still be yes. Of course, choosing a version control system for a
project is a big decision, and making big decisions based solely on “because that book-
author-guy said so” isn’t usually a good idea (and could be grounds for firing if the project
is your job). So, since you don’t want to take my word for it, let’s examine why Subversion
(which is also known as SVN) may be a good choice for a software development project.

2.1.1 A Software Engineering Tool

Software development is a craft, on par with the finest woodworking or most intricate me-
chanical clock. Every craft, however, reaches its highest potential when it moves beyond
mere craftsmanship, and becomes an engineering discipline. Although it is still in its in-
fancy, the discipline ofsoftware engineeringaims to elevate software development to the
level of the other engineering practices. Part of a good engineering process, though, are
tools that enable that process, and Subversion is one of those tools.

15

“svnbook” — 2005/4/14 — 14:55 — page 16 — #37i
i

i
i

i
i

i
i

16 Chapter 2 An Introduction to Subversion

Subversion is hosted (as an open source project) bytigris.org, an online commu-
nity designed to promote the development of open source tools for software engineering.
As the Tigris mission statement says, open source development has contributed much to
software development tools and practices, and will almost certainly continue to do so in
the future. This gives Subversion a focus that promotes its viability as not just a repository
for source code, but a full-blown tool for software engineering. Because Tigris is an active
community, dedicated to the success of the projects hosted there, it is likely that Subversion
will continue to evolve over time into a powerful tool for software engineering. Tigris is
funded by CollabNet (www.collab.net), which is responsible for funding Subversion’s
initial development. In fact, many of the core Subversion developers are employed full
time by CollabNet, to work on further Subversion development.

Already, Subversion is a flexible tool, capable of supporting many aspects of organized
software engineering. Much of this book, in fact, is dedicated to showing how Subversion
can fit into a variety of different development processes.

2.1.2 Open Source Solutions

I grew up in a small town surrounded by farmland, and even though I’ve never worked on
a farm, when you live near them long enough you can’t help but learn a few things. One
of those things you learn is the importance of diversity. A smart farmer never stakes the
entire future of the family farm on a single source. For example, if you grow corn, you
grow a variety, to minimize the chance that a disease or insect will come through and kill
the whole crop. Genetic diversity in the fields makes the whole stronger and more resilient.

When I first learned about open source software, I quickly realized that it follows the
same principle of the farmers who plant a variety of corn in their fields. By allowing a
menagerie of software developers to contribute to a project, the project is strengthened, and
becomes much more resilient to hardships over time. An open source project is significantly
less likely to succumb to the economic equivalent of an insect swarm, which helps to ensure
not only the quality of the product that evolves, but also the longevity.

Subversion is licensed under an open source license similar to those used for the Apache
Web server and the BSD operating systems. In short, the license states that you are free
to do whatever you want with it, as long as you give credit to CollabNet, which currently
holds the copyright for Subversion. Unlike the GNU Public License, used for Subversion’s
predecessor CVS, Subversion does not require you to distribute code for any changes you
make—although contributing changes back to the Subversion project helps ensure that they
remain compatible with the rest of the system as new versions are released, as well as
provides others who may have similar problems to solve the benefit of your brilliance.

So, in addition to it being free of charge, exactly what direct benefit do you as the end
user gain from Subversion’s open source license? I want to avoid philosophical discussion
of whether you have a right to open source software or of the supposed “evilness” of closed
source products. There are, however, a number of practical benefits to SVN being an open
source project.

By being open, Subversion positions itself to be a standard in version control and
has a good chance of succeeding at overthrowing the reigning de facto standard, CVS.

“svnbook” — 2005/4/14 — 14:55 — page 17 — #38i
i

i
i

i
i

i
i

2.1 Why Subversion? 17

Standards, of course, are generally a good thing to deal with. It means that even if your
other tools don’t currently support SVN, the odds are that they will in the future; or if
they don’t, someone will develop a third-party solution to adapt your current tools to Sub-
version. It also means that more people will know how to deal with Subversion. For
open source projects, this increases the number of people who will know how to use
Subversion, which will hopefully help increase the number of people willing to get in-
volved in the project and contribute code. Conversely, if your project is internal or closed
source, the increased number of people who know how to deal with Subversion will still
help, by decreasing the likelihood that developers will have to be explicitly trained in SVN’s
use by their employers.

The open nature of Subversion also makes it very integrable. The core of Subversion is,
in fact, a set of libraries with a well-documented, open application programming interface
(API). This API allows developers to write custom clients for Subversion, integrate it into
another tool, provide a GUI, or even automate some of the process of interacting with an
SVN repository.

2.1.3 Major Features of SVN

What, exactly, can Subversion do? What features make it stand out against other version
control systems? What features foster familiarity by being similar to other version control
systems? How do these work together to form an excellent version control system? To
answer those questions, let’s take a look at the highlights of Subversion’s feature list, and
how many of those features stack up against other version control systems, such as the
venerable CVS, Microsoft’s Visual SourceSafe, or GNU’s Arch.

Basic Operation

The basic interface to Subversion is very similar to CVS. The primary method of interfacing
with Subversion is through the command line (although there are some very good GUI front
ends available), and by design, SVN has very similar command-line operations to CVS.
Commands have not been needlessly renamed, and for the most part, if a user is familiar
with how to do something in CVS, doing the same thing in SVN will have similar (if not
identical) syntax. In fact, unless there was a compelling reason for changing the syntax,
Subversion uses identical command syntax for all of the Subversion features that have a
CVS counterpart. Of course, with Subversion’s much larger feature-set, Subversion has
many commands that don’t have a CVS counterpart, but the basics are extremely easy to
pick up and the overall command-set is still reasonably small and easy to learn. Even if
you aren’t coming from a CVS background, the concepts are similar to many other version
control systems, and the differences should be easy to learn. This clean, simple approach
sets off Subversion from another common open source VCS, Arch, which has a complex
command-set and a paradigm vastly different from that of CVS or Subversion.

Like many common version control systems, Subversion uses a client-server paradigm,
where a central repository sits on a server and clients check out local working copies where
they can modify things as much as they like. When a modification is complete, changes

“svnbook” — 2005/4/14 — 14:55 — page 18 — #39i
i

i
i

i
i

i
i

18 Chapter 2 An Introduction to Subversion

between the repository and the working copy are merged, and the modified version is com-
mitted back to the repository.

Repository Flexibility

Subversion allows for great flexibility in layout of repositories, by keeping revision histo-
ries for both files and directories across moves, copies, and renames. This may not seem
like a big deal if you’re not familiar with other version control systems, but copy, move, and
rename functionality is a feature sorely lacking in many popular version control systems.
Most notably, CVS is notoriously inflexible when trying to modify an existing repository’s
structure. It does not allow files to be moved, copied, or renamed without splitting the
file’s history (so that you need to know its old name to see its old history). Worse, CVS
doesn’t allow directories to be moved around (or even deleted) without editing the repos-
itory directly. Similarly, moves, renames, and copies are difficult in Microsoft’s Visual
SourceSafe, although not quite as bad as CVS. On the other hand, with Subversion, you
can move, rename, and copy files and directories as much as you like without any worry
that you will lose (or split) your history or corrupt older revisions.

Atomic Commits

Subversion uses transactions whenever it modifies the database. When a commit starts,
Subversion marks the current state of the database, then makes its modifications. That way,
if a crash (or bang or boom) interrupts the commit, there is no risk that the database will
be corrupted. When it is resumed, the database will automatically be restored to its state
before the commit began.

This is another feature sorely lacking in many older VCSs, such as CVS or Visual
SourceSafe. If a network glitch or software crash causes a commit in either of those systems
to fail, the repository can be left in a corrupted, unstable state, which may require the
repository to be restored from backup.

Branches and Tags

Most version control systems allow for the revision trees of individual files and directories
to be branched and tagged. Subversion, on the other hand, does not explicitly support this.
In fact, SVN has no built-in concept of either branches or tags. Instead, it providescheap
copies. When a developer uses thesvn copy command, Subversion does not make a copy
of data contained in those files. Instead, it just marks the location of the new file and links
it back to the history of the original file, up to the point where the copy is made. From that
point on, if changes are applied to the copy, a new path of revision is created for the copy,
independent of subsequent revisions applied to the original file.

Using this paradigm, a branch can be created by simply copying the directory (or file)
to be branched. Usually, this is done into a directory namedbranches, so that it is always
clear to users that they are dealing with a branch of part of the repository’s main trunk.
There is no enforcement of this in Subversion, though, and in Chapter 9, “Organizing Your
Repository,” I talk about a variety of different approaches that you can take when deciding
where to place branches, to best fit a project’s style of development.

“svnbook” — 2005/4/14 — 14:55 — page 19 — #40i
i

i
i

i
i

i
i

2.1 Why Subversion? 19

Similarly, tags are also created by making a copy, usually in atags directory. Like
branches, this makes for a wide latitude of flexibility when dealing with how tags are used.
The downside is that there is no built-in enforcement to make sure that tags stay tags, and
don’t inadvertently become branches when someone makes a change to them. It is possible,
though, to enforce tag policies using either Subversion’s support for hook scripts,or (if you
are using Apache as your server) permissions on thetags directory to disallow changes to
files in thetags directory after they have been created.

Binary Files

Versioning binary files is a more difficult task than versioning text files. With a text file,
the file data itself has meaning to a human being, which makes it easy to merge files or
examine their differences. With a binary file, though, you need an external program to
interpret the file and present it in a manner that has meaning for a human. This makes
it difficult for a version control system to automatically perform merges or present diffs,
because it has no context for performing merges properly and no way to present the result
of a diff in a meaningful manner. Instead, diffs will result in incomprehensible binary data,
and merges will likely result in corrupted files that cannot be read by the proper external
program. However, versioning of binary files is not hopeless, because they can at least be
stored in a versioned manner that allows different versions to be retrieved and compared
with external tools. Anyone who has ever used CVS to version binary files, though, knows
that it handles them quite poorly. So poorly, in fact, that it doesn’t store differences to
versioned binary files. Instead, it just stores an entire new copy of the file whenever a
binary file is committed. Subversion improves on this by using a binary difference function
for all files, which allows binary files to be versioned the same as text files.

Subversion still doesn’t have any direct support for automatically merging binary files
(which would be nearly impossible anyway, unless SVN could understand the binary files).
It does, however, have much better support for resolution of merges that can’t be handled
automatically. When a merge conflict occurs, Subversion provides complete copies of both
versions of the file, which allows the user to easily use an external editor to manually merge
the conflicted file.

Symbolic Links

Release 1.1 of Subversion adds the capability to version symbolic links from UNIX systems
—like GNU Arch and unlike CVS. If a user is working on a UNIX-like system, he can add
symbolic links to the repository, just as he would any other file, and the repository will
retain the link information for any other UNIX user who checks out a working copy of the
repository. (Windows users will not get symbolic links, because Windows does not support
UNIX-style symbolic links.)

Conflict Resolution

Subversion and CVS both use a paradigm of making modifications and then merging them
with the modifications others have made, instead of the file locking paradigm used by many

“svnbook” — 2005/4/14 — 14:55 — page 20 — #41i
i

i
i

i
i

i
i

20 Chapter 2 An Introduction to Subversion

other VCSs like Visual SourceSafe. Resolving conflicts in merges when using CVS can be
a bit messy, though. When CVS fails to automatically merge changes between the working
copy and the server, it replaces the conflicted file in the working copy with a version of the
file containing diffs of the two different versions. If the conflict was large, the resulting
diff can waste hours while the developer tries to sort through the changes; and because
the local changes are not backed up, there is no way to revert to the pre-conflict state of
the working copy without sorting through the diff. Subversion, of course, can’t prevent
conflicts from happening anymore than CVS can, but it does handle them better when they
do happen. If a conflict occurs, SVN replaces the offending file with one containing diffs,
just like CVS; however, it also adds temporary versions of the file with the local version, the
server version, and the local version prior to any changes. These extra files make resolving
conflicts significantly less painful, and once the conflict has been settled, a call tosvn
resolved removes the extra files.

Storage

Subversion has a flexible repository backend that allows different types of repository stor-
age systems to be plugged in, transparently to the client. Originally, the only actual reposi-
tory storage system that was available was the Berkeley DB database system. As of release
1.1 of Subversion, though, a filesystem-based backend (FSFS) is also available as part of
the core Subversion system. Instead of storing the entire repository database in a single
monolithic database, like the Berkeley DB backend does, the Subversion FSFS storage
uses individual files for each revision in the repository. So, when you commit revision
3529, there will be a file named 3529 created, which holds all of the changes for that revi-
sion, regardless of how many versioned files were changed in that revision.

Network Protocols

Subversion provides two servers for communicating with the repository via different pro-
tocols. The first server (known assvnserve) uses an SVN-specific network protocol that
requires a dedicated server and open port, which allows a Subversion server to be set up
quickly and easily.svnserve also supports Inetd access, or tunneled-SSH style access.
The other server is a module for the Apache Web server, and is based on the Web-based
Distributed Authoring and Versioning (WebDAV) protocol, with a few extensions for ver-
sion control-specific operations. By using this standard protocol, served over HTTP via
Apache, there is no need to open a special port on the server. Because WebDAV support
is built into a variety of file managers on different operating systems, it is also possible to
get limited access to interact with a repository directly through the Gnome Nautilus file
manager on Linux, the Microsoft Windows Explorer, or any other WebDAV client. If read-
only access to the repository head is all that is required, you can even access the repository
through a Web browser with no special clients or setup required.

“svnbook” — 2005/4/14 — 14:55 — page 21 — #42i
i

i
i

i
i

i
i

2.2 Limitations of Subversion 21

Data Transfer

Subversion reduces much of the overhead that is associated with communications between
the client and server, through a couple of methods not used by many older VCSs, such as
CVS. For starters, it only transfers file differences both from client to server and from server
to client, whenever possible—unlike CVS, which only transfers differences when going
from server to client. Subversion also caches a lot more information locally, which allows
it to avoid network communications altogether in many instances. It even stores a full copy
of the working directory as of the last update, to allow the user to make comparisons with
local changes without contacting the server.

Properties

One of Subversion’s powerful, unique features is its support for file and directory metadata
in the form of properties that allow the user to store arbitrary keyword:value data pairs that
can be associated with a particular file or directory. This makes it easy to store whatever
file metadata makes sense in your development process. Additionally, Subversion defines
several special properties that it can use internally to provide some extra functionality, like
keyword expansion or end-of-line interpretation.

Hook Scripts

Subversion supports a broad array of hook scripts that are run in response to a variety of
SVN actions, such as before or after a commit or property change. These scripts are given
access to relevant information about the action that is taking place, as well as the capability
to examine the repository. Hook scripts can be a powerful tool for automating tasks or
enforcing policies. Although they are supported in one form or another by most version
control systems, the Subversion support for hook scripts is much more flexible than that
found in many others. CVS, for instance, provides commit scripts with little information
about the commit being made, such as the target branch for the commit.

Full-featured API

Subversion features a very complete API, which developers can use to easily and elegantly
create new client interfaces, to create new Subversion servers, or to integrate Subversion
into other development tools. In fact, the standard Subversion client tools, as well as the
SVN servers, use these same APIs to communicate with each other, the Subversion repos-
itory, and a local working copy. Additionally, the interfaces are available with language
bindings for a number of different programming languages (such as C, C++, Java, Perl,
and Python), which allows interfacing programs to be written in whatever language best
suits the problem at hand (and the developer’s expertise).

2.2 Limitations of Subversion

Subversion is a powerful version control system, but it does have its limitations and is miss-
ing some features found in other popular version control systems. You can compensate for

“svnbook” — 2005/4/14 — 14:55 — page 22 — #43i
i

i
i

i
i

i
i

22 Chapter 2 An Introduction to Subversion

some of these limitations with external tools that can work with Subversion, and implemen-
tations of some of the other shortcomings are planned for future versions of SVN. It is also
possible to work around some of SVN’s limitations with clever uses of hooks and proper-
ties. In fact, workarounds for many of Subversion’s limitations are discussed throughout
this book.

The following features are some that are either missing from Subversion, or severely
limited in their implementation.

Locking

Subversion currently has no support for file locking,1 to prevent more than one person
from working on a particular file at a given point in time. In most cases, locking isn’t the
desired behavior anyway, so this is not a major missing feature. It can become a problem,
though, when dealing with binary files that are not easily merged. Locking can be partially
implemented through properties and hooks, but the result is somewhat fragile. According
to the Subversion developers, however, locking is on the list of features to be implemented
in the next few releases of the system.

Distributed Repository

Some version control systems (such as the open source Arch system) have support for
distributed repositories, which can be extremely important for some larger projects, espe-
cially open source projects. Subversion does not currently have any support for distributed
repositories, but there is a secondary project, called SVK, that does provide a distributed
wrapper for a Subversion repository. There are also some ways to do hot backups of a
repository to provide some of the redundancy afforded a distributed system, as is discussed
in Chapter 10, “Administrating the Repository.”

Visualization Tools

In terms of ease of use and comprehensibility, Subversion’s copy paradigm is far above the
branching and tagging functionality built into CVS. In its current implementation, though,
the copy paradigm makes tracking the path a file takes, as it branches and merges over time,
difficult at best. In fact, Subversion puts the task of tracking file history trees on the shoul-
ders of the user. In order to maintain information that should be available automatically,
the Subversion user must manually track using information entered into the logs at commit
time.

For example, look at the complex repository tree in Figure 2.1. Thesvn log command
would make it easy for me to see all of the changes that were made to the third revision
on the main trunk of the repository, but if I want to see that two of the changes occurred
on the main trunk and two occurred on branch 2, it would be impossible, unless I had the
foresight to keep careful notes in the log entries about which branch a change occurred on.

1. Locking support is planned for version 1.2 of Subversion, however.

“svnbook” — 2005/4/14 — 14:55 — page 23 — #44i
i

i
i

i
i

i
i

2.3 Summary 23

Trunk

Branch 1

Branch 2

Figure 2.1. Subversion fails to provide the capability to visualize a complex branching tree like this.

Merging History

Merging of changes in Subversion works much the same as in CVS. A user makes changes,
and then prior to committing those changes, uses Subversion to merge changes committed
by any other developers. Subversion, like CVS, uses a bit of logic to merge together trivial
changes and those that don’t overlap, while punting anything more complicated to the
developer. In this sense, it is equally as good as CVS, which in most cases is good enough.
In fact, by giving the developer more information when it does punt on a merge, SVN is
better than CVS.

Where Subversion falls short is in another case where merging occurs: merging be-
tween branches. When Subversion merges between two branches, it merges all of the dif-
ferences between the first location and the second location into a third location in the work-
ing copy of the repository. This means that if a developer wants to merge changes made on
a branch back into the main trunk (or to another branch), the developer needs to specify the
differences in revisions on the branch, where the changes to be merged occurred. Unfortu-
nately, this means that the user must keep the accounting information describing when the
branch was created (and when it was last merged) in order to ensure that the correct data
is merged. Failure to keep track can result in undesired behavior. For instance, you can
end up “undoing” a change, if you accidentally remerge a section of a file that has been
removed since the first merge. Duplicate merging can also result in spurious conflicts if
remerged sections have been modified instead of removed.

2.3 Summary

Meant to be a replacement for the aging CVS, Subversion is a major step forward for open
source version control systems. In general, Subversion improves upon the many annoy-
ances of CVS, and does things in a more flexible and powerful way. Some of Subversion’s
improved features include its handling of branches and tags via a file copy paradigm, its

“svnbook” — 2005/4/14 — 14:55 — page 24 — #45i
i

i
i

i
i

i
i

24 Chapter 2 An Introduction to Subversion

improved merge conflict resolution, its pluggable repository database architecture, and its
use of HTTP/WebDAV for network communications. Additionally, Subversion provides
new features not found in CVS, such as properties that can be attached to versioned files,
and powerful hook scripts that can be run in response to a variety of actions.

Although Subversion does 0ave its limits, such as a lack of locking, poor merge history
storage, and no distributed repository, they are well outpaced by Subversion’s strengths in
most project situations, and are almost universally issues that are also present to one degree
or another in CVS. Some of Subversion’s shortcomings are handled better by other open
source version control systems, such as Arch, but feature-for-feature Subversion is on par
with any other open source system available. Many of the features missing in SVN can also
be gained through the use of external tools that are available (or currently in development).

In the next chapter, I will go into detail about installation and setup of Subversion on a
variety of operating systems.

“svnbook” — 2005/4/14 — 14:55 — page 25 — #46i
i

i
i

i
i

i
i

Chapter 3

Installing Subversion

The purpose of this chapter is to show you how to install and set up Subversion. Subversion
runs on a variety of operating systems and distributions, and to describe all of the idiosyn-
crasies of installing on all of those systems would take a book of its own. Instead, I will
describe how to install Subversion on a couple of typical systems, with some advice on
things to look out for when doing your own install. When you are done with this chapter,
you should have enough of an understanding of the installation process to be able to per-
form your own install. If you already have Subversion up and running, you can skip ahead
to Chapter 4, “Basic Subversion Usage.”

3.1 Installing on Linux

As with many open source projects, the primary platform of installation for Subversion is
Linux. Although Subversion is far from a second-class citizen on other operating systems,
such as Microsoft Windows or Apple’s Mac OS X, Linux is where it feels most at home.
Of course, Linux is not a single entity. There are, in fact, a wide variety of different dis-
tributions, each with its own slightly different filesystem layouts and package management
systems for installation of software. As I said in the chapter introduction, describing all of
these different distributions is well beyond the scope of this book. Instead, in this section I
will show you how to compile and install Subversion from source, which should work for
most Linux distributions. If you would rather install binaries with your distribution’s pack-
age management system, you will find that there are binary packages available for most of
the major distributions on the downloads page for Subversion.

3.1.1 Subversion’s Prerequisites

In order to make compiling a Subversion client easy, Subversion includes most of the de-
pendencies it needs for the client in the Subversion source distribution. On the other hand,
if you want to compile a server, there are a number of different prerequisites that you need
to install first. Which prerequisites you use depends on exactly which features of Subver-

25

“svnbook” — 2005/4/14 — 14:55 — page 26 — #47i
i

i
i

i
i

i
i

26 Chapter 3 Installing Subversion

sion you need. If you read on, I describe each of the packages that you may need to install,
as well as the functionality they provide and where you might find them.

Apache Portable Runtime Libraries

The Apache Portable Runtime (APR) libraries are a set of libraries that provide a cross-
platform abstraction layer for developing software that will work the same on a variety of
different operating systems. Subversion is built on top of APR, and makes heavy use of the
library, which helps ensure that SVN runs on the variety of platforms it supports. APR is
therefore a core library for SVN, and is required when building the system.

The APR libraries are available for download from a variety of mirrors, which can be
reached from the Apache project’s Web site, atapr.apache.org. Downloading the APR
libraries is not usually necessary though, because the APR source necessary for compil-
ing Subversion is included in the Subversion source distribution. Most compiled binary
distributions of Subversion also include the necessary APR libraries, so installing them
separately will likely be unnecessary.

Apache Web Server

Subversion uses the Apache Web server as one of the two servers it supports for allowing
remote access to the repository. If you want support for using the Subversion extensions to
WebDAV for accessing the repository, you will need Apache. If you would rather use the
Subversion custom-protocol–based svnserve, or only want to use Subversion on the local
machine, you do not need to compile Subversion with support for Apache.

Most Linux distributions include Apache as a part of their core packages, and your
system likely already has it installed. This may not be what you need though. Subversion
requires version 2.0 or later of Apache, which is not yet in predominant use, and is often
not installed. If you cannot upgrade your whole system to use Apache 2, it is possible to
install Apache 2 alongside an existing version of Apache 1. I will show you how to set up
such a system in Section 3.4, “Configuring to Use Apache.”

If you want to download the sources for Apache to compile them yourself, they can be
obtained from mirrors linked from the Apache Web site, just like APR. You can download
Apache from its site athttpd.apache.org. The Apache Web site also provides compiled
binary versions of Apache for most platforms if you need to install Apache but don’t want
to compile it yourself. Unlike APR, Apache isnot included with the Subversion source and
must be installed separately.

Berkeley DB

The Berkeley DB (BDB) database is an embedded database, developed as an open source
project by Sleepycat Software. It is a database system designed to be integrated into other
programs, and is used by Subversion for its database repository backend. Berkeley DB is
only required if you are going to use the Subversion database repository. If you are instead
using the new filesystem-based repository introduced in version 1.1 of Subversion, you can
compile without support for Berkeley DB.

“svnbook” — 2005/4/14 — 14:55 — page 27 — #48i
i

i
i

i
i

i
i

3.1 Installing on Linux 27

Most binary distributions of Subversion will include the necessary BDB support, so you
shouldn’t have to acquire BDB separately. If you are compiling Subversion from scratch,
or are using an installation package that doesn’t include BDB, you will need to install BDB
yourself in order to have support for BDB-based repositories (most Linux distributions
will already have it installed, so you might want to check before attempting to install it
yourself). You can download BDB from Sleepycat’s Web site, atwww.sleepycat.com.

Neon

Subversion uses the Neon library in its client for communications with a WebDAV server.
In most cases, you will not have to download this library separately, because it is included
in the Subversion source distribution. If you are installing binary packages, however, you
may need to install this as one of the prerequisites. The binary packages you will need,
however, are in most cases available from the same place as the Subversion package that
you are installing.

3.1.2 Downloading the Source

The Subversion source code can be downloaded from the Subversion project’s Web site, at
subversion.tigris.org/project_packages.html, which is where you will also find
a variety of already compiled binary packages for various operating systems and distribu-
tions. Source versions are available in a variety of archive formats (tar gzip, tar bzip2, and
zip).

If you’re compiling on a UNIX-based system, you’ll probably want to download either
the bzip2 archive for the latest version of SVN (.tar.bz2 extension) or the gzip archive
(.tar.gz). After you have the source archive for Subversion downloaded, it’s time to
get things unpacked, so that you can start compiling. To perform the unpacking, you will
want to send the decompressed file to thetar command for unpacking. The easiest way
to perform both the decompression and unpacking is to decompress with either thegzip
or bzip2 command (depending on the compressed version you downloaded), and use the
-dc options to tell the command to decompress the file and then send the decompressed
file to standard output. A pipe can then be used to send the decompressed file directly to
tar, which you’ll want to run with thexvf options to tell it to extract the archive from a
file, verbosely, and a hyphen (-) to tell it to take the archive from standard input. So, for
example, if you had downloaded thebzip2 compressed version 1.1.0 of Subversion, the
command to unpack it would be

$ bzip2 -dc subversion-1.1.0.tar.bz2 | tar xvf -

Thetar command will unpack everything into a directory named (in the case of the
preceding version)subversion-1.1.0.

3.1.3 Compiling and Installing

For the most part, compiling Subversion is straightforward. It auto-detects the presence
of the various prerequisites that are required for compilation of the server, and decides

“svnbook” � 2005/4/14 � 14:55 � page 28 � #49i
i

i
i

i
i

i
i

28 Chapter 3 Installing Subversion

whether it can build the server. If none of the prerequisites are installed, it will just compile
the Subversion client (which doesn’t have any prerequisites beyond what is included with
the source). To perform a basic compilation, justcd into the Subversion directory that you
unpacked in the previous section and run the following commands.

$./configure
$ make
$ su
Password:
make install

In most cases, this compiles everything that you need, and installs everything in/usr/
local/. Notice that the last command (make install) requires you to super-user to
the root user, in order to have the proper permissions to perform a systemwide install of
Subversion.

Configuration Options

Sometimes the default compile and install is not actually what you want. For instance, you
may not want to compile the server with all of the possible features, even if the prerequisites
are installed; or you may want to install to somewhere other than/usr/local/. In these
instances, the Subversion configure script provides several options that you can set when it
is run. I explain the ones you are most likely to run into in the following. If you would like
to see the complete list, you can run./configure �help. To configure the Subversion
compilation with one of these options, you should run the configure script with the desired
option passed as a command-line parameter.

--prefix=PREFIX

The prefix option specifies where Subversion should be installed. By default, this is in
/usr/local/. If you would rather install Subversion somewhere else, passconfigure the
--prefix option, withPREFIX replaced by the path where you would like Subversion to
be installed. For example, if you are installing SVN on a system where you don’t have root
privileges, you can run./configure �prefix=$HOME/subversion to have Subversion
installed in a directory namedsubversion in your home directory.

--with-apache=PATH
--without-apache

These options tell the build scripts whether they should compile the Subversion server
with support for Apache and WebDAV. The default behavior is for Apache to be included,
but if for some reason you don’t want Apache support to be compiled, passing--without-
apache to configure will disable it. Additionally, if Apache is installed in a nonstandard
place on your system, you may have to tellconfigure where to find it. You can do that
by passing the--with-apache option, withPATH replaced by the path to where Apache
is installed.

“svnbook” — 2005/4/14 — 14:55 — page 29 — #50i
i

i
i

i
i

i
i

3.2 Installing on Mac OS X 29

--with-berkeley-db=PATH
--without-berkeley-db

These options tell the build scripts whether they should compile the Subversion server
with support for the Berkeley DB. The default behavior is for BDB to be included, but
if you plan on using the filesystem-based repository storage,--without-berkeley-db
will disable BDB (of course, you can still use the filesystem repository even if BDB sup-
port is compiled). Also, if Berkeley DB is installed in a nonstandard place on your sys-
tem, you may have to tellconfigure where to find it. You can do that by passing the-
-with-berkeley-db option, withPATH replaced by the path to where BDB is installed.

--disable-mod-activation

By default, Subversion modifies your Apachehttpd.conf file to enable the Subver-
sion WebDAV module,mod_dav_svn, when you runmake install. If you don’t want
it to make this modification, you can pass--disable-mod-activation to the configure
script.

3.2 Installing on Mac OS X

Like Linux, Apple’s Mac OS X is a UNIX-like operating system. It was originally based on
the open source FreeBSD operating system, which was itself derived from the University of
California, Berkeley-developed BSD UNIX. On top of the UNIX underpinnings, Apple has
built its own excellent graphical user interface. Regardless of whether you prefer to deal
with OS X using the GUI or from under the hood at the command line, you have options
for installing Subversion that should meet your needs.

3.2.1 Installing OS X Binaries

Installing the Subversion client on OS X is trivial. The Subversion Web site provides a
link to prepackaged binaries of Subversion. To install, all you need to do is download
the Subversion disk image (.dmg), mount it, and then launch the installer package (.pkg
extension). The installer will take you through a typical OS X install process that will set up
everything to allow you to run Subversion from the command line, usingTerminal.app
or another terminal emulator.

3.2.2 Compiling Subversion on OS X

Compiling Subversion by hand on OS X should be as simple as compilation on Linux,
and should follow the same process. Before installing, though, you may need to in-
stall the Apple Developer Tools, which are available for free from Apple’s developer site
(developer.apple.com). Installing the developer tools will install the GCC compiler, as
well as a number of other development utilities, such as GNU Make.

“svnbook” — 2005/4/14 — 14:55 — page 30 — #51i
i

i
i

i
i

i
i

30 Chapter 3 Installing Subversion

3.2.3 Using Fink

An alternate way to install Subversion for OS X is through the Fink package management
system. Fink provides a reasonably easy way for many open source packages (mostly from
the UNIX world) to be installed. If you don’t have Fink installed already, you can get it
from fink.sourceforge.net. When Fink is installed, you can install Subversion from
the command line.

To install the SVN client from the command line, open Terminal.app, and runsudo
fink install svn-client. Additionally, you can install several other packages if you
would like to get different versions of the Subversion server. Installing thesvn package,
for instance, will get you the standalonesvnserve Subversion server, whereas the pack-
agelibapache2-mod-svn will get you everything you need to serve the repository over
WebDAV, via Apache. If you would like the Subversion documentation, you can install the
svn-doc package.

3.3 Installing on Windows

Installing Subversion on Windows is easy to do. If you follow the links for Win32 on
the SVN download page,subversion.tigris.org/project_packages.html, you
will find a Windows installer program, which should be named something like
svn-1.1.0-setup.exe. You can download the setup program and run it to install Sub-
version. It will step you through everything you need to do to install SVN and get the basic
application set up (see Figure 3.1).

If you plan to set up your Windows machine to serve a Subversion repository through
Apache, I suggest that you run the Subversion installerafter installing Apache. If you do so,

Figure 3.1. The SVN setup program makes installation on Windows easy.

“svnbook” — 2005/4/14 — 14:55 — page 31 — #52
i

i

i

i

i

i

i

i

3.4 Con�guring SVN to Use Apache 31

the Subversion installer will give you the option of allowing it to automatically con�gure
Apache to load the appropriate modules for Subversion and WebDAV. You can also re-run
the Subversion installer at a later date, if you install Apache and want to con�gure it for
Subversion.

When installing Subversion on a Windows 2000 or XP machine, you should be able
to install Subversion just by running the installer program. On the other hand, if you
are installing on Windows 95, 98, or Millenium Edition, you may need to modify your
Autoexec.bat �le to properly con�gure the system environment for Subversion. For
example, if you installed inC:nProgram Files nSubversion (the default location), you
should set up yourAutoexec.bat �le as follows.

1. Make sure that the%PATH%environment variable points to the directory that contains
the Subversion binaries, like this:

SET PATH=C:\WINDOWS;C:\;C:\PROGRA~1\SUBVER~1\BIN

2. Set theAPR_ICONV_PATHenvironment variable.

SET APR_ICONV_PATH="C:\Program Files\Subversion\iconv"

3. Reboot your computer.

Subversion can also be compiled from source on Windows with Visual Studio, using
the Windows-speci�c source, available as a zip compressed download (from the same place
as thegzip andbzip2 source downloads). The speci�c instructions for compiling under
Windows, though, are beyond the scope of this book. If you are interested in compiling the
Windows version, theINSTALL�le included with the Subversion source contains detailed
step-by-step information about the process.

3.4 Con�guring SVN to Use Apache

If you plan to use the Subversion WebDAV extensions for remote access to your repository,
you have to set up Apache to load the SVN WebDAV module and tell it where to �nd your
repository. Also, make sure that Apache has read/write access to any repositories that you
want it to serve.

3.4.1 Loading the Modules

The �rst step is to make sure that Apache is set up to load themod_davandmod_dav_svn
modules (mod_davis not compiled in Apache by default so you may have to compile it
yourself; most distributions of Apache do have it compiled already though). Subversion's
make install command should have done this for you, but it's a good idea to take a quick
look to make sure everything seems correct. TheLoadModuledirective for the SVN DAV
module should be in yourhttpd.conf �le. The location of thehttpd.conf �le is very
system speci�c, and depends a lot on how Apache was installed on your particular sys-
tem. In general, though, you will probably �nd it either in/usr/local/apache2/conf

“svnbook” — 2005/4/14 — 14:55 — page 32 — #53i
i

i
i

i
i

i
i

32 Chapter 3 Installing Subversion

or somewhere under the/etc directory on most UNIX-based systems. If you are installing
under Windows, thehttpd.conf file should be in the directory where Apache is installed
(which is probablyC:\Program Files\Apache Group\Apache2\conf). If you have
both Apache 1 and Apache 2 installed on your system, make sure that thehttpd.conf
file you are checking is the configuration file for Apache 2.

After you have found thehttpd.conf file, you should check it for theLoadModule
directives formod_dav_svn andmod_dav, which should look something like this:

LoadModule dav_module modules/mod_dav.so
LoadModule dav_svn_module modules/mod_dav_svn.so

There may be otherLoadModule directives betweenmod_dav andmod_dav_svn, but it
is important to make sure thatmod_dav is loaded beforemod_dav_svn. On some systems,
mod_davmay have been statically compiled into Apache, in which case there is no need to
have aLoadModule directive for it.

3.4.2 Setting Up Access

In order to allow people to access your repository through Apache, you need to set up a
Location directive to tell Apache where to find the repository, as well as what URL path to
use. TheLocation directive will also go in yourhttpd.conf file, and should be added to
the end of the file, to ensure that everything has been loaded properly before it is processed.

A basicLocation directive for your repository will look something like this:

<Location /repos>
DAV svn
SVNPath /srv/subversion/repos
AuthType Basic
AuthName "Subversion"
AuthUserFile /srv/subversion/svn_passwd
Require valid-user

</Location>

Let’s look at what each line in the preceding directive means.
The first line opens theLocation directive. The path given afterLocation tells

Apache what the URL path to the repository should be. For example, in the preceding
sample directive, if your Web site were at www.example.com, the URL for the repository
would behttp://www.example.com/repos. TheLocation directive is then closed by
the</Location> tag on the last line.

The second line of the directive tells Apache that the location you are setting up points
to a WebDAV share, which should use the SVN extensions. That is followed by the
third line, which tells Apache where to find the Subversion repository, which should
give an absolute path to the directory that was created whensvnadmin create made
your repository.

“svnbook” — 2005/4/14 — 14:55 — page 33 — #54i
i

i
i

i
i

i
i

3.4 Configuring SVN to Use Apache 33

The next four lines set up the security policies for the repository.AuthType Basic
informs Apache that you want simple password protection, andAuthName is the name
that should be used when requesting the password. TheAuthUserFile gives the file that
contains the valid users and their passwords. Finally,Require valid-user specifies that
a valid authorization should be required for all operations on the repository. For a more
detailed discussion on securing your WebDAV share, see Chapter 10, “Administrating the
Repository.”

Setting a Parent Path for Multiple Repositories

If you want to set up yourhttpd.conf file for multiple repositories, you can always
add multipleLocation directives to individually configure each repository; however, if
you have a lot of repositories, that can be a major pain—especially if repositories are fre-
quently added or removed. To solve that problem, Subversion allows you to set up a single
Location that points to a parent directory that contains one or more repositories, using the
SVNParentPath directive. Apache will automatically pick up each repository in the parent
directory and allow clients access.

As an example, say we have two repositories namedrepos_uno andrepos_dos. If we
place both of those repositories in the directory/srv/svnrepositories, theLocation
can be set up as follows.

<Location /repos>
DAV svn
SVNParentPath /srv/svnrepositories
AuthType Basic
AuthName "Subversion"
AuthUserFile /srv/svnrepositories/svn_passwd
Require valid-user

</Location>

The two repositories would then be accessible through the URLs

http://svn.example.com/srv/svnrepositories/repos_uno

and

http://svn.example.com/srv/svnrepositories/repos_dos

respectively.

3.4.3 Using Apache 2 and Apache 1 Together

Subversion requires version 2.0 or later of the Apache Web server in order to allow Web-
DAV repository access. Version 2 of Apache, however, was a major overhaul of the server,
and not all of the extensions supported by Apache 1 are supported under Apache 2. This
means that you may find that your server needs to support both versions of Apache for

“svnbook” — 2005/4/14 — 14:55 — page 34 — #55i
i

i
i

i
i

i
i

34 Chapter 3 Installing Subversion

different parts of your Web site. Fortunately, Apache supports running two versions side
by side, and setting Apache 1 up to point certain URLs (like the path to your repository) to
a running instance of Apache 2 is relatively easy.

The first thing you need to do is to set Apache 2 up to run on a different port than the
default port 80 that HTTP runs on by default. A good choice here is to use port 8080. To
change Apache 2’s port, you need to edit yourhttpd.conf file and look for a line that
saysListen 80, which you will need to change toListen 8080. If there is noListen
directive in yourhttpd.conf file, go ahead and add one. That’s it. You can now run both
versions of Apache at the same time, and both will be accessible. Apache 1 will still be
accessible as normal, and Subversion can be accessed on Apache 2 by entering the port
number in the URL (e.g.http://www.example.com:8080/repos).

3.5 Configuring SVN to Use svnserve

If, for whatever reason, Apache is not a practical solution for allowing remote access to
a Subversion repository, there is also a standalone server, which you can use in place of
Apache. This Subversion server,svnserve, allows a client to access the repository via a
custom Subversion protocol, instead of the extended WebDAV protocol that the client uses
when talking to the Apache server. The server can run by itself as a persistent process that
listens on a dedicated port, or as an on-demand process that is either started over a tunneled
SSH/RSH session or by an inetd server.

The svnserve server is contacted from the Subversion client using a URL that be-
gins withsvn:// or svn+ssh://, instead of thehttp:// prefix used for WebDAV. Like
WebDAV, the body of the URL will then consist of the server being contacted, followed
by the path to the repository. If thesvnserve process was invoked without a repository
root specified, the path that the client gives must be an absolute pathname. For exam-
ple, if the repository is located in/srv/svn/repos, you would need to use the URL
svn://example.com/srv/svn/repos.

To increase both security and ease of use, you can give a repository root when invoking
svnserve using the argument--root PATH. If a root is given, repository URL paths will
be relative to that root, and unable to access anything outside of that directory. So,--root
/srv/svn would make the preceding URLsvn://example.com/repos.

3.5.1 Running as a Daemon

The easiest way to runsvnserve is as a standalone daemon process, which runs in the
background and listens on a port for requests from Subversion clients. You can run the
server this way from the command line, by running the following.

$ svnserve --daemon --root=/srv/subversion/

The--daemon parameter tellssvnserve that it should disconnect from the shell and
go into the background after it starts, and the--root parameter, of course, gives it a root
for repository URLs. In order for the server to access your repository, you need to make
suresvnserve runs as a user who has filesystem read/write permission for your repository.

“svnbook” — 2005/4/14 — 14:55 — page 35 — #56i
i

i
i

i
i

i
i

3.5 Configuring to Use Svnserve 35

By default,svnserve listens on port 3690, and responds to requests directed at all host-
names and IP addresses bound to the machine the s/F3/F is running on. If you would rather
ha3/svnserve listen on a different port, you can gi3/ it a port with--listen-port=PORT,
wher/ PORT is the port to listen on. Additionally, if you want the s/F3/F to bind to a partic-
ulaF hostname, you can gi3/ it the hostname with--listen-host=HOSTNAME.

Instead of /xplicitly in3oking thesvnserve daemon process from the command line
e3/ry time you want to start it, you can also set up the seF3/F to be started as a seF3ice when
youF machine boots, oF enters certain runle3/ls. E3/ry OS and distribution handles startup
seF3ices a little differently, so the specifics of setting up such a seF3ice is beyond the scope
of this book, but documentation on how to set up such a seF3ice is usually readily a3ailable.
If you installed a binary packag/, using your distribution’s package management system,
you may find that the hard work of setting up a seF3ice to startsvnserve has already been
done, and all you need is to configur/ it to be started.

3.5.2 Running with inetd
An alternate method foF runningsvnserve is to use a UNIXinetd seF3/F to start
svnserve on demand, as it recei3/s requests from a client. In ord/F to allow you to run
svnserve this way, it has a special mode foF in3ocation frominetd, which is specified
with the command-line parameter,--inetd. When it is started this way,svnserve han-
dles all of its input and output throughstdin andstdout, which is howinetd /xpects to
talk to seF3ices. As with runningsvnserve in daemon mode, you need to make sur/ that
svnserve is run by a user who has filesystem read/write permission foF any repositories
the s/F3/F will access.

Setting upsvnserve to useinetd requir/s you to configur/ the seF3ice to react in
response to an SVN request on the Sub3/Fsion port (which is 3690, by default). Start by
tellinginetdwhat to do, which in3ol3/s putting an entry in theinetd configuration file(s),
in /etc. The /xact configuration file to /dit will depend somewhat on your particulaF
inetd seF3/F and operating system distribution, but most systems use one of two methods.

Modern distributions ar/ mo3ing toward using the much mor/ secur/inetd implemen-
tation,xinetd. If youF system uses it, you will need to add a file to/etc/xinetd/, named
svn. In this file, you will need to add something like the following lines.

service svn
{
socket_type = stream
protocol = tcp
user = svnuser
wait = no
server = /usr/bin/svnserve
server_args = --inetd --root=/srv/svn

}

This tellsxinetd that it should /xpect a stream of data, o3/F TCP, and should then
launch thesvnserve program, with theseF3er_args arguments, and should run it as

“svnbook” — 2005/4/14 — 14:55 — page 36 — #57i
i

i
i

i
i

i
i

36 Chapter 3 Installing Subversion

svnuser (which needs to have read/write access to the repository).
Then, forxinetd to know when to invoke the service, you need to add the line

svn 3690/tcp

to your/etc/services file.
If you have a more traditionalinetd server installed, the setup process is similar; in-

stead of adding/etc/xinetd/svn, you add the following line to/etc/inetd.conf:

svn stream tcp nowait svnuser /usr/bin/svnserve svnserve --inetd --root ¬
=/srv/svn

The/etc/services file should be set up the same.

3.5.3 Tunneling over SSH

You can also usesvnserve by tunneling over SSH. To allow this, you need to make sure
that every user accessing the repository has an account on the server that allows him to
connect via SSH. You will also need to make sure that he has permission to modify the
Subversion repository on the server’s filesystem;svnserve will be invoked locally on the
server with the--tunnel option when the user connects. Then, all he needs to do is feed
a URL with ansvn+ssh:// schema to his SVN client and Subversion will handle the rest,
like in the following checkout:

$ svn checkout svn+ssh://svn.example.com/repos

3.6 Summary

You should now have a clear idea of how to go about installing Subversion on your sys-
tem. The number of potential system configurations on which Subversion can actually be
installed is way beyond the capability of this book, but this chapter covered most of the
basics, which should serve as a starting point if your particular system is in some way
different. The chapter covered basic compiling and installing of Subversion on a typical
Linux system, as well as installation on Microsoft Windows and Apple’s Macintosh OS X.
The last couple of sections in the chapter covered setting up a server for remote access to
an SVN repository through WebDav, via Apache, and the standalonesvnserve server.

In the next chapter, I will introduce the actual mechanics of a Subversion system, by
walking through usage of the system, from creation of your first repository to operation of
the basic client tools.

“svnbook” — 2005/4/14 — 14:55 — page 37 — #58i
i

i
i

i
i

i
i

Chapter 4

Basic Subversion Usage

In this chapter, I will walk you through the basic use of Subversion, from creating a new
repository, all the way through to more complex features such as creating and merging a
branch.

If you are like me, you learn best by actually sitting down at a computer and getting your
feet wet. To allow you to do that, all of the examples in this chapter build on each other,
one right after the other, starting with a simple Hello World project. All of the examples in
this chapter assume that you are in a UNIX-like environment, such as Linux or Mac OS X.
For the most part, they will all work if you are running in a Windows environment, with a
few minor changes, such as turning forward slashes (/) in path names into backslashes (\).

We’ll start the project with two files, which make up our example project. The first file
is the source for our Hello World program,hello.c:

#include <stdio.h>

int main(int argc, char** argv)
{
printf("Hello World!!\n");

return 0;
}

The second file is a makefile, which could be used with themake program to compile
our fabulous application. The file is named, appropriately,Makefile:

all: hello.c
gcc hello.c -o hello

4.1 Creating the Repository

Subversion stores files in a repository database (which is Berkeley DB by default, but ver-
sion 1.1 also supports FSFS). So, the first thing to do is create a new repository where we
can store Hello World. This is done using thesvnadmin program, which is used for most
server-side administrative tasks when using Subversion. The repository is created with the

37

“svnbook” — 2005/4/14 — 14:55 — page 38 — #59i
i

i
i

i
i

i
i

38 Chapter 4 Basic Subversion Usage

svnadmin create command. First, though, you will want to create a directory in your
home directory, where you can store the repository (you’ll see later why creating it directly
in your home directory isn’t a good idea). If you were creating a repository to use on a
server, for production use, you would probably want to place it somewhere other than your
home directory, such as/srv/ or /var/.

In the following example,bill should be replaced with your username on the machine
where you are creating the repository. Similarly, in all future examples where you see my
username,bill, you should replace it with your own username.

$ svnadmin create --fs-type fsfs /home/bill/my_repository

This creates an empty repository namedmy_repository in your home directory, using
the filesystem-based FSFS repository backend. By choosing FSFS instead of the default
Berkeley DB backend, you don’t need to worry about repository wedging, which can hap-
pen if Berkeley DB is interrupted. Although wedging is not fatal to repositories, it will
leave your repository in a temporarily inaccessible state, which requires the Berkeley DB
recovery process to be run in order to clear the wedge.

In most situations, you will want to create a repository on a server, and access it through
HTTP/HTTPS, or the Subversion serversvnserve. For simplicity’s sake, though, we’ll
take advantage of Subversion’s capability to communicate directly with a repository on the
local machine, using a local directory path, for all of the examples in this chapter.

After you’ve run the create command, you can look in your home directory, and you
will see that Subversion has created a directory namedmy_repository. This contains the
repository database. In general, you won’t directly edit any files in this directory. Instead,
you will interact with it through Subversion’ssvn command. If you look inside this direc-
tory, you can see that there are a bunch of files and directories, but there is little reason for
you to worry about what they are for at this point. In Chapter 11, “The Joy of Automa-
tion,” you will learn how you can edit some of the files in your repository to customize
Subversion’s behavior.

$ ls /home/bill/my_repository/
README.txt conf/ dav/ db/ format hooks/ locks/

4.2 Getting Files into the Repository

Now that you have created the empty repository, it’s time to get the project files into it.
To do this, you need to put the files into a basic directory structure for the repository, and
then import the entire structure. It would be possible to make that directory structure as
simple as a single directory namedhello_world, with hello.c andMakefile inside. In
practice, though, this isn’t a very good directory structure to use.

If you recall from the previous chapter, Subversion does not have any built-in support
for branches or tags, but instead just uses copies. This proves to be a flexible way to handle
branches and tags, but if they’re just copies, there is no set means for identifying what files
are branches and what files are on the main source trunk. The recommended way to get

“svnbook” — 2005/4/14 — 14:55 — page 39 — #60i
i

i
i

i
i

i
i

4.2 Getting Files into the Repository 39

around this missing information is to create three directories in your repository, one named
branches, another namedtags, and a third namedtrunk. Then, by convention, you can
put all branched versions of the project into thebranches directory and all tags into the
tags directory. Thetrunk directory will be used to store the main development line of the
project.

With large, complex repositories, there are a number of different ways you can set up
the directories for the trunk, branches, and tags, which can accommodate multiple projects
in one repository, or facilitate different development processes. Because our test project is
simple though, we’ll keep the repository simple and place everything at the top level of the
repository. So, to get everything set up, you first need to create an overall directory for the
repository, calledrepos. Then, set uptrunk, branches, andtags directories under that,
and move the original source files for the project into thetrunk directory.

$ mkdir repos
$ mkdir repos/trunk
$ mkdir repos/branches
$ mkdir repos/tags
$ ls repos
branches tags trunk
$ mv hello.c repos/trunk/
$ mv Makefile repos/trunk/
$ ls repos/trunk/
Makefile hello.c

After the directories are created and filled, the only thing left to do is import the direc-
tory into our repository. This is done using theimport command in thesvn program.

$ svn import --message "Initial import" repos file:///home/bill/ ¬
repositories/my_repository
Adding repos/trunk
Adding repos/trunk/hello.c
Adding repos/branches
Adding repos/tags

Committed revision 1.

The--message "Initial import" option in the preceding example is used to tell
Subversion what to use as a log message for the import. If you omit the--message option
when you are importing or committing files to the repository, Subversion will automatically
open an editor for you,1 which will allow you to type a log message as long and complex
as you need it to be.

Now that the repository structure has been imported, you can delete the original files.
Everything should now be stored in the database, and ready for you to check out a working
directory and begin hacking.

1. See Section 7.2, “Editing the Configuration Files.”

“svnbook” � 2005/4/14 � 14:55 � page 40 � #61i
i

i
i

i
i

i
i

40 Chapter 4 Basic Subversion Usage

4.3 Creating a Working Copy

The working copy is where you make all of your changes to the files in the repository.
You check out the working copy directory by running thesvn checkout command, and it
contacts the repository to retrieve a copy of the most recent revision of all the data in your
repository. A local directory tree that matches the tree inside the repository will be created,
and the downloaded working directory files will be placed in there.

$ svn checkout file:///home/bill/my_repository/trunk my_repos_trunk
A my_repos_trunk/hello.c
A my_repos_trunk/Makefile
Checked out revision 1.

As you can see, Subversion has checked out thetrunk directory from your repository,
creating a local working copy directory with the namemy_repos_trunk, along with the
files hello.c andMakefile that were stored intrunk. You’ll notice, however, that the
branches andtags directories were not checked out. Subversion will let you check out
the entire repository at the top level, but doing so is generally not good practice. If you do,
you may end up with multiple local copies of the source tree, because branches and tags are
made by copying files. Instead, if you only check out the main trunk, you will ensure that
you only have one version of the files at a time in your working copy. If you need to access
specific branches or tags, you can either check them out on an individual basis, into their
own working copies, or switch files in your trunk working copy to point to other locations
in the repository (e.g. branches or tags), which I’ll show you how to do in a later section.

Now, if you look closely at your new working copy, you can see that Subversion also
has placed one additional directory in the directory that you checked out.

$ ls my_repos_trunk
Makefile hello.c
$ ls -A my_repos_trunk
.svn Makefile hello.c

When you check out a repository, Subversion places a.svn directory in every directory
of the repository. Inside these directories, Subversion places a wide variety of metadata
about the working directory, including what repository the working directory comes from
and what revisions of each file have been checked out. It also stores complete pristine
versions of the last checked-out revision of each file in the working directory. This allows
Subversion to provide you with diffs showing what changes you have made locally to a file,
without needing to contact the server.

4.4 Editing Files

Now that you have checked out a working copy of the repository, it’s time to edit some
files. Let’s say, for example, that you decide that your Hello World program needs to tell
everyone about a glorious new system that you’ve just discovered. So, you bring up your
favorite text editor and modifyhello.c, so that it now looks like this:

“svnbook” — 2005/4/14 — 14:55 — page 41 — #62i
i

i
i

i
i

i
i

4.4 Editing Files 41

#include <stdio.h>

int main(int argc, char** argv)
{
printf("Subversion Rocks!!\n);

return 0;
}

Whew! After a big change like that, it can be hard to remember everything that you’ve
done since the repository was checked out. Sounds like it’s time to learn about Subversion’s
query commands.2

Subversion provides you with a couple of different commands for querying the current
state of the working directory. The first,svn status, shows the current status of local
files. You can see whether files have been added, modified, deleted, and a number of other
things. Running it on your current working directory shows that one file has changed:

$ svn status my_repos_trunk
M my_repos_trunk/hello.c

Each output line from SVN (in this case, only one) shows the state of a file in the
working directory tree, with files that haven’t changed since the last update omitted. As
you can see, thehello.c file is listed, with anM that informs you that the local file has
been modified.

Just knowing that the file has been modified, though, doesn’t tell you a whole lot. It
would be significantly more useful if you could see exactly what has been modified. This
is where thesvn diff command comes in. With the diff command, you can see the
difference between the local copy of the file and the last version to be updated from the
repository (you can also use the diff command to compare with revisions other than the
most recent, as you’ll see in Chapter 5, “Working with a Working Copy”).

$ svn diff my_repos_trunk/hello.c
Index: my_repos_trunk/hello.c
==
--- my_repos_trunk/hello.c (revision 1)
+++ my_repos_trunk/hello.c (working copy)
@@ -2,7 +2,7 @@

int main(int argc, char** argv)
{
- printf("Hello World!!\n");
+ printf("Subversion Rocks!!\n");

return 0;
}

2. See how I set you up for that one with a smooth, effortless transition?

“svnbook” � 2005/4/14 � 14:55 � page 42 � #63i
i

i
i

i
i

i
i

42 Chapter 4 Basic Subversion Usage

As you can see, the diff command gives you an overview of the changes made to the
file, including both removed information and added information. The header portion of the
output identifies which files have been diffed. In this case, it shows that the original file
was revision 1 ofhello.c, and all lines from that which have been removed in the latest
version (which it notes, is the working copy) are marked with a- sign. Additionally, all
lines added to the working copy, but not in revision 1, are marked with a+. The@@ -2,7
+2,7 @@ tells you that the diff to follow shows lines two through seven from both versions
of hello.c. For each section of a file that has changed, the diff will show the changes, as
well as a few of the unchanged lines before and after the change. These can help you get
your bearings as to which section of the file it is that you are seeing changed.

4.5 Committing Changes

Now that you’ve made some changes to the project, it’s time to commit those changes back
to the repository. This is done with thesvn commit command, as follows.

$ cd my_repos_trunk/
$ svn commit --message "Changed program output"
Sending hello.c
Transmitting file data .
Committed revision 2.

When you run the commit command, Subversion sends the changes you have made to
the repository, where a new revision is created with the changes applied to the files in the
repository. As soon as the commit is complete, other users are able to update their own
working copies of the repository and retrieve the updates that you have just committed.

As you can see, the output from the commit command says that Subversion committed
revision two. This is the global revision number of the repository. Whenever any user
commits a change to the repository, Subversion increments the revision number of the entire
repository by one. This way, you are always able to refer to a snapshot of the repository at a
given point in time, using the revision number. Unlike CVS, there is no need to remember
that revision 10 of file A was matched with revision 15 of file B.

4.6 Viewing the Logs

After you have multiple revisions committed to the repository, you will likely find a time
when you want to review the history of changes you have made. This can be done using
the svn log command, which displays the commit logs for a file. If multiple files are
given, Subversion aggregates the logs for all of the files into a single log output, showing
the log entries for each revision where at least one of the listed files changed. If a directory
is given, SVN will output the log information for not only the given directory, but also all
files and subdirectories contained within the directory given.

You can view the log for thehello.c file by running the following.

“svnbook” � 2005/4/14 � 14:55 � page 43 � #64i
i

i
i

i
i

i
i

4.7 Creating a Tag 43

$ svn log hello.c
--
r2 | bill | 2004-07-11 04:45:12 -0500 (Sun, 11 Jul 2004) | 1 line

Changed program output
--
r1 | bill | 2004-07-08 16:28:57 -0500 (Thu, 08 Jul 2004) | 1 line

Initial import
--

Looking at the output, you can see that it shows both of the revisions that you have
committed, along with the name of the user who made the commit, the time of the commit,
the total number of lines that were changed in files that were part of the commit (in this
case, just one), and the log message that you gave for each commit.

4.7 Creating a Tag

It’s hard to improve upon perfection, so you decide that it’s time to release your Hello
World application so that others can bask in its glory. You would, however, like to be able
to continue work on version 2.0 of Hello World (with many new features) after you release
version 1.0. To ensure that you always have access to exactly what you released as version
1.0 (in case, for example, you later find a bug that you want to fix), it would be handy to
mark the revision of the repository that made up the version 1.0 release. You could do this
by writing down the revision number somewhere, but the easier (and more reliable) way to
keep track of the version 1.0 release is to create a tag.

Subversion has no explicit concept of a “tag.” Instead, it simply uses lightweight copies
of the files being tagged. So, to create a tag, you just have to use thesvn copy command
to create a copy of the files included in the release in thetags directory that you created
when you made the initial repository. In order to avoid the expense of actually making a
copy of the files in the directory (as opposed to just marking them as copied), and because
you never checked out thetags directory into your working copy, it is best to perform the
copy entirely in the repository, by running the following command.

$ svn copy --message "Tagged version 1.0 release" file:///home/bill/ ¬
my_repository/trunk/ file:///home/bill/my_repository/tags/version_1_0 ¬
/

Committed revision 3.

This performs the copy inside the repository immediately, and creates a new revision.
You can see that the copy occurred by using thesvn list command to see the contents of
the repository.

$ svn list file:///home/bill/my_repository/tags
version_1_0/

“svnbook” � 2005/4/14 � 14:55 � page 44 � #65i
i

i
i

i
i

i
i

44 Chapter 4 Basic Subversion Usage

$ svn list file:///home/bill/my_repository/tags/version_1_0
Makefile
hello.c

4.8 Creating a Branch

You should have tags pretty well down at this point, so let’s take a look at branches. Say,
for example, that your boss isn’t yet quite as enlightened as you are, and decides you need
to release a version of Hello World that touts thatother version control system. Because
you know he’s heading down a dead-end path, though, you don’t want to stop development
on your already excellent version of Hello World. The solution is to create a branch of the
project, which will allow you to take the project in a different direction, while maintaining
the current development path in parallel.

Branches in Subversion are just like tags, copies of the original repository part they
refer to. Therefore, you make them exactly the same way; only in this case, you will want
to copy the files into thebranches directory, instead of thetags directory.

$ svn copy --message "Created a branch of the project to make the boss ¬
happy" file:///home/bill/my_repository/trunk/ file:///home/bill/ ¬
my_repository/branches/cvs_version

Committed revision 4.

After you have created the branch, you’ll need to put it into a working copy so that you
can make changes to it. You could check out the branch (usingsvn checkout) into a new
working copy. In fact, that will work just fine. There’s a better solution, though. Instead of
checking out a new working copy, you can switch your current working copy to point to the
branch, instead of the/trunk directory that it points to now. To do this, you need to use
thesvn switch command. To switch your working copy to the branch, run the following
command line.

$ svn switch file:///home/bill/my_repository/branches/cvs_version
Updated to revision 4.

The files in your working copy now point to thebranches/cvs_version/ directory,
and any changes that you commit will be applied to that directory. In this particular case,
runningsvn switch didn’t make any changes to the files in your working copy, because
the branch and your trunk are identical. Had they been different, Subversion would have
updated all of your working copy files to reflect thecvs_version/ directory that you
switched to.

You can look at what directory you are currently switched to by runningsvn info.
For instance, the following command line will show you that your current working copy is
switched to thecvs_version branch (look at theURL line).

$ svn info
Path: .

“svnbook” � 2005/4/14 � 14:55 � page 45 � #66i
i

i
i

i
i

i
i

4.8 Creating a Branch 45

URL: file:///home/bill/my_repository/branches/cvs_version
Repository UUID: 5380c965-27ea-0310-9e69-9d7dd738c2c1
Revision: 4
Node Kind: directory
Schedule: normal
Last Changed Author: bill
Last Changed Rev: 4
Last Changed Date: 2004-12-01 00:46:13 -0500 (Wed, 01 Dec 2004)

Now that you have switched your working copy to point to the branch, you’d probably
like to make some changes to the branch. For instance, to make your boss happy, you might
changemy_repository/branches/cvs_version/hello.c to look like this:

#include <stdio.h>

int main(int argc, char** argv)
{
printf("CVS is the best!!\n"); // Ugh! The boss made me do it

return 0;
}

Then, when you commit those changes, they will be applied to the copied version of
the file, but the original file will remain unaffected, as you can see in the log outputs here.

$ svn commit --message "Changed program output to praise CVS"
Sending hello.c
Transmitting file data .
Committed revision 5.

After the commit, the branch shows the committed change.

$ svn log file:///home/bill/my_repository/branches/cvs_version/hello.c
--
r5 | bill | 2004-07-12 23:32:11 -0500 (Mon, 12 Jul 2004) | 1 line

Changed program output to praise CVS
--
r4 | bill | 2004-07-12 22:47:11 -0500 (Mon, 12 Jul 2004) | 1 line

Created a branch of the project to make the boss happy
--
r2 | bill | 2004-07-11 04:45:12 -0500 (Sun, 11 Jul 2004) | 1 line

Changed program output

“svnbook” � 2005/4/14 � 14:55 � page 46 � #67i
i

i
i

i
i

i
i

46 Chapter 4 Basic Subversion Usage

--
r1 | bill | 2004-07-08 16:28:57 -0500 (Thu, 08 Jul 2004) | 1 line

Initial import
--

But the the originalhello.c file, still only shows the first two revisions.

$ svn log file:///home/bill/my_repository/trunk/hello.c
--
r2 | bill | 2004-07-11 04:45:12 -0500 (Sun, 11 Jul 2004) | 1 line

Changed program output
--
r1 | bill | 2004-07-08 16:28:57 -0500 (Thu, 08 Jul 2004) | 1 line

Initial import
--

Of course, now that you’re done modifying the branch, it’s a good idea to switch your
working copy back to the trunk. If you don’t make the switch as soon as you’re done with
the branch, it can be all too easy to forget and accidentally apply modifications to the wrong
place.

$ svn switch file:///home/bill/my_repository/trunk/
U hello.c
Updated to revision 5.

As you can see, Subversion updates yourhello.c file so that it represents the trunk
version, rather than your modified branch version of the file.

4.9 Merging a Branch

As various branches of a repository’s main trunk progress and diverge, it’s sometimes nec-
essary to use changes made on one branch in a different branch. Subversion allows you to
apply these changes using the merge command. Let’s say you add a line of output to the
Hello World program to make it output some copyright information so that it now looks
like this:

#include <stdio.h>

int main(int argc, char** argv)
{
printf("Subversion Rocks!!\n");
printf("Copyright 2004, Bill Nagel\n");

“svnbook” — 2005/4/14 — 14:55 — page 47 — #68i
i

i
i

i
i

i
i

4.9 Merging a Branch 47

return 0;
}

This change is of course committed as usual, usingsvn commit.

$ svn commit --message "Added copyright information"
Sending hello.c
Transmitting file data .
Committed revision 6.

Because outputting the copyright information is something that would be useful in both
your Subversion-praising version and in the CVS-praising branch, it would be nice to merge
these changes over to the branch. To do this, you’ll use thesvn merge command.

The merge command works by taking the difference between two revisions of a file
or directory in the repository and applying those differences to a location in your working
directory. In this case, you want to apply the change made to the repository trunk in revision
6 to the cvs_version branch.

First, you should runsvn log to check which revision(s) of the repository the change
you want to merge was committed on.

$ svn log hello.c
--
r6 | bill | 2004-07-13 00:23:38 -0500 (Tue, 13 Jul 2004) | 1 line

Added copyright information
--
r2 | bill | 2004-07-11 04:45:12 -0500 (Sun, 11 Jul 2004) | 1 line

Changed program output
--
r1 | bill | 2004-07-08 16:28:57 -0500 (Thu, 08 Jul 2004) | 1 line

Initial import
--

In this case, you can see that the copyright information change was applied to the main
trunk in revision 6. That means that to apply those changes to the branch version, you need
to apply the difference between revision 6 ofhello.c and revision 5.

The Subversion merge command takes as parameters two different revisions of a source
directory, and a working copy path to apply the changes to. Although merges are relatively
easy to undo, after you have run them, it is usually a good idea to execute the merge
command first with the--dry-run option, which will show you the files that will be
changed before it applies the change. This lets you see any potential merge conflicts before
they happen, which can often make them easier to deal with, and may even allow you to

“svnbook” — 2005/4/14 — 14:55 — page 48 — #69i
i

i
i

i
i

i
i

48 Chapter 4 Basic Subversion Usage

eliminate the conflict before it occurs. After the merge, it is a good idea to test the merged
files and make sure everything was applied correctly, before committing the merge to the
repository.

To run the merge in your repository, you can do the following.

$ svn switch file:///home/bill/my_repository/branches/cvs_version/
U hello.c
Updated to revision 7.
$ svn merge --dry-run -r 5:6 file:///home/bill/my_repository/trunk
U hello.c
$ svn merge --revision 5:6 file:///home/bill/my_repository/trunk
U hello.c
$ cat hello.c
#include <stdio.h>

int main(int argc, char** argv)
{

printf("CVS is the best!!\n"); // Ugh! The boss made me do it
printf("Copyright 2004, Bill Nagel\n");

return 0;
}
$ svn commit --message "Merged with revision 6 - revision 5 in trunk/ ¬
hello.c"
Sending hello.c
Transmitting file data .
Committed revision 7.
$ svn switch file:///home/bill/my_repository/trunk
U hello.c
Updated to revision 7.

You may notice that I explicitly stated in my log file for the merge commit which revi-
sions were merged with the branch. It is actually very important to keep that information in
the logs whenever a commit is made, because Subversion doesn’t yet do any sort of track-
ing of merges and branches. By keeping track of the merged revisions in the logs, you can
help ensure that you don’t accidentally apply a merge more than once, which can have the
unintended side effects of triggering spurious conflicts or even putting back changes that
were taken out previously.

4.10 Handling Conflicts

Let’s finish this chapter by taking a look at conflicts and how you can resolve them when
they occur. Conflicts occur when Subversion is unable to merge two files together automat-
ically. Generally, this happens when two users have independently made a change to the

“svnbook” � 2005/4/14 � 14:55 � page 49 � #70i
i

i
i

i
i

i
i

4.10 Handling Conflicts 49

same area of a file. Because Subversion doesn’t actually understand the files that it merges,
it has no way of figuring out which of the two versions to use. Its only recourse, in this
case, is to let the user solve the conflict.

Before you can resolve a conflict, you have to have a conflict. So, let’s create a con-
flict. To start, check out a new working copy, which will represent the work of a second
developer.

$ svn checkout file:///home/bill/my_repository/trunk/ /home/bill/ ¬
other_dev_trunk
A other_dev_trunk/hello.c
A other_dev_trunk/Makefile
Checked out revision 7.

Then, edit the filehello.c in your new working copy, and change the line

printf{"Subversion Rocks!!\n");

so that it reads

printf("Subversion is Great!!\n");

After the change has been made, commit it to the repository.

$ svn commit --message "Changed to a more conservative phrase" /home/ ¬
bill/other_dev_trunk/hello.c
Sending hello.c
Transmitting file data .
Committed revision 8.

With your changes from the new working copy committed, it’s time to go back to your
original working copy. Once there, edit the copy of the filehello.c that is stored there,
without updating the file from the repository first. This time, change the line

printf("Subversion Rocks!!\n");

to the third, yet equally complimentary line,

printf("Subversion is Awesome!!\n");

Now, try to commit this change tohello.c.

$ svn commit --message "Decided on a more hip phrase" /home/bill/ ¬
my_repos_trunk/hello.c
Sending my_repos/trunk/hello.c
svn: Commit failed (details follow):
svn: Out of date: '/my_repos_trunk/hello.c' in transaction '9'

“svnbook” — 2005/4/14 — 14:55 — page 50 — #71i
i

i
i

i
i

i
i

50 Chapter 4 Basic Subversion Usage

Well, Subversion obviously didn’t like that. The reason, of course, is that Subversion
won’t allow you to commit changes to a file if those changes cause a conflict with previous
changes, which can happen if you try to commit without first updating the working copy
to the latest revision. To resolve the conflict, you first need to update your working copy to
the latest revision, usingsvn update.

$ cd ~/my_repos_trunk/
$ svn update
C my_repos_trunk/hello.c
Updated to revision 8.

Notice that there is aC in front of the listing forhello.c instead of the normalU for
files that have been updated. TheC is used to indicate a conflict. When a conflict such as
this one occurs, Subversion does two things. First, it marks the file as being in a conflicted
state. Second, it creates four versions of the conflicted file, for you to use when resolving
the conflict.

$ ls trunk/
Makefile hello.c hello.c.mine hello.c.r7 hello.c.r8

The first file, namedhello.c just like the original, contains the file with each conflicted
area showing both possible versions of the file. The first version shown is the version in
your working copy, before the conflict occurred, and begins at a«««<. The second version
shown is from the version of the file that the working copy was being merged with. It
begins at the======= that separates the two versions, and ends at a»»»>. You can see an
example of this diff view here.

#include <stdio.h>

int main(int argc, char** argv)
{
<<<<<<< .mine

printf("Subversion Is Great!!\n");
=======

printf("Subversion Is Awesome!!\n");
>>>>>>> .r8

printf("Copyright 2004, Bill Nagel\n");

return 0;
}

The second version of the file,hello.c.mine, is a copy of the file as it existed in
your working directory right before the conflict. The third version,hello.c.r7, is the file
as it existed in your working directory the last time you checked it out, prior to any local
changes. The.r7 tells you that the file is taken from revision 6 of the repository. The

“svnbook” — 2005/4/14 — 14:55 — page 51 — #72i
i

i
i

i
i

i
i

4.11 Summary 51

fourth and final file,hello.c.r8, is the file as it exists in the repository revision that is
being merged into the working directory. Like the previous file, the.r8 extension on this
file tells you that it is from revision 8 of the repository.

To resolve the conflict, you need to modify the original file (hello.c in this case) so
that it represents the resolved, final version of the file that you would like to commit to the
repository as part of the next revision. In doing so, you are free to make use of any of the
conflict files Subversion provides (either by copying information from them or copying the
file on top of the existing version wholesale), as well as any data from other sources, as
necessary. If you need to, to resolve a conflict, you could even rewrite the entire file from
scratch.

After you have the conflicted file set up the way you want it, with all conflicting data
merged or removed, you need to tell Subversion that you are done. This is done through
thesvn resolved command, which tells Subversion to remove the flag that marks the file
as conflicted. Subversion also removes the extra versions of the file that it created when
the resolved command is run. After the conflict has been marked resolved, you are free to
commit the file to the repository.3

$ svn resolved hello.c
Resolved conflicted state of 'hello.c'
$ svn commit --message "Resolved conflicted state"
Sending trunk/hello.c
Transmitting file data .
Committed revision 9.

4.11 Summary

In this chapter, you have walked through most everything that you will encounter in day-
to-day interaction with a Subversion repository. The first few sections walked through the
basics of creating a repository, including how to get the initial files into a repository and
how to check out a working copy of the repository. After that, you learned the basics of
editing files and committing changes, followed by some more advanced techniques such as
branching and merging. Finally, you saw how to manually merge conflicts that Subversion
can’t handle automatically.

This ends Part I of the book. Now that you’ve gone through a thorough introduction
to what Subversion is and how it works, Part II will delve in depth into the workings of
Subversion from the point of view of a user of the Subversion client.

3. Of course, it’s entirely possible that someone else may have committed yet another version of the file while
you were working on resolving the conflict, which could put the file into a conflicted state again.

“svnbook” — 2005/4/14 — 14:55 — page 52 — #73i
i

i
i

i
i

i
i

“svnbook” — 2005/4/14 — 14:55 — page 53 — #74i
i

i
i

i
i

i
i

Part II

Subversion from a Client User’s
Perspective

“svnbook” — 2005/4/14 — 14:55 — page 54 — #75i
i

i
i

i
i

i
i

“svnbook” — 2005/4/14 — 14:55 — page 55 — #76i
i

i
i

i
i

i
i

Chapter 5

Working with a Working Copy

The primary users of Subversion will almost certainly be developers who interact with Sub-
version through a client program that connects to a remote repository. They will not deal,
on a day-to-day basis, with any sort of server-side administration, nor will they be respon-
sible in most cases for configuring the layout of the repository or assigning permissions
to other users. They will need to deal with the fine details of modifying and maintaining
source code that resides within the repository. In Part II, you will learn those details—the
ins and outs of working with Subversion from the client user’s perspective.

The framework that the developer works within, when interacting with Subversion, is
a working copy of a repository. In this chapter, you will learn in detail how to interact
with a working copy in order to facilitate development. In addition to fundamentals such as
checking out the repository and modifying the data it contains, you will also learn details
about some of the more advanced topics you may encounter in daily use of Subversion, like
branching and merging.

Like most version control systems, Subversion stores versioned data in a central database,
called a repository. The repository contains information about all of the versioned files and
directories, including all changes to their contents over the entire history of the repository.
When users want to examine or modify the data in the repository, they generally check out
a working copy. The working copy is a snapshot of a part of the repository that a client user
can manipulate locally, committing changes back to the repository at logical points.

5.1 The Subversion Client

When interacting with Subversion, the primary client program that you will end up using
from the command line is thesvn command, which provides most of the features that you
will need for interacting with a repository or working copy as a client user. To run the
svn command, you will also need to give it a subcommand such ascommit or update.
Each command has its own set of options that you can use to control the behavior of the
command. Many of the options, though, are common to many different commands. For
instance, in almost every Subversion client command, you can specify a revision (or range
of revisions) using the--revision option.

55

“svnbook” — 2005/4/14 — 14:55 — page 56 — #77i
i

i
i

i
i

i
i

56 Chapter 5 Working with a Working Copy

5.1.1 Common Command Options

Because many of these options are common to a variety of commands, let’s take a look at
them before diving into the Subversion commands themselves. The following commonly
used options are common to most commands and have usage that is worth discussing before
taking a look at the commands themselves.

--message

Whenever Subversion creates a new revision, it attaches a log message to that revision that
describes what changes were made in the revision, and why. Normally, Subversion will
open an editor to allow you to enter in the log message, but if the message is short (or you’re
running the command from a script) it can be easier to specify the log message directly on
the command line. To allow you to do that, all Subversion commands that create a new
revision in the repository allow you to use the--message option. To specify a log message,
you just give the command--message followed by a message, enclosed in quotes. For
example, the following command performs a repository-side copy, and specifies the log
message to use:

$ svn commit --message "Fixed bug #1154."

--no-auth-cache

Normally, Subversion caches your repository authorization information (username, pass-
word, etc.) as a convenience, so you don’t have to type it in every time. Sometimes, though,
you don’t want that information to be stored. For example, you might be using someone
else’s workstation (or worse, a public workstation). If, for whatever reason, you don’t want
Subversion to cache your authorization information, you can turn the cache off using the
--no-auth-cache option. This option will work with every Subversion command that
contacts the repository.

--recursive/--non-recursive

Every Subversion command that can operate on multiple files defaults to either recursive
behavior or non-recursive behavior, depending on the command. Basically, commands
that can destroy data (such assvn revert) are non-recursive by default. Everything else
defaults to recursive. Regardless of which default a program uses, you can override the
default using--recursive or --non-recursive. For instance, the following command
will revert all local changes in the trunk directory:

$ svn revert --recursive trunk/

--revision

Many Subversion commands require you to specify a specific revision in the repository, or
a range of revisions. For any command that takes a revision, you can supply it using the-
-revision option. Single revisions can be specified by following the option with a single
revision number. Or, if the command takes a range of revisions, you can give two revision

“svnbook” — 2005/4/14 — 14:55 — page 57 — #78i
i

i
i

i
i

i
i

5.2 Checking Out and Maintaining a Working Copy 57

numbers separated by a colon. For example, the following command will display the log
messages for revisions 1 through 50.

$ svn log --revision 1:50

To make your life a little bit easier, Subversion also defines a few aliases that can be
used to refer to certain revision numbers by their context, rather than their explicit number.
Those aliases are HEAD, BASE, COMMITTED, and PREV. Each one can be used in any
Subversion command, when a revision number is called for—although BASE, COMMIT-
TED, and PREV can only be used when referencing a working copy because they require
the working copy to give them context. The HEAD alias refers to the greatest numerical
revision in a repository. This is the same for every file, regardless of when they were last
committed. The BASE alias, on the other hand, points to the base revision for the working
copy file or directory being referenced. So, for example, if you check out the trunk direc-
tory at revision 3497, BASE would point to 3497. If you then commit a modified file inside
the trunk directory at revision 3583, the BASE for that file will point to 3583, whereas the
base for the trunk directory and the rest of its contents will still point to 3497. If you later
update the trunk to 3583, its BASE will then point to 3583. The remaining two, COMMIT-
TED and PREV, are then relative to the BASE revision. COMMITTED refers to the most
recent commit at or before the working copy item’s BASE revision, and PREV refers to
the revision prior to COMMITTED. So, for instance, if you want to show the log messages
from the first revision to the most recently committed revision, you could run the following
command.

$ svn log --revision 1:COMMITTED

5.1.2 Paths

In addition to options that are common across commands, the format for specifying paths
in a working copy or repository are also common. For most Subversion commands, you
can reference files and directories that reside locally in a working copy or in a remote
repository. Working copy files/directories are referenced by giving a local path to that file
(either absolute or relative to the current directory). Repositories are referenced with URLs.
For instance, you might reference thetrunk directory in a remote repository that is served
via Apache withhttp://svn.example.com/repos/trunk/. Most commands will take
either local paths or URLs on the command line, and in most cases you can mix URLs
and local paths in the same command—to copy from the repository to a working copy, for
example.

$ svn cp http://svn.example.com/repos/trunk/foo.c ~/repos_wc/ ¬
trunk/bar.c

5.2 Checking Out and Maintaining a Working Copy

A working copy is created by checking out all or part of a Subversion repository, using the
commandsvn checkout (which can be abbreviatedsvn co). To indicate the repository

“svnbook” — 2005/4/14 — 14:55 — page 58 — #79i
i

i
i

i
i

i
i

58 Chapter 5 Working with a Working Copy

that should be checked out, you pass a URL that points to the desired repository along with
the checkout command. The exact form that the URL takes depends on the type of server
that you are contacting.

If the repository is being served by Apache, via HTTP/WebDAV, the appropriate URL
prefix ishttp://, or if the connection is secured by SSL,https://. On the other hand,
if the Subversion server for the repository issvnserve, you will want to usesvn:// or
svn+ssh://, depending on whether the connection should be tunneled over SSH. Finally,
if you are not contacting a remote server, but are instead directly accessing a repository
that resides on the local machine, the prefix should befile://. The remainder of the
URL follows the same standards as a URL used for any other purpose and consists of the
form username@host.example.com/path/to/repository. Of course, the username
and hostname are dropped if it is a directly accessed local repository, via afile:// prefix.
Also, remember that a local filesystem path should have an initial/, in addition to the
prefixed double slash (so you should have three slashes total). This applies even for local
filesystem URLs on Windows, even though Windows doesn’t use the slash to indicate a
root directory in the filesystem hierarchy.

You can also make a working copy that consists of only part of a repository by continu-
ing the path in the URL out to identify the portion to check out. For example, if a repository
repos contains a directory namedtrunk at the top level, you could check out justtrunk
by issuing the following command.

$ svn co http://svn.example.com/repos/trunk
A trunk
A trunk/foo.c

Running the preceding checkout command with that URL will check out just thetrunk
directory in the repository and create a local directory namedtrunk in the directory where
the checkout command was run. Thetrunk directory is now your working copy. It contains
copies of the versioned files located inside thetrunk directory, as well as a directory named
.svn, where Subversion stores metadata about the local working copy.

If you want to check out a working copy into a directory other than the directory where
thesvn co command is actually run (for instance, if you create a script to automate the
checkout), you can pass a path to the checkout command, after the URL, which will tell
Subversion where to place the checked out working copy. So, if you want to check out a
repository into your home directory, you can run the following command from anywhere:

$ svn co http://svn.example.com/repos /home/bill/repos_wc
A repos_wc
A repos_wc/trunk
A repos_wc/trunk/foo.c
A repos_wc/branches
A repos_wc/branches/branch1/foo.c
A repos_wc/tags

Subversion also allows you to specify multiple URLs to check out on the same com-
mand line. If you do supply multiple URLs, Subversion will check out each of the reposi-

“svnbook” � 2005/4/14 � 14:55 � page 59 � #80i
i

i
i

i
i

i
i

5.2 Checking Out and Maintaining a Working Copy 59

tories (or subsets of a repository) given, and place them either in the local directory or the
directory given as a path after all of the URLs.

$ svn co http://svn.example.com/repos/trunk http://svn.mycomain.com/ ¬
repos/branches
A trunk
A trunk/foo.c
A branches
A branches/branch1/foo.c

If for one reason or another you don’t want to check out the subdirectories of a repos-
itory, you can also passsvn co the argument--non-recursive (-N) to tell it to only
check out the directory given, without checking out the contents of any directories it con-
tains. If you do this though, the working copy will remember that you didn’t check out
any of the subdirectories, and it won’t get them when you do an update either. If you do
want to get a subdirectory that wasn’t checked out originally, you can get it by runningsvn
update with the name of the directory you’d like to get.

$ svn co --non-recursive http://svn.example.com/repos
Checked out revision 21657
$ cd repos/
$ ls -a
. .. .svn
$ svn update trunk
A trunk
A trunk/test.c
$ ls -a
. .. .svn trunk

There may also be times when you want to check out a revision of the repository other
than the HEAD revision. You can do this by passing--revision (-r) with the revision
that you want to check out. The revision can either be an explicit revision number, or it can
be a date (which needs to be enclosed in brackets). For example, if you want to check out
the last revision committed before July 20th, 2004 at noon, you could check out with the
following command.

$ svn co --revision "{2004-07-20 12:00}" http://svn.example.com/repos

5.2.1 Keeping Up-to-Date

After you have a repository checked out, you will want to keep it up-to-date with changes
made by other developers. The basic command for doing this issvn update (or svn up).
When it is run without any options, the differences between the current revision of files
in your working copy and the HEAD revision of the repository are downloaded from the
server and applied to your working copy. As it updates, Subversion will show you which
files were updated, and what sort of update occurred.

“svnbook” � 2005/4/14 � 14:55 � page 60 � #81i
i

i
i

i
i

i
i

60 Chapter 5 Working with a Working Copy

$ svn update
A trunk/vid/wildflowers.mpg
U trunk/src/anim.c
D trunk/src/works.c
G trunk/src/Makefile
C trunk/README
Updated to revision 1450.

As you can see here, there were five files modified by the update, and each one has
a different letter in front of its name. Each of those letters tells you what Subversion did
when it updated the file in your working copy. Only files that were in some way updated
are shown in the output.

• The A tells you that a file namedtrunk/vid/wildflowers.mpg has been added
to the repository since your last update, so Subversion downloaded a copy of it and
added it to your working copy.

• TheU tells you that the filetrunk/src/anim was updated with changes from the
repository.

• TheD tells you that file was deleted from your working copy, because it no longer
exists in the repository.

• TheG tells you that Subversion merged the changes received from the repository with
the locally modified filetrunk/src/Makefile.

• TheC indicates that Subversion was not able to merge the changes to the file
trunk/README, and has instead declared a conflict.

If the update command is run with no path supplied, it operates on the current directory
and recursively updates that directory and all of its contents. If a path is supplied, it updates
the directory or file that is given, as well as anything contained within if the path points to
a directory. If recursive updating is not what you want (for instance, if you want to update
the properties associated with a directory without updating its contents), you can use the
--non-recursive option. The following command, for example, will update thetrunk
directory, but leave its contents untouched.

$ svn update --non-recursive /home/bill/repos/trunk
U trunk
Updated to revision 1478.

It is important to note thatsvn update operates on files and directories known to the
repository, regardless of whether those files have been locally removed from your working
copy. The advantage of this is best illustrated by the following snippet.

$ ls
foo.c bar.c
$ rm bar.c

“svnbook” — 2005/4/14 — 14:55 — page 61 — #82i
i

i
i

i
i

i
i

5.3 Modifying and Committing Data 61

$ svn update bar.c
U bar.c
Updated to revision 503.
$ ls
foo.c bar.c

As you can see, Subversion makes it easy to recover files that were locally deleted,
eliminating any worry about causing real harm to data within the working copy. Recovering
a file by deleting and updating can also be handy if a file in the working copy somehow
gets corrupted. In most cases, if Subversion is misbehaving on a versioned file, you can get
things back to a sane state by just deleting (or moving) it and performing ansvn update.

Another command that is useful for restoring a working copy to a known state issvn
revert. This command works similarly tosvn update, but instead of updating to a dif-
ferent revision in the repository, the revert command restores locally modified files to a
pristine version of the file, corresponding to the most recent checkout, update, or commit.

Reversions that are done withsvn revert are very fast, because Subversion always
keeps a pristine copy of every versioned file in the working copy.1 This allows the revert to
occur without contacting the remote repository, saving not just time but also bandwidth.

As a safety feature though (because the command can destroy local changes),svn
revert does not recurse into subdirectories likesvn checkout andsvn update, nor
will it do anything if you run it without explicitly identifying the files to revert. If you want
recursion, you have to explicitly request it with the--recursive (-R) option. Subversion
also can’t revert directories that were locally deleted. To do that, you have to usesvn
update.

5.3 Modifying and Committing Data

The meat of Subversion is its usefulness for tracking changes in files over time. That makes
getting those changes into the system a very important part of the system. The primary tool
that you will use to get data into the system is the commit command,svn commit. In
general, the basic committing process will go something like this.

$ svn update
At revision 3215.
$ svn status
M light.c
$ svn commit --message "Added a status variable."
Sending light.c
Transmitting file data .
Committed revision 3216.

It’s a good idea to run thesvn update command first, so that you can get any changes
that others have made to the repository and make sure they will be compatible with your
change. If there are any other changes merged into your working copy when you run update,

1. Subversion stores pristine copies for every file in a working copy directory inside the corresponding.svn
directory.

“svnbook” — 2005/4/14 — 14:55 — page 62 — #83i
i

i
i

i
i

i
i

62 Chapter 5 Working with a Working Copy

it’s also a good idea to recompile and run a test suite if one is available, to ensure that
everything still works as you expect. Subversion won’t let you commit changes that will
result in a merge conflict without first making you resolve those changes by hand. However,
it doesn’t have any context for your source, and will not in any way prevent changes that
cause logical conflicts in the project. The only conflicts that it catches are instances where
either two people edited the exact same lines of a file or two people edited the same binary
file.

It is also a good idea to run thesvn status command before you commit, in order
to get an idea of what it is that you’ll be committing. That way, you help avoid getting a
stray change in an unrelated file mixed in with your commit just because you forgot that
you made the change. You can also make use of thesvn diff command if you don’t
remember exactly what changes you made to individual files. To find out more information
aboutsvn status andsvn diff, take a look at Section 5.4, “Getting Information About
the Repository.”

As soon as you feel that you have a good understanding of what you are committing,
it’s time to perform the actual commit. In the preceding example, the command was run
with no path and with a log message on the command line. Whensvn commit is run with
no path telling it what to commit, it recursively commits all modified files in the current
directory. Recursion can be turned off with--no-recursion if you need to commit a
directory without committing its contents.

When the commit command runs, it sends the local modifications to the files being com-
mitted to the remote repository. Only the differences are sent, so no bandwidth is wasted
by sending redundant information. If no paths are specified bysvn commit, it recursively
commits all of the modified files in the current directory. If you don’t want to commit all of
the locally modified files, you can instead specify one or more files on the command line,
and it will instead commit only those files. Or, you can specify directories on the com-
mand line, and Subversion will commit that directory and any changed files or directories
it contains (unless you specifically turned off recursion).

In addition to files to commit,svn commit also requires a log message to associate
with the commit. The log message can be supplied on the command line by giving the
--message (-m) option. If you supply the log this way, the log message should follow the
--message (separated by a space), and be enclosed in quotes.

$ svn commit -m "A little inline log message. How cute."

Entering log messages on the command line can quickly become unwieldy—especially
if they are long messages. To make entering long messages easier, you can leave off the
--message option, and Subversion will automatically open an editor for you to enter a log
message (as you can see in Figure 5.1). Subversion will then block until you quit the editor.
If you have entered a log message and saved the file, Subversion will use the contents of
that file as the log message for the commit. If you quit without changing the file, Subversion
will instead ask you if you want to use a blank log message or abort the commit. This abort

“svnbook” � 2005/4/14 � 14:55 � page 63 � #84i
i

i
i

i
i

i
i

5.3 Modifying and Committing Data 63

Figure 5.1. Adding a log with a text editor.

capability can come in handy when you realize that you were a little too quick to commit
and either forgot to add a file to the those that are being committed, or are accidentally
committing too many files. As an aid to helping you figure out what is being committed
Subversion will put a section in the commit log file, when it opens the editor, that tells you
exactly which files are being committed. That section will then be removed from the file
before Subversion sets the commit log.

A third method for entering log messages is to put them in a file and have Subversion
read the file by using the option--file (-F)—which takes a single argument specifying
the file to read. When specifying a file for the log message though, Subversion will not,
by default, allow you to use a file that is already under version control. If you do want to
use a file that is under version control for your log message, you can override Subversion’s
limitation by passing--force-log to svn commit.

5.3.1 Adding New Files

New files added to the working copy need to be explicitly put under version control before
they can be committed to the repository. Adding files is a two-step process. The first step
is to schedule the file for addition, with thesvn add command, which adds the file in the
working copy, but doesn’t contact the remote repository. The actual transfer of data to the
repository doesn’t occur untilsvn commit is run on the newly added file. If you decide
not to add the file, before performing the commit, you can unschedule the file by running
svn revert on it.

$ svn add memory.*
A memory.c
A memory.o
$ svn revert memory.o
Reverted 'memory.o'

“svnbook” — 2005/4/14 — 14:55 — page 64 — #85i
i

i
i

i
i

i
i

64 Chapter 5 Working with a Working Copy

$ svn status
A memory.c
? memory.o
$ svn commit --message "Added a file for managing memory."
Adding memory.c
Transmitting file data .
Committed revision 1492.

If svn add is called on a directory, it will recursively add all of the files in that directory,
unless you callsvn add with --non-recursive.

$ svn add my_project
A my_project
A my_project/file_1.c
A my_project/file_2.c

$ svn add --non-recursive my_project
A my_project

5.3.2 Removing Files

Occasionally, it is also necessary to remove files from the repository. Subversion handles
this with thesvn delete command, which removes a file from the local working copy
and schedules it to be removed in the next revision of the repository when a commit is
executed. When files are removed though, Subversion only removes them for subsequent
revisions. The file will always be there in any past revisions.2

$ svn delete image.cpp
D image.cpp
$ ls image.cpp
ls: image.cpp: No such file or directory
$ svn status
D image.cpp

As you can see, whensvn delete was run, it did indeed delete the fileimage.cpp
and ansvn status shows that the file is scheduled to be deleted. As withsvn add, if you
later decide (before committing the deletion to the repository) that you really didn’t want
to delete the file, you can undelete it by runningsvn revert with the name of the file you
want to get back. After you have committed a remove operation, you will have to use the
commandsvn copy to get the file back into the HEAD revision.

When performing ansvn delete, you need to be cautious about local modifications
that have not yet been committed. After a file has been removed, you can use revert to get
back a pristine version of the file from the last update, but all uncommitted local modifi-
cations will be irretrievably lost. Fortunately, Subversion has a safeguard that will prevent

2. There is talk of a feature that would allow files to be retroactively removed, but as of this writing, no such
feature exists.

“svnbook” — 2005/4/14 — 14:55 — page 65 — #86i
i

i
i

i
i

i
i

5.3 Modifying and Committing Data 65

you from doing this accidentally. Ifsvn delete detects local changes, it will fail, with a
message telling you that you need to explicitly force it to delete the file, which you can do
with the--force option.

$ svn delete mobius.pl
svn: Use --force to override this restriction
svn: 'movius.pl ' has local modifications
$ svn delete --force mobius.pl
D mobius.pl

In addition to removing files via your working copy, it is also possible with Subversion
to directly remove files in a repository by specifying the file with a URL. Unlike removing
a file in your working copy, when you use a URL you do not need to perform an explicit
commit to cause the deletion to take effect in the repository. Instead,svn rm performs an
implicit commit automatically when it is operating on a URL. Just as it does when you do
an svn commit, the implicitly triggered commit will bring up an editor to allow you to
input a log message, if you haven’t supplied one with a--message.

$ svn delete --message "Removed build.xml" http://svn.example.com/repos ¬

/trunk/build.xml
Committed revision 702.

5.3.3 Moving Things Around

One of the biggest strengths of Subversion is the ease and efficiency with which it allows
you to copy and move files under revision control. With relative impunity, you can shuffle
files around with few worries about running into difficulties down the road as a result.
All repository-side copies and moves are also done without physically copying the data.
Instead, the repository simply makes a note of the new file’s location and makes it point
back to the original data. Then, if a copy is changed down the road, Subversion stores
those changes along with the entry for the copy. In that way, a copy can "branch" from the
original file, retaining the original file’s history (precopy), but continuing on its own path
from that point on. To help illustrate how this works, Figure 5.2 shows an example of the
different versions of a file that has been copied. As you can see, the copy,Bar.cpp has
diverged from the original, but continues to maintain a linkage back to its history at the
time it was created.

The two primary commands that you will use for dealing with moving and copying files
are (shockingly)svn moveandsvn copy, which can be shortened tosvn mvandsvn cp,
respectively. For the most part, both commands work the same—except for the obvious
difference. Like thesvn delete command, they operate immediately on a working copy,
but only schedule the operation to be sent to the repository on the next commit. Similarly, if
you give a repository URL instead of a working copy path, the operations will be performed
immediately on the repository with an implicit commit.

Be careful though. When you are working within a working copy, you should always
make sure that you use the Subversion copy and move commands for any versioned files,

“svnbook” — 2005/4/14 — 14:55 — page 66 — #87i
i

i
i

i
i

i
i

66 Chapter 5 Working with a Working Copy

Revision 46

Revision 49

Revision 52

Revision 93

Revision 126

Revision 78

Revision 103

Foo.cpp Bar.cpp

Figure 5.2. Two copies of a file, stored in the repository.

instead of the operating system equivalents. If you copy or move a file using a non-
Subversion command, Subversion will not be aware of the change, and will continue to
expect to find the file at its old location. The copy or moved version will be unversioned,
and Subversion may complain that it can’t find the old copy (or it might just quietly put it
back during an update).

$ svn copy foo.s bar.s
A bar.s
$ svn move foo.s foo.s.old
A foo.s.old
D foo.s
$ svn status
A + foo.s.old
D foo.s
A + bar.s

You may have noticed, after the copy and move in the preceding example, the status
output has a new addition. Instead of just saying thatfoo.s.old andbar.s are scheduled
to be added, it also puts a+ in the fourth column of the output. This plus sign, which is
always located in the fourth column of a status line, indicates that a file being added already
has history associated with it, which will of course be carried over to the copied file.

You’ll also notice that thesvn move command shows the old file as deleted and the
new file as added. In fact,svn move is identical to runningsvn copy, followed by ansvn
remove on the original file. This is due to the process that Subversion uses internally when
moving versioned files around. When a file is copied, Subversion creates the new file and
points it back to the original file that it came from. That way, the file’s history is preserved in
the copy without any extra space requirements. Similarly, when a file is moved, Subversion
does the same thing, but then removes the original file from the new revision. Hence, the
result is identical to runningsvn copy followed bysvn remove.

Using copy to Undelete Files

Thesvn copy command allows the source of a copy to come not only from the current
revisions of either a working copy or the repository, but also from different revisions. This
can be a handy way of “undeleting” a file that accidentally (or otherwise) was deleted in a

“svnbook” — 2005/4/14 — 14:55 — page 67 — #88i
i

i
i

i
i

i
i

5.4 Getting Information about the Repository 67

previous revision. Revisions are entered just as they are with any other command that takes
a revision, by using the command option--revision.

$ svn copy --revision 921 http://example.com/repos/html/index.html http ¬
://example.com/repos/html/index.html

5.4 Getting Information about the Repository

Subversion has a number of different commands that allow you to query the repository
and working copy for a wealth of information about their current states, as well as their
history. As your development in a working copy progresses, these commands will become
invaluable tools, letting you quickly find out things like “what files have I changed since
the last commit?” or “which branch of this directory am I currently working on?”

5.4.1 Getting Information on the Current State

The current state of the repository is easily queried with thesvn status command, which
outputs the current state of all files in your working copy that have been in some way
modified from their pristine repository state.

$ svn status
A + pie.txt
D cake.txt
_M custard.txt

The output forsvn status consists of a list of files, one per line. By default, each
line is made up of five columns of status information, followed by a filename. Each of the
five columns uses single character symbols to convey the current status of the file. This is
shown in Table 5.1.

Table 5.1.Status Command Ouput Symbols

First column Shows whether a file was added, removed, or modified.

The file has not been modified.

A The file is scheduled for addition to the repository.

D The file is scheduled for deletion.

M
The contents of a file have been modified locally in the work-
ing copy.

C A conflict occurred during a merge or update.

G
Reserved for showing merged files, but not yet used. (Non-
conflicted, merged files will be marked with anM.)

(Continues)

“svnbook” — 2005/4/14 — 14:55 — page 68 — #89i
i

i
i

i
i

i
i

68 Chapter 5 Working with a Working Copy

Table 5.1.Status Command Output Symbols(continued)
First column (cont.)
? The file has never been under version control.

!
The file was under version control, but was removed from the
working copy using a tool other than Subversion.

∼
Subversion tried to add a file of this name (e.g., during an up-
date), but an unversioned file of the same name already exists.

X
An unversioned file used by an externals definition. (See Sec-
tion 6.3.1, “File Properties,” for more information on exter-
nals.)

R
A versioned file that has replaced another versioned file of the
same name.

I
An ignored file. Only shown when both the--verbose and
--no-ignore options are given.

Second Column Shows whether a file’s properties have been modified.
No properties have been modified on the file.

M A property has been modified locally on the file.

C
A conflict occurred when merging or updating one or more of
the file’s properties.

Third Column
Indicates whether a file or directory has been locked in the
working copy, due to another in-progress operation.
The file or directory is not locked.

L

The directory has been locked in the working copy. If there is
no in-progress operation, you may need to runsvn cleanup
to remove the locked state. (This can happen if a command is
interrupted.)

Fourth Column
This column indicates files scheduled for either addition or
modification that are bringing previous history with them
from another file.
No history is being brought from another file.

+
The file is contained within a directory that is scheduled for
addition with history.

A +
This file is scheduled for addition, and brings history from
another file with it, probably as a result of ansvn move or
svn copy.

M +
The file is contained within a directory that is scheduled for
addition with history, and has also been locally modified.

Fifth Column Indicates whether a file’s path has been switched.
The file’s base URL is the same as its parent directory.

S
The file has been switched (usingsvn switch) to a URL dif-
ferent from the URL of the file’s parent directory.

“svnbook” � 2005/4/14 � 14:55 � page 69 � #90i
i

i
i

i
i

i
i

5.4 Getting Information about the Repository 69

Normally, svn status doesn’t contact the repository. Instead, it determines which
files have been modified by comparing them with pristine copies of the files, which Sub-
version keeps in the working copy’s.svn directory. Sometimes, though, you are interested
in seeing which files have also changed in the repository (and thus will be merged at the
nextsvn update). To get this information out of Subversion, you need to runsvn status
with the--show-updates (-u) option.

$ svn status --show-updates address.cpp

The--show-updates option tells Subversion to output three pieces of extra informa-
tion. The first is an* in the eighth column of output of each file that has been modified in
the repository. Additionally, Subversoon will output the current revision of each file in the
repository, as well as the HEAD revision of the repository, which the comparison is being
made against.

$ svn status --show-updates
M 34 run.sh

* 56 stop.sh
Status against revision: 92

If you want even more information, you can runsvn status in verbose mode, using
the --verbose (-v) option. In this mode, the status command will output all files, not
just ones that have been modified (ignored files will still be ignored). Additionally, it will
show the last revision in which each file was committed and who made the commit, as well
as the current revision in the working copy, in the following order: current revision, last
committed, last committed by.

$ svn status --show-updates --verbose
29 29 bill passwd

M 34 34 bill run.sh
* 56 56 bill stop.sh

Status against revision: 92

If you would like to output all files, including those that have been ignored in the con-
figuration files or thesvn:ignore property, you can tellsvn status to disregard ignores
with --no-ignore.

Getting Detailed File Info

Sometimes you need detailed information about a particular file or directory. In this case,
the command you want to use issvn info. The info command gives you a dump of all
the information that Subversion has stored about a file or directory in the working copy.

$ svn info Table.m
Path: trunk/Table.m
Name: Table.m

“svnbook” — 2005/4/14 — 14:55 — page 70 — #91i
i

i
i

i
i

i
i

70 Chapter 5 Working with a Working Copy

URL: http://svn.example.com/repos/trunk/Table.m
Revision: 3276
Node Kind: file
Schedule: normal
Last Changed Author: bill
Last Changed Rev: 3271
Last Changed Date: 2004-07-23 10:25:19 -0660 (Fri, 23 Jul 2004)
Text Last Updated: 2004-07-23 10:25:19 -0660 (Fri, 23 Jul 2004)
Properties Last Updated: 2004-06-13 14:33:54 -0660 (Sun, 13 Jun 2004)
Checksum: fe1f3b5946fd8d68cd2879c38457f447

The first few lines of the info command’s output identify the file that we’re dealing
with. ThePath entry shows the location of the file relative to the base of the working copy,
whereas theName entry shows just the basename of the file.URL, on the other hand, shows
the URL of the file in the repository.

After the identifiers, the next three items show the current state of the file in the working
copy. TheRevision entry shows the current revision of the file in the working copy, and
the Node Kind entry indicates whether the entity being examined is a file or directory.
Schedule shows whether the file is scheduled for any action on the next commit. An entry
of normal (as in the preceding example) indicates that no specific action is scheduled.

Next, some information about the file’s history is given. TheLast Changed Author
entry gives the username of the last person to commit a change for the file, and of course
theLast Changed Rev andLast Changed Date give the revision number and date of
the last commit. Additionally, there are entries that tell you when the files contents (Text)
were last updated, and when the file’s properties were last updated in the current working
copy.

The final piece of information shown is a checksum. This is an MD5 sum of the pristine
state of the file. This can be used to verify that the download from the repository wasn’t
corrupted, or to see if a file has changed in the working copy (of course,svn status is a
much easier way to find that out).

Often you only want a particular piece of information about a file, not the entire info
data dump. Thesvn info command doesn’t have any way to explicitly specify a particular
piece of data, but it is easy enough to get that information by combiningsvn infowith the
UNIX commandgrep. All you have to do is use a pipe (|) to pass the output ofsvn info
to grep and search for a string that begins with the property name that you’re looking for
(theˆ beforeChecksum tellsgrep to only find lines thatbeginwith the word “Checksum”).

$ svn info Table.m | grep ^Checksum
Checksum: fe1f3b5946fd8d68cd2879c38457f447

By default,svn info is a non-recursive command. If you prefer that it recurse into
directories, you can use the--recursive (-R) option. Of course, with multiple files it is
even more likely that you will want togrep for just a single item in the output. However,
if you just grab a single line, the output will be nearly useless, because in many cases you

“svnbook” � 2005/4/14 � 14:55 � page 71 � #92i
i

i
i

i
i

i
i

5.4 Getting Information about the Repository 71

will have no idea which file each line is referring to. The easiest way to get useful, but
not excessive, output (in this case) is to use thegrep command to search for both the item
of interest and either theName or Path entries. That way, the name of each file is output,
followed by the data entries you are interested in. For example, the following command
finds the last changed date for every file intrunk.

$ svn info --recursive trunk/* | grep -E '^Path|^Last Changed Date'
Path: hello.c
Last Changed Date: 2004-12-04 01:03:39 -0500 (Sat, 04 Dec 2004)
Path: Makefile
Last Changed Date: 2004-12-06 11:12:47 -0500 (Sat, 06 Dec 2004)

Examining File Changes

After you get in the habit of using it regularly, thesvn diff command will easily become
one of your most used and most trusted tools in the Subversion toolbox. The basic function
of svn diff is to output the differences between two revisions, showing additions and
deletions inline with each other.

By default,svn diff shows the differences between a file in your working copy and
the pristine version of the current revision of that file. So, for example, if you have made
changes to the filerabbit.c in your working copy, the diff command will show you ex-
actly what those changes were.

$ svn diff rabbit.c
Index: rabbit.c
===
--- rabbit.c (revision 8)
+++ rabbit.c (working copy)
@@ -5,5 +5,5 @@

if(item == CARROT)
eat(item);

else if(item == CAT)
- run_away(FAST, item);
+ hop_away(FAST, item);
}

Thesvn diff command doesn’t stop at showing local modifications, though. By using
the --revision (-r) option, you can makesvn diff output the differences between
arbitrary revisions of files. All you need to do is pass the--revision option with two
revision numbers separated by a colon. The command then returns the differences between
the first revision and the second revision.

$ svn diff --revision 32:48 cat.html
Index: cat.html
===

“svnbook” � 2005/4/14 � 14:55 � page 72 � #93i
i

i
i

i
i

i
i

72 Chapter 5 Working with a Working Copy

--- cat.html (revision 32)
+++ cat.html (revision 48)
---- output snipped ----

You can even getsvn diff to give you the differences between two completely differ-
ent files, from two completely different revisions. To do so, first you givesvn diff two
different paths to files in your working copy or URLs to a repository. Then, if you want
to specify the revisions for each file, you enter a--revision REV1:REV2, just as with a
single file.

$ svn diff --revision 736:103 http://svn.example.com/repos/hen.h http ¬
://svn.example.com/repos/fox.py
Index: hen.h
===
--- hen.h (revision 736)
+++ fox.ph (revision 103)
---- output snipped ----

There is also another subtly different method that you can use for identifying which re-
vision of a file to use, which is the peg revision method. Say, for example, that in revision 12
you had deleted a file namedcat.html. Then, later, you renamed the filekitty.html to
cat.html. If you do a diff oncat.html and compare revisions 10 and 32 using-r
10:32, Subversion will follow the history of the currentcat.html file to compare it at
the given revisions (which, at revision 10 was the filekitty.html). If you really want to
compare the filecat.html that existed at revision 10 with the currentcat.html, you need
a way to specifically tell Subversion. This is done by appending the revision numbers after
each filename with an@, instead of using the--revision option.

$ svn diff http://svn.example.com/repos/cat.html@10 http://svn.example. ¬
com/repos/cat.html@32

5.4.2 Getting the Repository’s History

Subversion provides a couple of commands for examining the history of a file or directory
in the repository.

Checking the Logs

You can easily see the entire log history of a file (or collection of files) by using thesvn
log command. Whensvn log is run with no options, it outputs the logs for the current
directory, which includes the change histories for all of the files that are contained in the
directory.

$ svn log
--
r9 | bill | 2004-08-05 22:44:48 -0500 (Thu, 05 Aug 2004) | 26 lines

“svnbook” — 2005/4/14 — 14:55 — page 73 — #94i
i

i
i

i
i

i
i

5.4 Getting Information about the Repository 73

Added a check to test porridge temperature.
Temperatures are represented with an enumeration, using
values of TOO_HOT, TOO_COLD, and JUST_RIGHT

--
r8 | bill | 2004-08-05 22:21:48 -0500 (Thu, 05 Aug 2004) | 52 lines

Initial commit of porridge.cpp

--

To specify individual files and directories that you would like the history for, you can
list files on the command line thatsvn log should examine. These can either be a list of
files in your working copy or a URL (which may be followed by a list of files relative to
the URL to be used instead of the base URL).

$ svn log http://svn.example.com/repos/branch/foo_branch foo.cpp foo.h

Subversion shows each log entry, in descending revision order, for every file involved.
All of the log entries for the different files are mixed into a single listing, and each log is
shown only once, even if it applies to multiple files. By default,svn log doesn’t give a
breakdown showing which files each log applies to, but if you pass the--verbose (-v)
option it will show that information.

$ svn log --verbose
--
r10 | bill | 2003-06-14 19:44:06 -0500 (Sat, 14 Jun 2003) | 98 lines
Changed paths:
A Bear.cpp
A Bear.h
M Makefile

Added the class Animal::Bear
--

The default behavior ofsvn log is to output the logs for all of the revisions from the
given file’s BASE revision back to revision number one (or, in the case of a URL, from the
repository HEAD back to revision one). If you don’t want that much information, you can
restrict the revisions that are looked at by passing the--revision (-r) option tosvn log,
with a range of revisions in the formREV1:REV2 (you can also give just a single revision if
that’s all you want).

$ svn log --revision 45:82 test.c

“svnbook” — 2005/4/14 — 14:55 — page 74 — #95i
i

i
i

i
i

i
i

74 Chapter 5 Working with a Working Copy

There is one quirk that you should be aware of regarding howsvn log works. Its
default behavior, if no URL or path is given, is to show the log for. (i.e., the current
working copy directory). When the files in a directory are committed, though, the BASE
revision of the directory is not updated. So, if you check out a directory at revision 2859
and then perform three commits of changes to files inside the directory, the directory will
still be at revision 2859, even though some of its contents are at later revisions. If you
then perform ansvn log in the directory with no path, the BASE will be taken from
the directory (2859), and none of the changes that were committed will be shown (which
is probably not what you really wanted). To get a complete log output, with the BASE
revision of the most recently committed file in your directory, a better way to runsvn log
is with a wildcard, instead of an empty path.

$ svn log *

Who’s to Blame?

Another useful tool for examining a file’s history is thesvn blame command. The blame
command causes Subversion to output an entire file, with information about which user
committed each line, and what revision that commit occurred in.

$ svn blame rabbit.c
20 bill #include "rabbit.h"
20 bill
32 bill int examine_item(int item)
32 bill {
53 ted if(item == CARROT)
53 ted eat(item);
53 ted else if(item == CAT)
86 drew hop_away(FAST, item);
53 ted return 0;
32 bill }

You should be a little careful when trusting the output fromsvn blame, though. The
blame entry for a line shows the last revision whereany change was made, including
whitespace. So, if a developer adjusts the spacing on a line, and then commits, that de-
veloper will be shown as the author, even though someone else may have actually made the
last substantive modification.

Examining Files in the Repository

Often, you will find yourself wanting to know what files are in a particular directory in the
repository. One option, of course, is to check out a working copy of that directory, but if all
you want to know is the contents of the directory, checking out the whole thing wastes time
and bandwidth, and is just generally an all-around clunky way of dealing with the problem.
Fortunately, Subversion comes to your rescue with thesvn list command.

“svnbook” — 2005/4/14 — 14:55 — page 75 — #96i
i

i
i

i
i

i
i

5.4 Getting Information about the Repository 75

When you runsvn list, it contacts the repository and downloads just a list of the files
in the given directory, which are then output to the terminal. The directory to list needs to
be supplied as a URL to a directory or file in a repository, or as a path to a directory in a
working copy (in which case Subversion will use that file’s associated URL to contact the
repository). If no directory is given,svn list uses the current working copy directory.

$ svn list http://svn.example.com/repos/branches
test_harness-branch_bill/
web_site-dev_branch/
application-version_2_0_beta/

The default behavior ofsvn list is to non-recursively display only the files that are
in the HEAD revision of the given directory. If you would rather see a different revision,
you can specify one with the--revision option, in which case Subversion will list the
files that existed in that particular version. If you would like to see a recursive tree of the
files in the given directory, you can request that with the--recursive option.

$ svn list --revision 7 --recursive http://svn.example.com/repos
branches/
tags/
trunk/
trunk/Makefile
trunk/app.c

If you need more information than just the names of the files in a directory, you can use
the--verbose option. In verbose mode,svn list will show (in addition to each file’s
name) the last revision the files were committed in, the user who made that commit, the
date of the commit, and the size of the file, in bytes.

$ svn list --verbose http://svn.example.com/repos/trunk
7 bill 9 Aug 03 22:16 bar.c
6 bill 0 Aug 03 22:12 foo.c
10 bill 0 Aug 06 00:37 test.py
2 bill Jul 31 13:47 trunk/

Getting a Single File

Sometimes, you need to look at just one single file from the repository. Unfortunately,svn
checkout doesn’t allow you to specify just a single file, only directories. Getting single
files is where thesvn cat command comes in handy. When run,svn cat contacts the
repository and downloads just a single file, which it outputs to the terminal. In many cases,
you will then want to redirect (using a>) svn cat’s output into a file.

$ svn cat http://svn.example.com/repos/trunk/foo.c > foo.c

“svnbook” — 2005/4/14 — 14:55 — page 76 — #97i
i

i
i

i
i

i
i

76 Chapter 5 Working with a Working Copy

5.5 Changing the Working Copy Target

Inside a working copy, Subversion makes it fairly simple to move files and directories
between different revisions, and even different repositories. For the most part, movement
between revisions is done using thesvn update command. Runningsvn update, by
default, updates a file or directory in a working copy to the latest revision in the repository.
However, if you supply a--revision (-r) option when the command is run, Subversion
instead updates the file in the working copy to that revision, even if it is prior to the current
revision in the repository.

$ svn update --revision 1773 foo.c
U foo.c

In addition to moving between revisions withsvn update, you can also use thesvn
switch command to change a working copy’s URL. This allows you, for instance, to
switch a directory to a branch. As an example, the followingsvn switch command
switches thetrunk directory in the working copy to instead represent themybranch branch
in thebranches directory.

$ svn switch http://svn.example.com/repos/branches/mybranch trunk/
U foo.c
A foo.h
U bar.c
U Makefile
D README.txt

The preceding use ofsvn switch requires that the given URL be in the same reposi-
tory as the working copy. You can, however, also usesvn switch to completely change
the repository that a working copy looks to. This is done by running the command with
the--relocate option, which goes through a working copy and changes the base URL
of every file or directory that matches the given original base (think find and replace). For
example, the following example shows a URL relocation of the working copytrunk di-
rectory (and its contents) fromexample.com to example.net.

$ svn switch --relocate http://svn.example.com/repos http://svn.example ¬
.net/repos trunk/

5.6 Resolving Conflicts

Whenever Subversion encounters changes from two different sources, it attempts to per-
form an automatic merge. If Subversion fails to successfully merge, a conflict occurs. This
can happen in a couple of cases. The first is the instance where the changes occur in the
same location in the two versions of the file. Because Subversion doesn’t know anything
about the context of a file, it has no way to merge colliding changes, and must declare a
conflict. The other case where a conflict occurs is the case where a binary file is being

“svnbook” — 2005/4/14 — 14:55 — page 77 — #98i
i

i
i

i
i

i
i

5.6 Resolving Conflicts 77

merged. Binary files are usually very intolerant to minor changes performed by something
that doesn’t understand the file, which means that using Subversion’s textual merge on a
binary file would more often than not result in a file that was unreadable. Because Sub-
version doesn’t have any means to merge a binary file, it always declares a conflict when
changes from two different sources must be merged.

When a conflict does occur, Subversion creates several different copies of the original
file in your home directory. Each copy of the file is a different version of the file from one
of several different revisions. The files are all named with an extension telling where the
file came from, appended onto the original name of the file. For example, if the file comes
from revision 52 of the filefoo.h, it will be namedfoo.h.r52. If the version of the file
is the local working copy version, it will have.mine appended. If the conflict occurs as
the result of a merge, the righthand and lefthand files from the merge will be named with
.right and.left, respectively. In total, the versions of the file that Subversion will create
in the case of a conflict consist of the local working copy version of the file with all local
modifications, a pristine copy of the local version with no local modifications, and any
remote versions of the file that are involved in the conflict.

If the conflicted file is a text file (i.e., not binary), Subversion also modifies the original
version of the file (in the working copy) so that it contains both versions of any conflicted
sections inline. The conflicted sections are placed, one after the other, with a separator
between them (consisting of= signs). Each version is also labeled with its source. The top
version shows its source at the beginning of the section, and the bottom source ends with
a source label. The labels are denoted with<s and>s respectively, as you can see in the
following example.

The Fox: A poem

The quick brown fox
<<<<<<< .mine
with a javelin, leaped
=======
jumped over
>>>>>>> .r378
the lazy dog

The work of resolving the conflict is left to you to perform by hand. When you are
done, the final, resolved version of the file should reside in your working copy under the
original name of the file being resolved (if the file isbar.txt, the resolved version should
bebar.txt). You can accomplish this either by editing the original file or by overwriting
it with another file—such as one of the versions of the file that Subversion generated in
response to the conflict.

While a file is in a conflicted state, Subversion doesn’t allow you to commit the file.
If you try, it throws an error and the commit fails. To be able to commit again, you need
to tell Subversion when you have finished resolving a conflict. This is done with thesvn

“svnbook” — 2005/4/14 — 14:55 — page 78 — #99i
i

i
i

i
i

i
i

78 Chapter 5 Working with a Working Copy

resolved command, which removes all of the extra files created by Subversion when the
conflict was declared (leaving only the originally named version of the file) and removes
the block on committing the file. It does not in any way modify the originally named file.
As an example, the following shows the complete process you might go through when
resolving a conflict during an update. In this case, the version of the file in revision 75 is
the correct one to use; it’s moved to replacebar.c.

$ svn update
C bar.c
$ ls
bar.c bar.c.mine bar.c.r75
$ mv bar.c.r75 bar.c
$ svn resolved
Resolved conflicted state of 'bar.c'
$ ls
bar.c

5.7 Branching, Tagging, and Merging

As I explained in earlier chapters, most version control systems allow you to create branches
and tags from the main trunk of your repository. Tags allow you to mark specific points
in your development (such as releases) for later referral, and branches allow you to split
the development of your repository and continue development in parallel on a secondary
path. Unlike many other version control systems, Subversion doesn’t actually have a built-
in concept of branches or tags. Instead, it just uses cheap server-side copies that preserve
history, while not taking up any additional space. Subversion just marks the location of
the copied file or directory and notes where it came from. It then allows you to merge the
changes from a "branch" back into the main trunk of the repository at a later date. Although
the current implementation of Subversion’s copy-merge system does pose the occasional
problem—for instance, you can quickly lose track of a file’s full merge/branch history if it
becomes more than trivially complex—the flexibility of the paradigm more than makes up
for its shortcomings in most cases.

5.7.1 Creating a Branch or Tag

Creating a branch or tag in Subversion is trivially easy. All you need to do is runsvn copy
on the file or directory that you want to branch/tag. Generally, your repository will be set
up with one or more directories namedbranches andtags, which will be where you want
to place copies that are conceptually branches or tags. This is a convention, however, and
is in no way enforced by Subversion. As far as Subversion is concerned, directories named
branches or tags are identical to any other directories.

A typical repository layout is to have three top-level directories in the repository, named
trunk, branches, andtags. Thetrunk directory contains the main development branch
of the repository, and all branches and tags are created by putting copies in their respective

“svnbook” — 2005/4/14 — 14:55 — page 79 — #100i
i

i
i

i
i

i
i

5.7 Branching, Tagging, and Merging 79

directories. By separating the three directories at the top level, you can then check out only
thetrunk directory, and deal withbranches andtags only in the repository most of the
time. When you need to use or edit parts of the repository that are in branches, you can use
svn switch to swap them into your working copy of thetrunk directory.

Creating a Branch/Tag in the Repository

The most efficient way to branch or tag a part of the repository is usually to perform the
copy entirely in the remote repository. When Subversion performs a copy in the repository,
it doesn’t make a copy of the data, but instead just points the copy back to the data from
the original. This allows copies of any sized file to occur in a constant amount of time, be
it five kilobytes or five hundred megabytes. On the other hand, if the copy is performed in
the local working copy, the repository-side copy still occurs in constant time, but you also
make a copy of the data in the working copy, which is proportional to the amount of data
to be copied.

A repository-only copy is performed usingsvn copy with repository URLs for both
source and destination. When the command is run, Subversion performs an immediate
commit, which means that it opens an editor to allow you to enter a log message if you
don’t supply one on the command line. As an example, the following command shows
how you might create a branch of your entire trunk in a typical repository.

$ svn cp --message "Created a new branch" http://svn.example.com/repos/ ¬
trunk http://svn.example.com/repos/branches/mybranch
Committed revision 2353.

Creating a Branch/Tag from the Working Copy

Sometimes, creating a branch or tag entirely on the repository is impractical. For example,
you might want to create a tag or branch that includes uncommitted local modifications, or
consists of multiple mixed revisions. In such cases, you need to passsvn copy a working
copy path as a source. You can also pass a working copy path as the destination of the copy,
but that is generally not what you want, because that would result in the data being copied
on your local copy. Instead, if you make sure the destination is still a URL, Subversion
only sends the local changes to the repository and all other copies are done as the usual
cheap repository-side copies.

$ svn cp --message "Tagging a snapshot of the local working copy" ~/ ¬
repos/trunk http://svn.example.com/repos/tags/mytag
Committed revision 2193.

Switching to the Branch/Tag

Regardless of how you create a branch or tag, the best way to edit it locally is usually to
usesvn switch to change the URL that all or part of your working copy points to. If
you have a working copy of your trunk already checked out, you will generally save a lot
of bandwidth by using the switch command, because it only downloads the differences

“svnbook” — 2005/4/14 — 14:55 — page 80 — #101i
i

i
i

i
i

i
i

80 Chapter 5 Working with a Working Copy

necessary to switch the URL. The other advantage ofsvn switch is that it allows you to
branch only a portion of your trunk, and then switch that portion in your working copy to
the branch without invalidating any relative paths to the rest of your working copy.

5.7.2 Merging a Branch

As you work with a branch, you may periodically want to update it with changes from the
main trunk, in order to get changes made by others. You will also usually want to merge
the changes that you make in the branch back into the main trunk after they have reached a
stable point. Both of these situations are handled with thesvn merge command.

The svn merge command is conceptually the hardest Subversion command to deal
with, but after you understand how it works, using it is not that complicated. The most
basic usage ofsvn merge is to run it with two revision numbers and a source, as in this
example:

$ svn merge --revision 100:150 http://svn.example.com/repos/branches/ ¬
mybranch
U goodbye.cpp
A hello.cpp

In this example,svn merge takes the differences between revisions 100 and 150 in
the mybranch branch and applies them to the current working copy. The application of
the changes occurs just as if you had done ansvn update, and any conflicts are handled
accordingly.

Another way to runsvn merge is to give it two URLs or working copy paths, with
revision numbers, and perform a merge of their differences.

$ svn merge branches/mybranch@1426 branches/myotherbranch@253
D goodbye.cpp
U hello.cpp

As you can see, in the preceding example, there is no requirement that the first revision
number should be lower than the second. In fact, regardless of which revision is lower,
Subversion will always merge the differences calculated by subtracting the lefthand revi-
sion from the righthand revision. So, if a file exists in the righthand revision and not in
the lefthand revision, it will be added by the merge. Conversely, if it exists in the lefthand
revision but not the righthand, it will be removed.

You will also notice in the last example that I used peg revisions to identify which
revisions should be used to identify the files. Peg revisions in a merge work the same as
they did forsvn diff (see Section 5.4.1, “Getting Information on the Current State”).

Keeping Track of Merges

One of the things that Subversion handles poorly is a file or directory’s merge history.
Subversion does not keep a record of what has been or hasn’t been merged. Because of
this, it is important for you to keep your own merge history, in order to avoid merging a

“svnbook” � 2005/4/14 � 14:55 � page 81 � #102i
i

i
i

i
i

i
i

5.7 Branching, Tagging, and Merging 81

change twice (which could cause that change to be undone). The easiest way to keep track
of your merge history is to record in the commit log what files/revisions were merged.

$ svn merge --revision 305:356 branches/mybranch
U Makefile
$ svn commit --message "Merged in revisions 305 to 356 of mybranch"
Committed revision 1398.

Then, the next time you want to merge the changes frommybranch into trunk, you
can usesvn log with grep to quickly see which revisions have already been merged in.

$ svn log | grep 'Merged'
Merged in revisions 305 to 356 of mybranch
Merged in revisions 284 to 305 of mybranch
Merged in revisions 246 to 320 of myotherbranch
$ svn merge --revision 356:423 branches/mybranch

Reverting Changes with Merge

Another use for the merge command is to revert changes that were applied in a previous
revision. Say, for instance, that you removed a couple of functions (nameddoFoo() and
getBar()) from your source file, but now realize that you actually need them. Assuming
that they were both removed in discrete commits (i.e., nothing else was changed in the
source file at the same time those functions were removed), merging them back into the
HEAD revision is quite simple.

First, you’ll want to check the logs to find out which revisions the function removals
actually took place in. If the file is an active one, with a long log, you might want to use
thegrep command to pare the output down to something a little more manageable. As an
example, the following command will search for any lines containing the word “removed”
as well as lines that begin with “r” and a number (most likely log entry headers).

$ svn log | grep -E 'removed|^r[0-9]'
r15 | bill | 2004-06-14 19:44:06 -0500 (Sat, 14 Jun 2004) | 98 lines
r76 | bill | 2004-07-17 12:35:24 -0500 (Sat, 17 Jul 2004) | 32 lines
removed doFoo()
r85 | bill | 2004-07-23 10:23:19 -0500 (Fri, 23 Jul 2004) | 15 lines
r97 | bill | 2003-08-07 15:54:29 -0500 (Thu, 05 Aug 2004) | 145 lines
removed getBar()

After you know which revisions the functions were removed in, you can revert the re-
movals by performing a merge with a range that goes backwards, from the revision where
the removal took place, to the revision immediately preceding the removal. This will merge
the removed sections back into your current working copy, where you can make any nec-
essary modifications and then commit.

“svnbook” — 2005/4/14 — 14:55 — page 82 — #103i
i

i
i

i
i

i
i

82 Chapter 5 Working with a Working Copy

$ svn merge --revision 76:75 foobar.c
U foobar.c
$ svn merge --revision 97:96 foobar.c
U foobar.c
$ svn status
M foobar.c
$ svn commit --message "Reverted changes from revs 76 & 97 to foobar.c"
Sending foobar.c
Transmitting file data .
Committed revision 245.

Looking before You Merge

Merges can cause a lot of changes to be applied to the files in your working copy, and
undoing those changes can be difficult if there are a lot of local changes. It can be helpful,
then, to find out exactly which files Subversion will change (as well as what conflicts will
occur) before actually performing the merge. Subversion allows you to do just that with
the --dry-run option. Whensvn merge is invoked with--dry-run, Subversion will
perform all of the necessary calculations for the merge and output a list of files that will be
modified (as well as how those files will be modified), but it will not actually change any
of your local files.

5.8 Troubleshooting the Working Copy

Subversion is a robust, stable system, but occasionally problems do occur—usually as a
result of an interrupted command or unstable network connection. If such an interruption
does occur, Subversion may leave active lock files in your working copy, which could
block subsequent commands from being able to execute. If this happens, you may have to
explicitly force Subversion to clean up after itself.

You can tell Subversion to clean up all extraneous working copy lock files by running
the svn cleanup command. When the cleanup command is run, it will go through the
working copy (or part of a working copy) specified on the command line, completing all
unfinished actions and removing all lock files.

$ svn cleanup repos/trunk

If the svn cleanup command doesn’t solve your problems, you may need to clean
things up on the repository side (or have your repository administrator do it). The com-
mands and techniques for doing repository troubleshooting are explained in Chapter 10,
“Administrating the Repository.”

In a worst-case scenario, your working copy could get irretrievably corrupted (most
likely through disk error or a bug in Subversion). If this happens, you may have to delete
and recheck out a working copy. In general, this is not a tragic solution, but you may have
to take a few extra steps to avoid data loss if you have any uncommitted local modifications.

“svnbook” — 2005/4/14 — 14:55 — page 83 — #104i
i

i
i

i
i

i
i

5.9 Summary 83

The best way to approach a delete-checkout solution is to first use thesvn status
command (if possible) to figure out which files have been locally modified. Then, make
sure those are backed up somewhere outside the working copy (by copying them). When
all of your local data has been saved, remove the working directory and runsvn checkout
to get a fresh working copy. Then, you can copy the backed up files into your new working
copy and be ready to commit again.

5.9 Summary

In this chapter, you learned the commands that a day-to-day client user of Subversion needs
to know when dealing with her working copy. You saw how to get data out of a repository,
using commands such assvn checkout andsvn update, as well as how to get data into
the repository usingsvn add, svn import, andsvn commit. Additionally, you learned
how to query the repository for information, using such commands assvn log andsvn
status, and learned more advanced techniques such as branching, tagging, and merging.
Finally, you saw how to recover a working copy that has become corrupted or blocked.

In the next chapter, you will learn about storing file metadata, using properties. The
chapter will show you the mechanics of using the Subversion commands for manipulating
properties, and will give an overview of the built-in properties that Subversion uses for
special features.

“svnbook” — 2005/4/14 — 14:55 — page 84 — #105i
i

i
i

i
i

i
i

“svnbook” — 2005/4/14 — 14:55 — page 85 — #106i
i

i
i

i
i

i
i

Chapter 6

Using Properties

One of Subversion’s most powerful features is its property system. In addition to storing
the history of a file, Subversion also allows you to associate arbitrary metadata with each
file, directory, or revision. Properties are keyed with a user-defined name, and can contain
any data that you would like to associate. Additionally, Subversion provides several special
properties that Subversion clients use in order to provide added functionality to versioned
files.

Properties in Subversion come in two forms. Conceptually, both forms of properties
are the same, and both are dealt with using nearly identical syntax. The key difference
between the two forms lies in how they are versioned, and how those versions are accessed
and modified.

The first form is a versioned property, which is applied to a file or directory. These
sorts of properties are the most common, dealt with directly on a day-to-day basis, and
tend to just be referred to asproperties. Changes to versioned properties are stored with
new revisions, when a file is committed, just as changes to the contents of a file are.

The second form of property is an unversioned property that is attached to a specific
revision, instead of a file in the repository. These properties, which are calledrevision
propertiesbecause they are attached to a revision, can be modified, but their history is not
stored. If a revision property is modified, its previous state is irretrievably lost. Internally,
Subversion uses revision properties to store information such as commit dates and log
messages, but users can also store their own properties as revision properties.

6.1 Storing Metadata

Properties are associated with a file or directory by using thesvn propset command. The
simplest way to set a property is by passing to thesvn propset command the property
key and value, along with the file to set the property on.

$ svn propset property_key "property value" repos/trunk/foo.h

The property key is a string of your choosing, which will be used later for retrieving the
associated data from the file. Property keys are handled internally by Subversion as XML,
and therefore the property keys themselves are restricted by valid XML NAMES, which is

85

“svnbook” — 2005/4/14 — 14:55 — page 86 — #107i
i

i
i

i
i

i
i

86 Chapter 6 Using Properties

basically any string that contains letters, digits,., -, and_. For a more formal definition,
see the XML standard, available from the World Wide Web Consortium (www.w3.org).

When choosing property names, it is a good idea to use some sort of naming convention.
The naming scheme used by the built-in Subversion properties is to begin each property key
with svn:. This might seem like a good convention to adopt for your own property names,
but alas, the colon isn’t really a valid character in property names. It can only be used
reliably in thesvn: prefix. It is, however, a sound idea to use prefixes to categorize your
properties. You just can’t categorize them with a colon. Instead, I suggest using a period
to separate a category prefix from a property name. This allows you to assign properties to
different categories, and name them accordingly, making it easy to quickly identify broad
purposes for the properties, which makes specific meaning easier to discern and remember.
You are also able to selectively search for all of the properties in a given category, using the
svn proplist command, as I will discuss later in Section 6.2.1, “Listing Properties.”

As an example, let’s say that you use Subversion properties to store automated tests
and file ownership information. You can then standardize on two property categories,
namedtest andownership. A property containing a unit-testing script could be named
test.unit, and properties containing the file’s author and copyright could be named
ownership.author andownership.copyright.

Subversion property values can be of any form, either text or binary. If the property is
short, it is easy to provide it as a parameter on the command line (remember to enclose it
with quotation marks if it has spaces though). If the property is long, or if it is a binary file,
entering the property value on the command line is impractical. In that case, you can direct
svn propset to read the property from a file using the--file (-F) option, which directs
Subversion to read the property’s value from a file, as in the following example.

$ svn propset property_key --file ~/property_val.txt repos/trunk/foo.h

6.1.1 Editing Properties

Sometimes, you don’t want to change an entire property, but would rather make a small
change to an existing one. In these cases, Subversion provides you with thesvn propedit
command, which opens the current property in the current editor.1 After you have finished
editing the property’s value, you can save the file and quit. As soon as you quit, Subversion
will apply the modified property value to the file or directory’s property.

Subversion does not require that a property must exist prior to callingsvn propedit.
If you have a long property to add to a file or directory, it is often easier to call
svn propedit instead ofsvn propset to add the initial property value to the file. All
you need to do is just run thepropedit command and type in the property to the new
document that is opened in the editor. When you’re done, save and quit.

6.1.2 Automatically Setting Properties

If you have a property that needs to be set for every file of a certain type that’s added,
it’s almost a guarantee that you will forget at least once if you need to set the property

1. See Section 7.2.1, “Theconfig File.”

“svnbook” � 2005/4/14 � 14:55 � page 87 � #108i
i

i
i

i
i

i
i

6.2 Retrieving Metadata 87

manually every time. Fortunately, if the value of the property is static for every file of a
certain filename pattern, you can tell Subversion to set the value automatically. All you
have to do is set up the Subversion configuration file with the appropriate patterns and
values (see Section 7.2.1).

6.1.3 Committing Properties

When you runsvn propset or svn propedit, Subversion sets the new property value
in the working copy, but does not contact the repository. Instead, the property changes are
scheduled to be committed to the repository on the nextsvn commit. You can tell which
files and directories will have properties committed on the nextsvn commit by running
svn status. The status command will show all files with modified properties by placing
anM in the second column of its output.

When you commit a file or directory property to the repository, it is handled just like
file data. It is applied to the new revision, but doesn’t affect any previous revisions.

6.1.4 Storing Revision Properties

Revision properties are stored using the--revprop option to eithersvn propset or
svn propedit. They must be set on a particular revision, so you also need to use the
--revision (-r) option when setting or editing a revision property. Be careful when us-
ing svn propset, because changes are applied immediately and are not undoable. Any
previous data in the revision property will be irretrievably lost. It is almost always bet-
ter to usesvn propedit when working with revision properties, as it is much harder to
accidentally delete important data that way.

As an example, the following command will invoke an editor to edit a property that
stores which issue-tracking issue is fixed in the last revision that you committed.

$ svn status --show-updates
Status against revision: 2225
$ svn propedit --revprop --revision 2225 issues.fixes

You’ll notice that I didn’t runsvn propeditwith the HEAD revision label, but instead
usedsvn status �show-updates to get the number of the HEAD revision. I do that to
ensure that I am setting the revision property on the revision that I think I am. If another
user were to commit a new revision while I was editing the property, the HEAD would be
changed to point to the new head of the repository, which is likely not the revision that I
want to edit. It’s always safer to get the revision number and then use that explicitly.

6.2 Retrieving Metadata

Properties are retrieved via thesvn propget command, which gets a keyed property from
a file or directory and outputs it. The command takes a property key, and a file to retrieve
the property from (which can either be a file in a working copy or a repository URL). It
outputs the property’s value, as in the following example.

“svnbook” � 2005/4/14 � 14:55 � page 88 � #109i
i

i
i

i
i

i
i

88 Chapter 6 Using Properties

$ svn propget ownership.author hello_world.c
William Nagel

Subversion also allows you to pass multiple files tosvn propget, in which case it will
output the supplied property for each of the given files. To make it easier to differentiate
the property values for the multiple files, Subversion will also prepend the name of each
file in front of each value.

$ svn propget author *.txt
Cathedral_and_Bazaar.txt - Eric S. Raymond
GPL.txt - Richard M. Stallman

When outputting a property value, Subversion adds a newline at the end of the property
in order to prettify the output a bit. That andsvn propget’s filename prepending on
multiple files, however, is undesirable behavior when the property is a binary file that you
want to output. In those cases, you can use the--strict option to turn off both additions.
With strict output, thesvn propget output is suitable for redirecting into a file.

$ svn propget --strict advertising.poster MyFlick.mov > poster.jpg

6.2.1 Listing Properties

To retrieve property values, it’s sometimes necessary to first check to see what properties

“svnbook” — 2005/4/14 — 14:55 — page 89 — #110i
i

i
i

i
i

i
i

6.2 Retrieving Metadata 89

$ svn proplist --recursive trunk/book
Properties on 'trunk/book/svc.tex':
copyright.author
copyright.date
img.cover
Properties on 'trunk/book/chapter1.tex':
copyright.author
copyright.date

Sometimes, you need to get the values of several properties from a collection of files.
Although Subversion has no built in mechanism for finding such information directly, you
can easily get the information you want by using thegrep command to filtersvn proplist’s
output. For example, say you have a directory full of image files, each with copyright in-
formation attached as a set of properties with names startingcopyright. If you would like
to output all of the copyright information on all of those files, you could run a command
similar to the following.

$ svn proplist --recursive --verbose trunk/images | grep -E '^ ¬
Properties on|^ copyright' > copyrights.txt

6.2.2 Outputting Multiple Binary Properties

Occasionally, you will need to retrieve the contents of multiple binary properties and put
them into distinct files. If there are only a couple of files, it’s easy enough to just run
multiple svn propget’s, and redirect them into their own files. On the other hand, if the
number of files is large, individually retrieving them can be impractical. However, by using
a looping construct, such as thefor loop in the Bourne Again Shell (BASH), you can
easily get multiple files. As an example, the following command will take a list of C files
and output the Python testing scripts that are embedded in each file as a property named
test.script.

$ for FILE in *.c;
> do svn propget test.script $FILE > ${$FILE/%.c/-test.py};
> done
$ ls
bar.c bar-test.py foo.c foo-test.py

In this example, thefor FILE in *.c; tells BASH that it should loop through every
file that ends in a.c and place its name in the variableFILE. It will then run thesvn
propget command for that file and redirect the output into a file that has the same base
name as the file containing the property, but with the.c suffix replaced by-test.py. As
you can see, after the command has run, both of the C files have had a test script extracted.

6.2.3 Getting Revision Properties

Revision properties are retrieved in pretty much the same manner as regular versioned
properties. The only difference is that you must explicitly refer to a revision when getting

“svnbook” — 2005/4/14 — 14:55 — page 90 — #111i
i

i
i

i
i

i
i

90 Chapter 6 Using Properties

a revision property, using the--revision (-r) option. As with the property setting com-
mands, you also need to tell Subversion that you are referring to a revision property by
using the--revprop option, like in the following example.

$ svn propget --revprop --revision 4356 svn:log

6.3 Built-in Properties

Subversion provides a number of built-in properties that have special meaning to a Sub-
version repository or client. The built-in properties are split into two categories: the file
properties and the revision properties. The file properties are assigned to specific files or
directories and are generally only assigned explicitly by a user—with the exception of the
svn:mime-type property, and thesvn:executable property, which can be set automat-
ically when a file is added. The revision properties, on the other hand, are all set automat-
ically when a revision is committed to the repository, but can be changed later if the need
arises. All of the built-in Subversion properties are named with a naming scheme that starts
with svn:.

6.3.1 File Properties

Subversion provides several file properties that you can set for individual files or directories.
Internally, these properties are handled the same as every other property, but each has added
meaning and is used by Subversion clients to add functionality to the files.

svn:eol-style

Subversion uses thesvn:eol-style property to determine how it should handle line-
ending characters when a file is checked out or committed. By default, Subversion doesn’t
do any processing of line-endings and instead just leaves them in the same form as when
they were committed. If your repository is being used by users on Windows and UNIX,
though, line endings can become a problem. Because Windows uses both a carriage return
(CR) and a line feed (LF) character to denote a line ending, whereas UNIX uses just the
line feed, dealing with files on both platforms can be difficult—especially if the tools being
used on the different platforms don’t understand how to deal with files from another system.
If you need to change this behavior, you can use thesvn:eol-style property to tell the
Subversion client how it should handle files.

The most common case is a user wanting files to include the line-ending character that
is appropriate for his own system. In other words, Windows users will want text files that
they check out to use CR/LF to end lines, whereas UNIX users will want just an LF. To
ensure that this is exactly what each user sees, you can setsvn:eol-style for a file to
native. Then, when clients check out a file they will check to see if thesvn:eol-style
property is set, and if it isnative they will transform all of the line-ending characters in
the file to match the platform on which the client resides.

Transforming characters on checkout is not always desirable though. If thesvn:eol-
style property is set to a specific line-ending type, instead of the wordnative, the Sub-

“svnbook” � 2005/4/14 � 14:55 � page 91 � #112i
i

i
i

i
i

i
i

6.3 Built-in Properties 91

version client will explicitly transform each line ending in all text files that are checked out
to the supplied type. The supported line-ending types areCRLF, CR, andLF.

svn:executable

On UNIX-based systems, executable files are defined by the “executable” permission bit.
It would be nice if files that were checked out of a repository retained information about
whether that executable bit should be set. Not all platforms that Subversion runs on use
the same format for storing permissions though, so it doesn’t make sense for Subversion
to directly store those permission bits when they are committed. To work around this
limitation, Subversion uses thesvn:executable property. Files that have the executable
property set (to any value) will be automatically set to executable when checked out on
any platform that supports the UNIX-style executable permissions. Files that are set to
be executable will automatically have thesvn:executable property set when they are
added to a repository (viasvn add or svn import). On filesystems that don’t have an
executable permission bit (e.g., Win32 with NTFS or FAT32), this property will have no
effect.

svn:externals

Thesvn:externals property allows you to attach a property to a directory, which will tell
the Subversion client to check out another part of the repository, or even another repository
altogether, and place it in a subdirectory. This can be handy if you have multiple projects
that have complex interdependencies, or even if you have a dependency on an external
project that is also available from a Subversion repository.

As an example, let’s say you have two repositories. One contains a code library, and
the other contains a project that uses the library. When developers check out the project,
they need to have access to the library in order to compile it. To further complicate things,
the project expects the library to be located in a particular subdirectory relative to the base
of the project.

One option, of course, would be to instruct each developer in the need to check out both
repositories, as well as where the second repository needs to be checked out in relation to
the first. At best, this is unwieldy. However, by using thesvn:externals property, you
can direct the Subversion client to perform the second checkout automatically.

In our example, all you would need to do to setsvn:externals properly would be to
add a line to the property (on the project’s base directory) that contains the relative path to
where the library should be checked out, followed by whitespace and then the repository
URL that should be checked out. So, depending on the layout, it might look something like
this:

$ svn propget svn:externals trunk
libraries/mylib http://svn.example.com/library_repos/trunk/mylib

If you have multiple dependencies, you can declare them using multiple lines in the
svn:externals property.

“svnbook” — 2005/4/14 — 14:55 — page 92 — #113i
i

i
i

i
i

i
i

92 Chapter 6 Using Properties

$ svn propget svn:externals trunk
libraries/mylib http://svn.example.com/library_repos/trunk/mylib
libraries/otherlib http://svn.example.net/repos/tags/ ¬
otherlib_rel_1_0

You can also set up an externals link to grab a particular revision of a repository.

$ svn propget svn:externals trunk
libraries/mylib -r 1256 http://svn.example.com/repos/trunk/mylib

svn:ignore

Working copies have a tendency to get cluttered with files that you need, but don’t want
to be committed to the repository, such as object files, compiled executables, editor swap
files, and other temporary files. Unfortunately, these unversioned files tend to get in the
way of Subversion. Because Subversion shows these files insvn status with a ?, they
can quickly clutter up its output, making it hard to see files with legitimate output informa-
tion (for example, I tend to use Subversion commands while the Vi editor is running, and
it’s not uncommon for me to have twenty to thirty files open in the same directory—that
leaves twenty to thirty.swp files that swamp all othersvn output). It can also be easy to
accidentally add files that you didn’t mean to, especially if you recursively add a directory.

The svn:ignore property lets you set unversioned files that will be ignored by all
Subversion commands, exceptsvn status when it is run with the--no-ignore, or svn
add andsvn import when they are explicitly directed to add the ignored file. Elements
to be ignored are listed in thesvn:ignore property, one per line. Ignored elements can
either be an exact filename match or a pattern that contains wildcards (*).

The following example shows ansvn:ignore property that is directing Subversion
to ignore all files that end in.o, all files that start with a dot (.), and the file named
debug.out.

$ svn propget svn:ignore trunk/src
*.o
.*
debug.out

It should be noted thatsvn:ignore is not recursive. It applies only to the directory that
you set it for. If you want to set ignores for an entire repository, you either have to usesvn
propset with the--recursive option or set up a user-level ignore (which is discussed in
Section 7.2.1).

svn:keywords

It’s all well and good to be able to use Subversion commands to find out information like
the last time a file was modified, but sometimes it’s useful to actually store that information
in the file itself—especially if you are planning on distributing that file to someone via a
means other than the Subversion repository. In those cases, Subversion has the capability

“svnbook” — 2005/4/14 — 14:55 — page 93 — #114i
i

i
i

i
i

i
i

6.3 Built-in Properties 93

to perform inline replacements on certain keywords, whenever a file is checked out or
updated.

By default, Subversion will not perform any keyword replacements. If you want to turn
keyword replacement on, you need to do it by setting thesvn:keywords property, which
should contain a list of the keywords that you want Subversion to perform substitution on,
separated by whitespace. So, if you want Subversion to substitute the keywordsHeadURL
andLastChangedRevision, yoursvn:keywords property would look like this:

$ svn propget svn:keywords foo.c
LastChangedRevision HeadURL

The set of keywords that Subversion will replace is actually fairly small, and
mostly revolve around the last time the file was changed. In fact, three of the five
keywords are information about the last file change. Those keywords areLastChangedBy,
LastChangedDate, andLastChangedRevision. If you would like to save yourself a few
keystrokes, these keywords can be abbreviated withAuthor, Date, andRevision (or even
Rev), respectively. The content of each substitution should be fairly self-explanatory.

Subversion also provides a keyword for embedding a URL to the file in the HEAD
revision of the repository, calledHeadURL. It can also be abbreviated asURL.

The fifth and final keyword isId. TheId keyword is a summary keyword that includes
data from several other keywords. Its content is made up of the name of the file, the last
revision number of a commit for the file, a date showing when the file was last modified,
and the username of the person who committed the last modification.

Keywords are placed into a file surrounded by dollar signs ($). When a substitution is
performed, Subversion will add the value of the substitution after the keyword, separated
by a colon. It is important that the keyword itself be left in the file; otherwise, Subversion
wouldn’t know that it was substituted text when you next commit the file, and wouldn’t
keep the keyword.

The following example shows an (admittedly contrived) file with keywords, followed
by that file after it has been checked out and the keywords have been substituted.

original file:
This file was last changed on $Date$,
by $Author$, in revision Rev.
It can be found at $HeadURL$
Id

substituted file:
This file was last changed on $Date: 2004-08-12 01:56:13 -0500 (Thur ¬
, 12 Aug 2004) $
by $Author: bill $, in revision $Rev: 1276 $.
It can be found at $HeadURL: http://svn.example.com/repos/trunk/ ¬
keywords.txt $
$Id keywords.txt 1276 2004-08-12 01:56:13 bill $

“svnbook” — 2005/4/14 — 14:55 — page 94 — #115i
i

i
i

i
i

i
i

94 Chapter 6 Using Properties

svn:mime-type

The de facto cross-platform standard for identifying file types is the Multipurpose Inter-
net Mail Exchange (MIME)-type, which consists of a general type and a specific type,
separated by a slash. MIME-types are used by many programs (especially Internet-based
ones, like Web browsers and e-mail clients) to determine how they should handle a file.
Because the MIME-type is a useful piece of information to have, Subversion provides the
svn:mime-type property as a standard place to store the MIME-type for a versioned file.

In addition to usingsvn:mime-type as a standard location, Subversion also uses a
file’s MIME-type for its own purposes. Primarily, Subversion uses the MIME-type to de-
termine when a file is binary and should not be textually merged. It determines which
files are binary by looking at the general type of a file’s MIME-type. If the general type
is anything other than text (i.e., the MIME-type doesn’t begin withtext/2), Subversion
will assume that the file is binary. Additionally, Subversion will send thesvn:mime-type
through the Apache server whenever a client requests a file’s type.

Thesvn:mime-type property can be set manually, just like any other property, using
svn propset or svn propedit. However, to make life a little easier on you, Subversion
will also try to guess which files are binary when they are added to the repository. If it de-
cides that a file appears to be binary, it will automatically set thesvn:mime-type property
equal toapplication/octet-stream. If you don’t like what Subversion decides, you
can always change it later.

If you are using a UNIX-like system, you can use thefile program to determine the
type of a file. Iffile is run with the-i option, it will output a file’s MIME-type. You
can combine this withsvn propset to set a file’s MIME-type in a single step, as in the
following example (the-b tellsfile not to output the name of the file it processed).

$ svn propset svn:mime-type " ` file -i -b foo.txt ` " foo.txt
$ svn propget svn:mime-type foo.txt
text/plain; charset=us-ascii

svn:special

This property is new in version 1.1 of Subversion, and is used to identify special types of
files. It is not meant to be edited directly by a user. Instead, the Subversion client uses
it internally to recognize files that it should interpret in some special way, based on the
file’s contents. Currently, this is only used to implement symbolic links. When a symbolic
link file is checked out on a system that supports symbolic links, the file will be read
to determine how the symbolic link should be created. If the operating system does not
support symbolic links (e.g. Windows), the file will not be interpreted, but rather will be
checked out as a normal file.

2. Subversion also treatsimage/x-bitmap andimage/x-pixmap as text.

“svnbook” — 2005/4/14 — 14:55 — page 95 — #116i
i

i
i

i
i

i
i

6.3 Built-in Properties 95

6.3.2 Revision Properties

When new revisions are committed to a repository, Subversion automatically sets three
revision properties. Each of these properties can be changed if necessary, but remember
that revision properties are unversioned and a change results in the loss of the property’s
previous value. Also, modification of revision properties is disabled by default. To allow
revision properties to be modified, you must have a hook script set up to process revision
property changes. Hook scripts are discussed in Section 11.1, “An Introduction to Hooks.”

svn:author

Thesvn:author property contains the username of the user who committed the revision.
Changing this can be useful if the username listed on the commit was not the actual user
who logically performed the commit (if, for instance, you borrowed a colleague’s computer
to make a quick change).

svn:date

Subversion stores the date and time that a revision was committed in thesvn:date prop-
erty. In general, this is the revision property that you are least likely to need to change.
Usually, the need to change it will only come about because of an incorrect clock at the
time of the commit.

If you do need to change thesvn:date property, Subversion stores the dates in UTC
(Coordinated Universal Time), using the ISO-8601 format, which looks similar to the fol-
lowing.

$ svn propget --revprop -r 1262 svn:date
2004-07-30T05:28:19.312099Z

The details of the ISO-8601 format are beyond the scope of this book, but if you simply
need to slightly modify a time it should be relatively easy to figure out what you need to do.
Remember, though, that UTC time is time-zone independent and not likely to be the same
as your time zone (unless you live near Greenwich in England). If you modifysvn:date,
you will need to manually compensate for the time zone. For example, if you live in the
Eastern time zone of the United States, you will need to add five hours to your local time
in order to get UTC.

Now that I’ve given you a lecture on how youcanchange thesvn:date property, let
me stress that I strongly suggest youdon’t change it unless you absolutely have to. The
change will not be undoable, and a messed up date can really throw things off in your
repository.

svn:log

The automatically generated revision property that you are most likely to need to change is
thesvn:log property. Subversion stores the log entry for each revision in this property. If
you make a commit and then realize that you forgot to put something into the log, or realize

“svnbook” — 2005/4/14 — 14:55 — page 96 — #117i
i

i
i

i
i

i
i

96 Chapter 6 Using Properties

that something you put in was incorrect, you can modify this property. Do so with caution
though, as a slip could erase valuable information. As a precaution, I suggest always editing
log files using thesvn propedit command, which will open the log entry in an editor for
you to edit. If you usesvn propset, it is much easier to accidentally wipe out information
that you didn’t want to lose. (Imagine your horror when you realize that you just overwrote
the log for revision 21 instead of revision 12.)

6.4 Summary

In this chapter, you learned how to make use of Subversion’s property metadata to enhance
the information stored in your repository. The first section explained how to get and set
properties on files, directories, and revisions—as well as a variety of best practices to help
you get the most out of your properties (such as categorizing property names). Then, in the
second section, you learned about the numerous built-in properties that Subversion uses to
provide added functionality to the Subversion client.

“svnbook” — 2005/4/14 — 14:55 — page 97 — #118i
i

i
i

i
i

i
i

Chapter 7

Configuring the Client

When using a Subversion client, either from the command line or a graphical tool, there
are a variety of things that you may want to configure to be trueevery time you run a
Subversion command. To allow you to configure these options, Subversion maintains a
few configuration files.

7.1 Finding the Configuration Files

Configuration options can be set either on a per-user basis or as system-wide defaults
(which will be used by every user on the system who hasn’t overridden them). Options
are stored in configuration files—or in the case of Microsoft Windows, configuration files
or registry entries.

On UNIX-based systems, such as Solaris, Linux, or Mac OS X, per-user configuration
files are stored in the.subversion directory in each user’s home directory. System-wide
configurations, on the other hand, are stored in/etc/subversion.

If you are running a Microsoft Windows variant instead, the per-user directory will be
namedSubversion. As to where it will be located on the filesystem, that’s not such an
easy question to answer. Every version of Windows handles things a little bit differently,
and thus ends up with the directory in a different place. In many cases, it is even hidden.
Your best bet is probably to search for it on your particular system, although it will often be
in the directory pointed to by the%APPDATA% environment variable. Similarly, the system-
wide configurations are also stored in a directory namedSubversion, which should be
located wherever your version of Windows stores system-wide application data.

When a Subversion client is run for the first time by a user, the client will automatically
create default configuration files for that user in the appropriate places (depending on the
OS that you’re using). It won’t create system-wide configuration files though. For those,
you (or your administrator) will need to create the files by hand.

7.2 Editing the Configuration Files

Inside the configuration directory (e.g.,.subversion), you will find two configuration
files that you can edit:config andservers. These are both plain text files with options
that you can change. (Subversion sets them up with reasonable defaults when they a

97

“svnbook” — 2005/4/14 — 14:55 — page 98 — #119i
i

i
i

i
i

i
i

98 Chapter 7 Configuring the Client

created.) You will also find a file namedREADME.txt, which explains the format of the
configuration files. In many cases, there will also be a directory namedauth, which con-
tains repository authentication information. Unless youreally know what you’re doing,
there is very little in theauth directory that can be edited by hand.

7.2.1 The config File

The configuration fileconfig is used to set a variety of options that control how a Sub-
version client will act by default. The file itself is broken down into four sections, each
of which contains several different options. The sections (in the order they appear in the
automatically generated defaultconfig file) are: [auth], [helpers], [tunnels], and
[miscellany].1

Setting the Authorization Retention

The first configuration section,[auth], has two options (one of which was added in ver-
sion 1.1). The first controls whether Subversion saves your passwords to repositories (in
the.subversin/auth directory), whereas the second allows you to turn offall caching
of authentication credentials to disk. By default, Subversion does save your authorization
information, but for security purposes that may not be what you want. This is especially
useful if a working copy is shared by multiple people who have their own repository ac-
counts, but share a shell account on the machine where the working copy resides (on a test
server, for instance). In such a case, it would be much better if Subversion demanded a
username and password every time the repository was accessed, which is what you will get
if you set Subversion to not store passwords.

The option to set for turning off password caching is calledstore-password, and
should be set to eitheryes or no, as in this example, which shows a complete[auth]
section:

[auth]
store-password = yes

If you want to go a step further and disable all authentication caching, you can instead
set thestore-auth-creds to no. If you usestore-auth-creds, there is no need to also
usestore-passwords, because password storing is disabled by this option, along with
the caching of any other credentials, including usernames and SSL or SSH certificates.

[auth]
store-auth-creds = no

Setting Your Helper Programs

Subversion has the capability to make use of several external utility programs (although
it has its own internal default version for most of them). If you need to change which
programs Subversion uses, you can set those in the[helpers] section of theconfig file.

1. This is accurate through version 1.1 of Subversion. Subsequent versions may introduce new options or
sections.

“svnbook” — 2005/4/14 — 14:55 — page 99 — #120i
i

i
i

i
i

i
i

7.2 Editing the Configuration Files 99

One of the helpers that you may want to modify is the text editor that Subversion uses
to obtain log entries from users when they run commands that modify the repository. By
default, Subversion looks at the environment variables$SVN_EDITOR, $VISUAL, and then
$EDITOR to determine which program to run. If you would rather specify that command in
the configuration file, though, you can override Subversion’s environment variable check-
ing by setting theeditor-cmd option, like in the following example entry.

editor-cmd = /usr/bin/emacs

The other set of programs that you may need to set are the diff programs that Subversion
uses to compare files. Subversion has its own diffing algorithms built into the system, but
you may find that a third-party diff tool, such as GNU diff, better serves your needs. For
instance, if you need the output of a Subversion diff command to be in a format other than
the unified diff format that Subversion uses, you would need to use an external diff tool.

Subversion uses two different diff commands, each of which you can independently set
a command for. The first is the standard diff program, used for finding the differences be-
tween two files, and is set by thediff-cmd option. The other diff program that Subversion
uses is a three-way diff, which it uses when performing merges. You can set the three-
way diff program withdiff3-cmd. You can also tell Subversion whether it should pass
a --diff-program option to the three-way diff command to tell it which two-way diff
program to use, using thediff3-has-program-arg option. If you do change the default
diff command, there is one word of caution: Subversion assumes that your command takes
GNU-style diff/diff3 options, so you may have to write a wrapper script to do a conversion.

The following example shows how you might set up the diff commands in theconfig
file.

diff-cmd = /usr/bin/diff
diff3-cmd = /usr/bin/diff3
diff3-has-program-arg = false

Setting Up Tunnels

Subversion has the capability to access a remote repository by tunneling through another
program to a remote server. When it connects to the remote server, it will runsvnserve
on the remote server to connect to the repository. Normally, the scheme used for tunneling
is SSH (which Subversion supports by default), but you can set up other tunneling schemes
through yourconfig file.

Entries for different tunneling schemes are entered in the[tunnels] section of the
config file. Each entry defines a different scheme (and the program that Subversion should
use for the tunneling). The basic form for the entries is the name of the scheme, followed
by an equals sign, and then the name of the program that Subversion should run (along
with any options that should be fed to the program). So, to set up Subversion to be able to
tunnel throughrsh, using the usernamebill, you could set up yourconfig file with an
entry like the following example.

rsh = /usr/bin/rsh -l bill

“svnbook” — 2005/4/14 — 14:55 — page 100 — #121i
i

i
i

i
i

i
i

100 Chapter 7 Configuring the Client

To invoke this scheme, you would then run your Subversion client with a repository
URL such assvn+rsh://svn.example.com/var/svn/myrepos, which would cause
Subversion to run the command

rsh -l bill svn.example.com svnserve -t

You can add as many tunneling schemes as you want, and can use whatever names you
would like to identify them. This means that you could set up multiple schemes in the
config file to use the same program with different options, such as these entries, which
set up two SSH schemes for connecting with different usernames.

ssh_bill = ssh -l bill
ssh_drew = ssh -l drew

Setting Global Ignores

Often, you will end up with files in your working copy that you have no intention of ever
adding to the repository. For example, object files that are generated when you compile
a program are not something that you usually want to store in the repository, instead pre-
ferring to have them regenerated in each individual working copy. The problem with files
you don’t want to ever add to the repository is that they can easily clutter the output of
the Subversion status command, and can often get accidentally committed if you are not
careful.

The solution is to use global ignores in yourconfig file, to give Subversion file patterns
that it should ignore when running Subversion commands. So, if you don’t want to see
object files, you could tell Subversion to ignore all files that end in.o. Ignore patterns
are entered under the[miscellany] section, with the optionglobal-ignores. As an
example, the following entry would tell Subversion to ignore all files that end in.o or
.exe.

global-ignores = *.o *.exe

Setting the Log File Encoding

Subversion always stores log messages in UTF8, using your local system’s locale. In some
cases, though, your editor may be providing log messages to Subversion in a different
encoding. If that is the case, you need to tell Subversion what encoding to expect so that
it can perform the proper conversions. To do that, you can set thelog-encoding option
under the[miscellany] section, like in this entry, which tells Subversion to use ASCII
encoding.

log-encoding = ascii

Controlling File Timestamps

When you check out or update a file in a working copy, the timestamps on files will nor-
mally reflect the date and time when the checkout or update created the current version of

“svnbook” — 2005/4/14 — 14:55 — page 101 — #122i
i

i
i

i
i

i
i

7.2 Editing the Configuration Files 101

the file in your working copy. If you would instead like to have the timestamps reflect the
last time those files were changed in the repository, you can tell Subversion to set them
appropriately by setting theuse-commit-times option (in the[miscellany] section) to
yes, so that your entry will look like this:

use-commit-times = yes

Automatically Setting Properties

Subversion has the capability to automatically assign property values to files, based on their
names, using rules that are set up in theconfig file. To turn auto properties on, you need
to set theenable-auto-props option toyes in the [miscellany] section (or enable
it on the command line with--auto-props when a command is run). Then, you can
add an[auto-props] section to your config file and set up as many automatic property
entries as you need. Each entry consists of a filename pattern (which can use wildcards to
match multiple files), followed by an equals sign, followed by a semicolon-separated list of
property/value pairs. For example, the following snippet shows a sample[auto-props]
section.

[auto-props]
*.c = svn:keywords=Id
*.h = svn:keywords=Id
*.bat = svn:eol-style=CRLF;svn:executable

7.2.2 The servers File

In most cases, connecting to Subversion repositories will require no special intervention.
You will just give the URL to your Subversion client and everything will work. Occasion-
ally, though, some repositories will require extra information to connect properly. For in-
stance, you may need to set up parameters for using an HTTP proxy to deal with a firewall,
or fine-tune the way the Subversion client handles SSL certificates for a secure connection.

Subversion allows you to set these special server-specific connection options in the
servers configuration file, which is located in the same place as theconfig file from the
previous section. In it, you can set up a variety of options for connecting to specific servers,
or groups of servers.

Setting Up Server Groups

Theservers file is split into three types of sections.

• One or more sections that define the server options for individual groups

• A section that defines the groups (and the servers they are associated with)

• A section that defines global server options

“svnbook” — 2005/4/14 — 14:55 — page 102 — #123i
i

i
i

i
i

i
i

102 Chapter 7 Configuring the Client

You define groups in the[groups] section. Each entry defines a group, along with the
server or servers that the group applies to. Servers can either be entered as a single server
name (such assvn.example.com) or with wildcards to match an entire domain (such as
*.example.com). You can also add more than one specific server or server pattern by
entering multiple servers, separated by commas. As an example, the following sample
[groups] section sets up two groups of servers.

[groups]
mygroup = svn.example.com
myothergroup = svn.example.org,*.example.net

You can have as many groups as you would like, and can give each group a name that
makes sense to you. The names that you use will then be used later in the document as the
section headings to identify which group a set of options applies to.

Configuring HTTP Proxies

HTTP proxies are used for a wide-ranging variety of reasons, from security to traffic man-
agement to preventing access to certain sites or domains (and a lot of things in between).
Proxies act as an intermediary for HTTP requests. They receive requests from clients, and
then forward the request to the real server. Therefore, a client needs to be configured to
send requests to the proxy, instead of trying to contact the server directly. In Subversion,
the place to configure proxies is in theservers configuration file. For each group, you can
specify all of the information necessary to direct your requests through a proxy, as well as
specify certain servers that won’t need the proxy. The following example shows how you
might set up a group of servers to use a proxy.

[mygroup]
http-proxy-host = proxy.example.com
http-proxy-port = 8880
http-proxy-username = bill
http-proxy-password = mypasswd
http-proxy-exceptions = internal-1.example.com *.internal-example.com

This sets up Subversion to send all requests to the server inmygroup through the
proxy.example.com proxy server, which is listening on port8880. When it connects
to the proxy, it will use the username and password that you have supplied. If you don’t
supply a username or password, Subversion will have to ask you for them on every request,
which can get very annoying (imagine typing your username and password 50 to 60 times
per day). Because the password is stored in plain text, though, you need to be careful
and make sure that theservers file is not readable by anyone but yourself. Finally, the
http-proxy-exceptions option allows you to specify certain servers or domains that
Subversion should contact directly, instead of through the proxy.

“svnbook” — 2005/4/14 — 14:55 — page 103 — #124i
i

i
i

i
i

i
i

7.2 Editing the Configuration Files 103

Configuring Other HTTP Stuff

Subversion has a couple of other HTTP-related options that are unrelated to proxies, but are
worth mentioning. They arehttp-timeout andhttp-compression. In most cases, you
will not have to change either option. However, if you have an especially slow-to-respond
repository server, you may need to sethttp-timeout to a high number to avoid prema-
ture connection failures due to timeouts. Additionally, if you are experiencing unknown
failures, you may find it useful to sethttp-compression to no in order to allow you to
look at the network packets that are being sent, in the hopes of debugging the problem. By
default, Subversiondoesuse HTTP compression, if the server supports it.

Dealing with SSL Certificates

Often, the data that is in a repository is not something that you want everyone to get their
hands on—or if it is something you want everyone to get their hands on, the odds are that
you don’t want everyone to be able to directly modify the repository. For this reason, many
repositories are accessible only through a secure HTTP link, which is encrypted using the
Secure Socket Layer (SSL). If a repository that you are connecting to is set up thus, it may
be necessary for you to configure Subversion to recognize the certificate that identifies the
server and the keys for connecting to it.

The first thing that you may need to do is to tell Subversion which certificate authorities
it should use to validate a server certificate. A certificate authority (CA) is a trusted source,
which is capable of validating the authenticity of a certificate you receive. Without the
certificate authority, you have no way to ensure that a certificate received from a server is
valid and authentic. To tell Subversion which certificate authority it should use, you need
to get a certificate identifying the CA and then point Subversion to the file containing it.
You do so through thessl-authority-files option in yourservers file, which is a list
of authority files, separated by colons. If you set thessl-trust-default-ca option to
yes, Subversion will also look to a set of built-in default CAs.

Some servers will require you to have a client certificate to prove your own identity. In
this case, you will want to tell Subversion where to find that file, too. Subversion looks for
the client certificate in the location pointed to by thessl-client-cert-file option (if
there is no such option listed, it will ask you for the certificate when you run the client).
Additionally, you may need to tell Subversion which type of certificate you are providing
it, using thessl-client-cert-type option, which takespem or pkcs12 as valid values.
If your client key isn’t stored in the same file as your client certificate, you may also need
to tell Subversion where to find it, using thessl-client-key-file option. If your cer-
tificate requires a passphrase, you may also want to place that in yourservers file, using
the optionssl-client-cert-password option. Be careful though. As with the HTTP-
proxy password, this will be stored in plain text, so you need to take steps to secure the
servers file itself.

Security is always a good idea, and in general it’s a bad idea to turn off the built-in
security safeguards that Subversion provides when authenticating a certificate—especially
because Subversion can be directed to allow unknown certificates on a case-by-case ba-

“svnbook” — 2005/4/14 — 14:55 — page 104 — #125i
i

i
i

i
i

i
i

104 Chapter 7 Configuring the Client

sis, after prompting for your approval. That said, we’re all adults here, and sometimes,
even with the best intentions of having a secure environment, the practical reality of things
means that you need to cut some security to improve usability. To that end, Subversion
provides you with a few options that you can use to relax your communications to an SSL-
enabled server. If a server has a certificate that is self-signed (or otherwise signed with
a certificate authority you can’t check), you can direct Subversion to ignore the unknown
certificate authority by setting thessl-ignore-unknown-ca option toyes. Similarly,
if you are accessing a machine that has an incorrectly dated certificate, you can set the
ssl-ignore-invalid-date option toyes in order to direct Subversion to accept the cer-
tificate anyway. And finally, if the host that a server is reporting as its location doesn’t
match the certificate for that server, you can direct Subversion to allow the mismatch using
ssl-ignore-host-mismatch (again, set toyes).

To help tie all of this together, here is a sampleservers file, showing a setup that you
might use for setting up some sane global SSL options, along with a group that overrides
those settings for a couple of local area network servers that have certificates that are not
kept properly up-to-date.

[groups]
UnkemptServers = moe.localnet curly.localnet

[UnkemptServers]
ssl-ignore-unknown-ca = yes
ssl-ignore-invalid-date = yes

[global]
ssl-trust-default-ca = yes
ssl-authority-files = /home/bill/.ssl/localCA.pem
ssl-client-cert-file = /home/bill/.ssl/myCert.pem
ssl-client-cert-password = mI^paSs-42 # this is the password,

not an encrypted version

7.3 Summary

In this chapter, you’ve seen the configuration files that are available for configuring Subver-
sion. Both of the configuration files,config andservers, were discussed, along with the
options that you can set in each file. You saw how to configure authentication and proxies,
as well as several other Subversion options, such as the default editor and diff command.

In the next chapter, you will see how to make interacting with Subversion easier by
using a number of different external tools to integrate Subversion with the GUI and the
development environment.

“svnbook” — 2005/4/14 — 14:55 — page 105 — #126i
i

i
i

i
i

i
i

Chapter 8

Integrating with Other Tools

As a client user, the Subversion command-linesvn program provides you with all of the
tools that you need to interact with a Subversion repository. The command line is not
always the most effective way to use Subversion though. If you program in an integrated
development environment (IDE), for example, it is helpful to be able to perform all of your
updates, commits, and other SVN commands from within the framework of the IDE. A
GUI can also be useful if you use SVN too infrequently to learn the command-line tools
effectively (or if you just don’t have the time necessary to learn). Sometimes, other tools
are also necessary because you don’t have access to the command-line tool.

Subversion has a library of functions that programmers can use to develop new tools
to interact with repositories, which makes the creation of tools beyond thesvn command
much easier than it is with many other version control systems. Accordingly, many very
good integration tools have already been developed. In fact, so many have been developed
that discussing them all here would be impossible. Instead, this chapter will give you an
overview of several of the tools that are out there, which will give you a basis for finding
and learning about the use of other tools.

8.1 Accessing SVN through a GUI Client

Most modern desktop or workstation operating systems depend heavily on the use of a
graphical user interface (GUI) for interaction with the system—so much so that in many
cases, the command line is a dying art. With such heavy dependence on a GUI, it only
makes sense that it will often be easier to interact with Subversion through the use of a
GUI-based tool. Fortunately, there are a number of GUI clients for Subversion, available
for Windows, Mac OS X, and other more traditional UNIX-based systems.

8.1.1 RapidSVN

Whatever your platform of choice, the odds are that you can use the RapidSVN GUI client
for Subversion. Although RapidSVN is a natively compiled application (and thus runs with
the speed you would expect from a native application), it was written in a very portable
manner, which allows it to compile and run on most major platforms.

105

“svnbook” — 2005/4/14 — 14:55 — page 106 — #127i
i

i
i

i
i

i
i

106 Chapter 8 Integrating with Other Tools

RapidSVN works as a complete standalone client for Subversion, and presents the user
with a straightforward, easy-to-use interface, which users of WinCVS will find familiar.
It can be downloaded from the project’s Web site, atrapidsvn.tigris.org. Compiled
binary installations are available as packages for some Linux distributions, and there is an
installer for Windows. RapidSVN will run on a number of other platforms (such as Mac
OS X and Solaris), but you may have to compile the program from source code.

Features

RapidSVN is a full-featured Subversion client interface, with access to most of the Sub-
version client commands. Repositories and working copies are presented in a three-paned
interface, as you can see in Figure 8.1. The top-left pane shows a tree view of all of the
repositories and working copies that you currently have “bookmarked” in RapidSVN. In
the top-right pane, you can see details about each of the files in the directory that is se-
lected in the tree view. Finally, the bottom pane is used for status output from the running
of commands.

RapidSVN shows the status of individual files through both the icon that is used to
display the file and a textual representation in the “Status” column. For example, modified
files are shown with a red file icon (with an M).

To perform a command on a file, you generally just have to select it and then select the
command you would like to perform, either from the toolbar or a menu. If other options
are required (such as a revision number), RapidSVN displays a dialog box for you to enter

Figure 8.1. The RapidSVN interface.

“svnbook” — 2005/4/14 — 14:55 — page 107 — #128i
i

i
i

i
i

i
i

8.1 Accessing SVN through a GUI Client 107

them. So, as an example, if you have a modified file that you would like to commit, you
can select it in the file detail pane and click on the Commit Selected button on the toolbar.
RapidSVN pops up a dialog for you to enter the log message, and away you go.

When you use RapidSVN to run Subversion commands, you do not always have access
to all of the options available from the command line, such as the merge command, which
does not give you the option of performing a dry run that shows which files will change
without changing them, as you can do withsvn merge. Furthermore, RapidSVN makes
some complex operations more difficult, or even impossible. Log messages, for instance,
cannot be queried recursively—nor is there a way for binary files to be added to a file as
properties. With many commands, it is also not possible to run the command simultane-
ously on a group of files.

When Should I Use It?

RapidSVN is a great tool for casual or less technically adept users of a Subversion repos-
itory. It has a low learning curve and a reasonably intuitive interface. Command options
are presented to the user as either checkboxes or text boxes, and generally default to the
most commonly used options. Uncommon options are often eliminated entirely, which will
frustrate power users, but makes the interface cleaner and much simpler for the novice to
understand. If your Subversion needs aren’t too demanding, and you would like to trade a
little flexibility for more ease of use, RapidSVN is a good choice.

8.1.2 TortoiseSVN

If you use Windows, TortoiseSVN is a very nice alternative to a standalone GUI client
like RapidSVN. TortoiseSVN takes advantage of the extendibility of Windows Explorer
to integrate interaction with the repository directly into the Explorer GUI. TortoiseSVN is
widely used by many Windows-based Subversion users—in fact, after the command line, it
is probably the most widely used Subversion client available. If you are using Subversion
from Windows, this is probably your best choice for a Subversion client (beyond even the
command-line tools).

TortoiseSVN is free software (GPL license), and can be obtained from the TortoiseSVN
Web site:tortoisesvn.tigris.org. Installing the software is trivial, as the program
comes with an installer program. All you need to do is run it and follow the instructions.
You should be able to install TortoiseSVN on any version of Windows from Win95 or later,
although ’95 and NT 4 may require you to upgrade your version of Internet Explorer.

Features

TortoiseSVN provides you with access to all of the Subversion client commands through
context menus in Explorer. You are able to easily update, commit, switch, copy, merge,
and so on. As you can see in Figure 8.2, each command is easily accessible, although
TortoiseSVN has chosen to use different names for some of the commands. For example,
instead ofsvn diff, you have theCreate Patch...menu item, and instead ofsvn copy,
you have theBranch/Tag...item.

“svnbook” — 2005/4/14 — 14:55 — page 108 — #129i
i

i
i

i
i

i
i

108 Chapter 8 Integrating with Other Tools

Figure 8.2. The TortoiseSVN interface.

TortoiseSVN also makes it easy to quickly see the status of versioned files, by placing
an overlay icon on each versioned file. For example, in Figure 8.2, you can see that each
folder has a circle with a checkmark over the lower-left corner of the icon. If the picture
were in color, you would be able to see that the icon is green in color. This indicates that
each of those directories has no uncommitted modifications.

8.1.3 ViewCVS

ViewCVS has for quite some time been the top choice for providing a Web-based interface
to the CVS version control system. Recently, the ViewCVS project has expanded its sup-
port to include Subversion, although Subversion support is not yet available in an official re-
lease. To get ViewCVS with Subversion support, you will need to check out the ViewCVS
CVS repository. Slow down and take a few deep breaths. Unfortunately, ViewCVS hasn’t
seen the light and moved to Subversion for its repository yet. The ViewCVS project can be
found atviewcvs.sf.net.

Features

ViewCVS allows users to easily browse through a Subversion repository. Its view is similar
to the view that you get when accessing the WebDAV share of a repository through a Web
browser. The top level of the repository is listed, with links to each directory or file at that
level. You can then view files by clicking on them, or descend into subdirectories. As you

“svnbook” — 2005/4/14 — 14:55 — page 109 — #130i
i

i
i

i
i

i
i

8.1 Accessing SVN through a GUI Client 109

can see in the screenshot in Figure 8.3 though, the ViewCVS screen is much more advanced
than the simple page provided by Apache/WebDAV. In addition to letting you browse the
HEAD revision of the repository, ViewCVS gives you a number of other options.

• You can move to specific revisions and view all of the repository at that revision.

• When you select a specific revision, you can look at the log message for that revision,
as well as the files that changed in that revision. For each changed file, you can also
ask to see a diff of the changes made to it.

• For individual files, you can view the contents of the file, or the complete log for that
file.

• You can obtain diffs of arbitrary revisions for a file, in a number of different formats,
such as a color-coded side-by-side view, or a unified diff suitable for use withpatch.

Because ViewCVS Subversion support is still in development, there may very well
be more features supported by the time you read this. There may even be a version 1.0
release. In the meantime, there are some stable CVS snapshots available. I would suggest
that you look at the ViewCVS package maintained by Christopher Baus, at his Web site
(www.baus.net/archives/000069.html), which has a stable snapshot of ViewCVS.
He also has an excellent set of installation instructions.

Figure 8.3. The Subversion project’s ViewCVS page.

“svnbook” — 2005/4/14 — 14:55 — page 110 — #131i
i

i
i

i
i

i
i

110 Chapter 8 Integrating with Other Tools

When Should I Use It?

ViewCVS is a great tool if you have users who need to access the Subversion repository, but
might not need or want the overhead of installing a Subversion client. If your repository
contains files that users would be likely to download individually, it can be an easy way
to facilitate that, too. It can also be useful for developers who do have and use a Subver-
sion client to check out and commit, but would like a quick way to see files from specific
revisions or diffs of different revisions of a file.

ViewCVS is stable enough that you should be able to use it in a production environment.
Because it doesn’t modify the repository, there is little reason to worry about it corrupting
your repository if a bug is encountered.

8.1.4 WebSVN

Another good choice for Web-based repository browsing is WebSVN. WebSVN is similar
to ViewCVS and supports many of its features, along with some new ones that ViewCVS
doesn’t support. Because it was designed from the ground up to support Subversion, it
also feels more at home with Subversion. The project itself is located at the WebSVN
Web site (http://websvn.tigris.org), and installs very easily. In fact, installation
is as simple as putting the WebSVN source in a Web-accessible directory and editing
the include/config.inc file (which you need to create by copying the template file
include/distconfig.inc).

Features

In addition to repository browsing features similar to ViewCVS, WebSVN offers a number
of other ways to get information about the repository.

• Support for the Subversion blame command, which shows an annotated view of the
selected file, with columns showing the user who last committed each line, along
with the revision where the commit was made.

• RSS feeds that allow you to track changes to the repository.

• Comparisons of two directories, which show the differences between each file in the
chosen directories. This makes it easy to compare the differences between the trunk
and a branch or tag (or between two branches, and so on).

When Should I Use It?

WebSVN is useful in the same instances as ViewCVS, and the choice between the two
is mostly a matter of taste. ViewCVS is a bit more mature than WebSVN (even though
Subversion support hasn’t been officially released), but WebSVN has more Subversion-
friendly features. If you are planning on using one for your repository, I suggest that you
try both (they’re both reasonably easy to install) and see which one suits your needs best.

“svnbook” — 2005/4/14 — 14:55 — page 111 — #132i
i

i
i

i
i

i
i

8.2 Accessing Directly from an IDE 111

8.2 Accessing Directly from an IDE

When using an integrated development environment (IDE), it is usually easiest to be able
to deal with Subversion directly inside the IDE interface. Fortunately, many popular IDEs
are starting to add support for Subversion and others have plug-ins available that provide
integrated support. As an example of what’s available, here are a couple of plug-ins that will
allow you to access Subversion directly from Microsoft’s Visual Studio.Net and Eclipse.

As a general side note when dealing with integrated clients: many don’t have support
for unknown SSL certificates. If you need to use them to access a repository with an
unknown certificate, you may have to first access that repository using the command-line
client. When the command-line client asks you for permission to accept the unknown
certificate, you should then tell it to accept permanently. After that, you should be able to
use the integrated tool to access your repository with no troubles.

8.2.1 Visual Studio.Net

If your development environment of choice (or necessity) is Microsoft’s Visual Studio.Net,
you can use the AnkhSVN (ankhsvn.tigris.org) project to integrate the VS.net work
environment with Subversion (see Figure 8.4). AnkhSVN is still in a beta release state, and
doesn’t yet support every Subversion feature (most notably, it has no properties support),
but it is quite usable for most daily development work, and any missing features can still
be accessed from the command line.

Figure 8.4. A commit from Visual Studio.Net, with AnkhSVN.

“svnbook” — 2005/4/14 — 14:55 — page 112 — #133i
i

i
i

i
i

i
i

112 Chapter 8 Integrating with Other Tools

Figure 8.5. The AnkhSVN context menu.

Features

Like many of the other Subversion integration tools, Subversion commands are accessed
via AnkhSVN through menu items added to a pop-up menu. In this case, the items are
added to the VS.net Solution Explorer, where you can right-click on files and select Ankh-
SVN commands (see Figure 8.5). Additionally, the Solution Explorer also shows file status
by placing small icons on each file, such as a redM for modified files, and a green check-
mark for files that are up-to-date. In addition to the critical basic features like committing
and updating, AnkhSVN also supports graphical views of diffs, switching a file to a branch
or tag, and creation of patches.

8.2.2 Eclipse

If you’re a Java developer, the chances are that you are familiar with the open source
Eclipse IDE. It has quickly become one of the most popular integrated development en-
vironments for anyone working with Java, and for good reason. One of its most powerful
features is its excellent plug-in system, which allows third parties to easily develop plug-
ins that integrate seamlessly with the core Eclipse system. One such plug-in is Subclipse
(http://subclipse.tigris.org), which integrates the capability to work with a Sub-
version repository into Eclipse (see Figure 8.6).

“svnbook” — 2005/4/14 — 14:55 — page 113 — #134i
i

i
i

i
i

i
i

8.2 Accessing Directly from an IDE 113

Figure 8.6. Subclipse, showing a graphical diff of two versions of a file.

Features

With Subclipse, you can check out new working copies from a repository and import them
into Eclipse, bring an already checked-out working copy under Eclipse control, or create a
brand new project that will be automatically imported into a Subversion repository.

Subclipse adds three new submenus to the pop-up menu that appears when you right-
click on files or folders in the Eclipse file list, which give you control over a working copy.
Figure 8.7 shows all three submenus in action.

• The Teamsubmenu gives access to a number of common Subversion commands,
which allow you to easily update, commit, and manipulate properties.

• The Compare Withsubmenu gives you the ability to graphically compare files in
your working copy with different versions of the file in the repository.

• The Replace Withsubmenu allows you to exchange the version of a file in your
working copy with another revision (i.e.,svn update -r).

“svnbook” — 2005/4/14 — 14:55 — page 114 — #135i
i

i
i

i
i

i
i

114 Chapter 8 Integrating with Other Tools

Figure 8.7. The three Subclipse context menus.

8.3 Using Autoversioning with WebDAV

The graphical file browsers on many operating systems allow you to mount WebDAV shares
as remote directories that can be accessed the same as local files. This includes (but is not
necessarily limited to) the following GUI file managers:

• Microsoft Windows Explorer (although older versions of the OS might need software
installed)

• Macintosh OS X (albeit without any SSL support)

• The Nautilus file manager, available on Linux and most UNIX varieties

Because the Apache/WebDAV repository shares support standard WebDAV commands,
this means that you can often mount a repository as a remote directory. Of course, in such
a situation, the file managers don’t know anything about Subversion, and can’t support any
Subversion-specific manipulation (like commits, updates, or properties). However, when a
repository is accessed this way, Subversion does support a limited form of file modification,
known as autoversioning.

Autoversioning allows users to open repository files directly from a mounted filesystem
directory, edit the file, and then save it back to the repository (although some WebDAV
clients might require you to copy the file to the local filesystem before you edit it, then
copy it back after the edit). When the modified file is saved or copied back to the share,
it automatically performs a commit, with a generic log message. In this way, users with
little or no understanding of version control are able to edit files in the repository without
the steep learning curve of the Subversion client. It also allows you to access and modify
Subversion repositories from client machines that don’t (or can’t) have a full Subversion
client installed.

“svnbook” — 2005/4/14 — 14:55 — page 115 — #136i
i

i
i

i
i

i
i

8.3 Using Autoversioning with WebDAV 115

Unfortunately, opening and saving repository files via a WebDAV share can be a prob-
lem if there are multiple people modifying the repository in parallel. If you open a file on
your local system and another developer commits changes before you save your modified
version back, that other developer’s changes will be overwritten, not merged. Fortunately,
this problem should be fixed in the upcoming 1.2 release of Subversion, which will support
file locking that should work with autoversioning.

Enabling Autoversioning

By default, autoversioning is not allowed. The server will just reject changes to files that it
receives through standard WebDAV means. To enable autoversioning, you need to add the
SVNAutoversioning directive to your repository’sLocation section, which would give
you a location that looks something like the following example.

<Location /repos>
DAV svn
SVNPath /var/svnrepos
SVNAutoversioning on

</Location>

Autoversioning on OS X

Autoversioning with the Macintosh OS X Finder is a bit more difficult than with MS Win-
dows or Nautilus, because OS X tries to get a lock on each file before writing to it (which
Subversion WebDAV doesn’t support). There is a workaround, though. The Apache mod-
ule mod_dav_lock allows you to add support for file locking to Apache, so that the lock
requests aren’t rejected.

Warning: Apache is the only thing locking the file here. Subversion doesn’t understand
locks, so a Subversion client can make a change to the file. If you are usingmod_dav_lock,
make sure that no one is going to be using a Subversion client at the same time. This
problem should go away with version 1.2 of Subversion, though, because it will support
locking.

To enablemod_dav_lock support for your Subversion repository, you need to first tell
Apache to loadmod_dav_lock (the specifics of this are very specific to an Apache install).
Then, you just need to tell your Subversion repository location what file to use for its locks,
as in this example<Location>.

<Location /repos>
DAV svn
SVNPath /var/svnrepos
SVNAutoversioning on
DAVGenericLockDB /var/svnrepos/dav_locks

</Location>

“svnbook” — 2005/4/14 — 14:55 — page 116 — #137i
i

i
i

i
i

i
i

116 Chapter 8 Integrating with Other Tools

8.4 Summary

In this chapter, you’ve gotten a taste for the tools that are out there for integrating Sub-
version and other tools. An in-depth discussion of each of these tools would be a book in
itself, so I’ve only touched on them here. The amount of documentation that is available
from each of these projects varies from project to project, but each is documented well
enough that you should have few problems getting them installed. Most are reasonably
self-explanatory in their use. To find more information about available Subversion clients
and other Subversion-related projects, you can visit the Subversion project links Web page
atsubversion.tigris.org/project_links.html.

“svnbook” — 2005/4/14 — 14:55 — page 117 — #138i
i

i
i

i
i

i
i

Part III

Subversion from an
Administrator’s Perspective

“svnbook” — 2005/4/14 — 14:55 — page 118 — #139i
i

i
i

i
i

i
i

“svnbook” — 2005/4/14 — 14:55 — page 119 — #140i
i

i
i

i
i

i
i

Chapter 9

Organizing Your Repository

In Part III, you will learn the ins and outs of administering a Subversion repository. Mostly
that means repository setup, because Subversion rarely requires much maintenance after
the repository is up and running. In the simplest cases, even the front-end administration
is trivial—simply create a new repository and add a few lines to your Apache config files
to point them to the repository’s location. Conversely, for large, complex repositories, or
repositories with many users, setup can get fairly involved. If you put in the effort to use
hook scripts to automate integration and policy support, setup can provide a full-time job
to one or more people for a decent period of time.

The ease of moving files and directories around in a Subversion repository means that
it’s no longer necessary to spend countless hours arguing over exactly how the repository
should be set up (knowing that changing it down the road will be practically impossible).
Just because changing things is easy, though, doesn’t mean that you shouldn’t take the time
to devise a good repository layout that will help support your project’s workflow. In fact,
with Subversion’s flexible layout, you have a large number of options when laying out the
repository, and a little thought into how to do so can go a long way. In this chapter, you will
learn about many of the issues that you should consider when laying out your repository to
support your overall workflow and to ease your project’s growth over time. You will also
learn how to migrate an existing repository from a CVS or Visual SourceSafe repository.

9.1 Laying Out the Repository

Subversion gives you a lot of options for laying out a repository—or more to the point, it
puts up very few roadblocks when you are laying out your repository. Your layout options
are basically as unlimited as your options when laying out a regular filesystem. Addi-
tionally, because branches and tags are handled as copies, you are free to organize your
repository layout to reflect the types of branches and tags that you expect to make (for
example, areleases directory for release tags).

9.1.1 The Two Basic Layouts

There are two basic Subversion layouts. If you are putting together a simple Subversion
repository, or don’t know exactly what the project structure and workflow is going to look

119

“svnbook” — 2005/4/14 — 14:55 — page 120 — #141i
i

i
i

i
i

i
i

120 Chapter 9 Organizing Your Repository

/

/trunk /branches /tags

Figure 9.1. A simple monolithic repository layout.

like, your best bet may be to just use one of these simple repository layouts. Of course, as
the project grows, you can always move things around to improve the layout at a later date.

Monolithic Layout

The first layout is the basic monolithic project layout. In this layout, you have a single
project in each repository, with a top-level directory for the trunk, as well as directories
for branches and tags (see Figure 9.1). This is the better layout to choose if you have
multiple projects that are unrelated (or only loosely related), in which case you can place
each project in its own repository with a monolithic layout structure. It’s also the obvious
choice if you are only tracking a single project.

The main project trunk will go into thetrunk directory, whereas branches and tags
will be copied into thebranches andtags directories, respectively. This allows a user to
easily check out just thetrunk directory, and usesvn cp with URLs to create branches
and tags. Then, when the user wants to work on a branch (or use a tag), it is easy to use
svn switch to move the branch in to the checked out working copy oftrunk.

By keeping multiple projects separated in their own monolithically organized reposito-
ries, you maintain the ability to relocate or back up individual repositories. That would, for
example, allow you to maintain two heavily accessed repositories on different servers, or
to archive the repository for a cancelled project off onto an offline storage medium to free
up space on your active servers. Individual projects in separate projects also allow those
projects to have their own revision numbers. If a modification is committed to projectfoo,
projectbar’s head revision won’t increase by one.

If your projects are closely related, or are likely to share a lot of code, having each
project in its own repository can be constraining. You lose the ability to copy or merge
source from one project to another (while maintaining the history of the file in both projects),
and you lose the ability to branch or tag both projects together. Also, because each project
has its own independent revision numbers, it is hard to compare the state of two projects
at an arbitrary point. However, if the projects are not closely related, but do reference each
other, externals may allow you to share some commonalities between repositories without
sacrificing the advantages of separate repositories.

“svnbook” — 2005/4/14 — 14:55 — page 121 — #142i
i

i
i

i
i

i
i

9.1 Laying Out the Repository 121

Multiproject Layout

The second basic layout scheme is better for projects with lots of closely connected
projects. In this scheme, instead of putting each project in a separate repository, with
trunk, branches, andtags directories at the top level of the repository, you will create a
top-level directory for each project in the repository. Then, at the top level of each project
directory, you will puttrunk, branches, andtags directories specific to that project, as
in Figure 9.2.

With this layout, you can easily copy source from between projects or create tags and
branches that encompass multiple projects. All of the projects will also share revision
numbers, so you always know what state other projects were in at a given revision number
for the project you are working on.

Of course, you lose the separation of multiple repositories and gain little advantage if
the projects are not closely related. If two projects are unrelated or only reference each
other with no (or at least very little) possibility that code will be copied from one to the
other, you may be better off with a monolithic layout.

9.1.2 Organizing the Trunk

The trunk is the main branch of a project. As far as Subversion is concerned, it is no
different from any other directory, because Subversion has no concept of special directories.

/

/project_1 /project_2

/trunk

/branches

/tags

/trunk

/branches

/tags

Figure 9.2. A repository layout with multiple projects.

“svnbook” — 2005/4/14 — 14:55 — page 122 — #143i
i

i
i

i
i

i
i

122 Chapter 9 Organizing Your Repository

Conceptually, though, it is the directory where the primary version of the project resides.
Branches and tags are usually created from a revision of the trunk, and work done on a
branch is often merged back into the trunk when they are complete.

The trunk is usually stored in a directory namedtrunk, but could be named something
else (likemain_branch) if there were a compelling reason to do so. Generally, there is
either a single trunk for the entire repository, or individual trunks for each project. This
allows each project to have a clear place for the most current new development (also called
the head development).

Although most projects have only a single trunk, in theory you could have multiple
“trunks” for a single project, but you should carefully consider the way you will be using
the repository first. In most cases, you will find that things are better organized as multiple
projects, or as branches of a project. For instance, if you maintain separate development
paths for a consumer version and professional version (or versions for different platforms),
the different development paths might be cleaner if they were different projects in the same
repository. Similarly, if you have multiple versions of the same project, those might be
more cleanly handled as branches, instead of multiple trunk directories.

In many cases, the trunk will be the only part of the repository that users will check
out into their working copy (usingsvn switch to get at the other parts). This means
that you need to be sure that your trunk is a complete entity, containing all of the parts
of the repository necessary for working with the project (if the repository is split into a
scheme with one trunk for each project, it’s acceptable—and usually desireable—to make
each product so it needs to be checked out separately). What you want to avoid, though,
is source that uses a relative path that points to parts of the repository outside the current
project’strunk directory.

9.1.3 Organizing Branches

Branches are just that, branches of the main path of development that may or may not
be merged back in at a later point. Typically, they are used for working on sections of
development that may break the main trunk, or that may be tangential to the main trunk of
development. Often, branches are long-running, but they may also be used for quick forays
that only take a revision or two before they’re merged back into the trunk and deleted.

Branches are usually stored in a directory namedbranches, under a descriptive name
that describes what part of the trunk the branch was created from, as well as purpose of
the branch. For example, if your project has a graphics engine that is stored in a directory
namedgraphics_engine and you want to add real-time processing to it, you might create
a branch namedgraphics_engine-real_time_proc.

The ease with which branches are created means that you can very easily end up with
a lot of them. Furthermore, it is likely that many (if not most) of the branches will end
up with semi-cryptic names that mean little to anyone except their creator. End result: The
branches directory quickly becomes cluttered with a huge number of hard-to-sort-through
branches. This “branch clutter” can easily get out of hand in a long-running project, and
although it’s unlikely to be a major drain on anyone’s productivity, it can lead to developer
frustration (which tends to result in less reliance on branches,) as well as improper use of

“svnbook” — 2005/4/14 — 14:55 — page 123 — #144i
i

i
i

i
i

i
i

9.1 Laying Out the Repository 123

branches (which will make the repository more difficult to deal with, as well as making its
history harder to track properly).

One possible solution to the problem is to make sure branches are deleted as soon as
they are no longer used. This can help to keep the clutter to a minimum, but it can also
make older branches harder to find. It also doesn’t help the problem much if most of your
branches are long-running branches, where deletion makes no sense. A better solution is to
keep the repository organized in a sane manner that makes branches easy to find and list.

The best structure for organizing branches depends a lot on your project’s workflow,
and the circumstances under which branches are typically generated. There are a wide
number of uses under which developers will typically create branches, and it usually helps
if you organize those branches categorically. Sometimes, you will want to categorize with
subdirectories under yourbranches directory (or directories). For other branches, it may
make more sense to place specific branch directories at the top level of the tree. The follow-
ing examples illustrate some (but by no stretch all) of the possible ways you might organize
different types of branches.

• If you generate a unique branch for the purpose of resolving each issue created in
your issue tracking system, you may find that it is helpful to create a special sub-
directory for issues. If you have your repository split into multiple projects, you
will probably want this directory at the individual project branches level. You will
also want to mandate a naming scheme that identifies the issue that each branch
is aimed at, so that you may end up with/branches/issues/issue-1587 and
/branches/issues/issue-1592 to fix issues #1587 and #1592 from the issue
tracking system.

• It may be helpful to give each developer his own private branches directory, where
he can create individual branches for specific tasks or features, without cluttering
the list of branches that other developers see (if fine-grained authorizations are being
used, these directories could even be madetruly private by denying access to other
users). To keep things clean, you’ll probably also want to have apublic branches
directory, too, thus giving you a layout similar to the one shown in Figure 9.3.

• If you maintain a development version and several release versions of your project,
you can set up top-level branches that correspond to those directories. When a new

/branches

/public /betty /bill /jill /frank

Figure 9.3. A branches directory subdivided for individual users.

“svnbook” — 2005/4/14 — 14:55 — page 124 — #145i
i

i
i

i
i

i
i

124 Chapter 9 Organizing Your Repository

release is made, the development branch can be copied to the new release, with
the development branch continuing on with development on the next version. With
this setup, the development branch essentially becomes your main trunk, although
it’s more clear if you name the directory something likedevelopment, instead of
trunk (in this case, you might not have a directory namedtrunk at all).

In short, you are limited only by your imagination and desire to create a level of or-
ganization that fits your development teams (which for many projects may indeed mean
a monolithicbranches directory). If you would like more ideas for how you can orga-
nize your branches, check out the development process case studies in Chapter 14, “Case
Studies in Development Processes.”

9.1.4 Organizing Tags

In contrast to branches, which represent forks in the development line, tags are static bench-
marks that preserve the state of the repository (or a particular working copy) at a spe-
cific point in time, for easy reference later. Even though tags are just copies, the same as
branches, they never change over time like branches do (if they do change, they become
a branch instead, by definition). The closest thing to change that a tag should see is if an
existing tag is removed and replaced by a new tag of the same name, such as if a tag named
current_release is used to always represent the current release of a project. When a new
release of the project is made current, the old tag would be removed, and a new tag named
current_release would be created (you could achieve the same effect by using a merge
into the tag, but removing and recopying is usually easier, less likely to cause problems,
and uses less disk space).

Keeping tags organized suffers from similar problems as the organization of branches.
In general, if you have a lot of tags, it will quickly become difficult to wade through the
tags to find the one you want if everything is stored in a monolithictags directory. Instead,
you are usually better off categorizing your tags into separate directories. In many cases, it
can even be advantageous to move some of the tag-categorizing directories out of thetags
directory and promote them to the top level of your repository. For example, if you tag
your releases, it may be useful to create a top-levelreleases directory, where all of the
release tags are created, such as in the layout shown in Figure 9.4.

Top-level special tag directories can be especially useful if your repository has individ-
ual tags directories for each project. A top-levelcurrent directory, for instance, could
store the most current release of each project. Then, individual developers would be able
to easily check out the full project suite contained within the release, into a single working
copy, while maintaining the benefits of splitting different projects into individual subdirec-
tories with their own branches and tags.

Remember, with Subversion’s “cheap copies,” tags take up essentially zero space in
your repository, so there is no reason not to take advantage of them whenever possible.

• Tag internal and external releases. For example, if you have a quality assurance team,
in addition to your development team, developers can tag revisions of the repository
that are ready for testing by the QA team. Conversely, the QA team can tag specific

“svnbook” � 2005/4/14 � 14:55 � page 125 � #146i
i

i
i

i
i

i
i

9.1 Laying Out the Repository 125

/

/project_1 /project_2

/trunk

/branches

/tags

/trunk

/branches

/tags

/releases

/project_1-1.0

/project_2-1.0

/project_2-1.1

Figure 9.4. A releases directory can make project releases easy to find.

revisions when it finds a bug, and include that in the bug report that is filed. Then,
when a developer begins to work on fixing that bug, the developer can create a branch
from the tag to work on the bug.

• Track your merge history. One of Subversion’s biggest weaknesses is its lack of ad-
equate internal tracking for merges. The method that is usually recommended for
merge tracking is to record merge points in the log history, when the merge is com-
mitted. Instead, though, you could make a tag of the directory that was merged, and
use that to calculate the next merge. For example, follow these steps:

1. You create a branch of your trunk, namedbranch_1. At the same time, create a
parallel directory namedtags/branch_1_merges, and also make a tag of the
trunk in that directory, namedtrunk_09-12-04_14-34 (where the numbers
indicate the date and time when the tag was made).

2. After working onbranch_1 for a while, let’s say that there are changes from
the trunk that you would like to merge in. Instead of looking up the revision
number from the point where you made the branch, you can perform the merge
by just taking the difference between the tag you made and the current HEAD
of the trunk, like this:

$ svn merge http://svn.mydomain.com/repos/tags/ ¬
branch_1_merges/trunk_09-12-04_14-34 http://svn.mydomain. ¬
com/repos/trunk

3. After the merge is done, you can make a new tag of the trunk, with the new
date, just as in the following:

“svnbook” — 2005/4/14 — 14:55 — page 126 — #147i
i

i
i

i
i

i
i

126 Chapter 9 Organizing Your Repository

$ svn cp http://svn.mydomain.com/repos/trunk http://svn. ¬
mydomain.com/repos/tags/branch_1_merges/trunk_10-03-04_16 ¬
-24

• Tag interesting revisions that you’d like to remember later. Sifting through long log
files to figure out which revision it was where you finally got a new feature to work
right, or started working on code refactoring, can be time-consuming and error-prone
(for example, the log entry that indicates the feature was finished may be misleading
if you added a critical file that had been forgotten, three revisions later). Instead,
if you make tags at revisions you might be interested in later, you can much more
easily get back to the state of the project at that moment in time.

9.2 Planning for Growth

Because Subversion repositories are so innately malleable, there is a tendency to ignore
long-term repository growth and just plan a repository for what works best immediately.
After all, you can always move things around later, right? To a certain extent, that’s one of
the great advantages of Subversion. In most cases, you can defer much of your long-term
planning to the long term, and just do what works “right now.” However, if you in fact do
a bit of long-term planning up front, you may find that you save yourself a few headaches
in the long run.

To make sure that you’ve planned well for future growth, make sure that you ask your-
self the following questions before laying out a new Subversion repository.

• Is this one project or many?

If your repository is made up of a single project, you have little to worry about. You
can easily put everything at the top level, and then move it down into a subdirectory
at a later date if you add more projects. Such a move should cause few problems
for people, and will make the repository simpler until a second project is added. Of
course, if you have definite plans for a second project in the near future, you may
be better off starting off with everything in subdirectories, just to save everyone the
small headache a change will cause.

If you start off with multiple projects instead, it’s easy to begin with each project in
its own individual subdirectory, which will make adding new projects down the road
much less painful (it will also make it simpler to delete projects, if the need ever
arises).

• If the repository includes multiple projects, are those projects likely to share data?

This is an important question to ask, mainly for the case where the answer is “no”—
the reason being that if you plan to have many unrelated projects, you might want
to consider creating multiple repositories, instead of putting all of your projects in
a single repository. This has the advantage of helping you prevent a repository that
gets too big (although Subversion has no fixed limit on repository size), as well as
allowing you to move an individual project to a different server if you so desire.

“svnbook” � 2005/4/14 � 14:55 � page 127 � #148i
i

i
i

i
i

i
i

9.2 Planning for Growth 127

The downside to multiple repositories is that Subversion currently has no way to
perform a copy or merge that crosses from one repository to another. In other words,
if you need to take data from one repository and replicate it in another, you will have
to perform the copy by using a filesystem copy from one working copy to another,
which will not preserve history for the copy. If a merge is necessary, it will have to
be done by hand.

• Will individual projects be primarily worked on by one developer, or many?

This question isn’t quite as important as the previous one, but it is a good one to
consider when laying out a repository. The answer helps to determine the scale at
which you need to plan out the organization of the repository. If each project will
exist on its own, with interaction only by one person (or a small group), there may
be little need to impose a repository-wide standard on the way that particular project
is laid out. On the other hand, if the repository will be accessed and modified by a
large team of users, the project will almost certainly benefit from an up-front plan for
laying out the directory structure, including how branches and tags will be organized.

9.2.1 Merging and Splitting a Repository

After you’ve decided on using a single repository or multiple repositories, it’s usually best
to stick with that choice. Sometimes needs change, though, and occasionally you will
want to combine two repositories into one, or split a single repository in two. Fortunately,
Subversion provides ways for you to do both.

Merging Two Repositories

If you have two repositories that you would like to combine into a single repository, your
best solution is to dump one of the repositories (usingsvnadmin dump) and then load it
into the other one (usingsvnadmin load). For example, let’s say you have two reposito-
ries namedfooproj andbarproj, each laid out in a monolithic structure with thetrunk,
branches, andtags directories at the root of the repository. Now, let’s say that as time
has gone by, the two projects have converged to the point where you would like to be able
to share code between them, so it would be nice to have them in a single repository. The
following steps show how you could go about merging the two repositories by merging
barproj into thefooproj repository.

1. To start, you want to rename the repository to reflect its new multiproject status
(make absolutely certain no one can access the repository while you do this; if you
can’t do that, usesvnadmin hotcopy instead).

$ mv /srv/fooproj /srv/foobar_repos

2. Because you’re combining two projects into a single repository, it would make sense
to move from a monolithic repository structure to a multiproject layout. That means
that you want to continue by creating new project directories.

“svnbook” — 2005/4/14 — 14:55 — page 128 — #149i
i

i
i

i
i

i
i

128 Chapter 9 Organizing Your Repository

$ svn mkdir file:///srv/foobar_repos/fooproj file:///srv/ ¬
foobar_repos/barproj

3. Next, you need to move thefooproj directories into the newly created/fooproj
project directory.

$ svn mv file:///srv/foobar_repos/trunk file:///srv/foobar_repos/ ¬
fooproj/trunk
$ svn mv file:///srv/foobar_repos/branches file:///srv/ ¬
foobar_repos/fooproj/branches
$ svn mv file:///srv/foobar_repos/tags file:///srv/foobar_repos/ ¬
fooproj/tags

4. After everything is moved around in your first repository, it’s time to dump and load
the second one. Because thesvnadmin dump andsvnadmin load commands out-
put and input (respectively) the dump files onstdout andstdin, you can perform
the whole dump/load cycle in a single command. To load the project into our newly
createdbarproj project directory, we can also give a location in the repository for
Subversion to use as a root for the loaded files.

$ svnadmin dump file:///srv/barproj | svnadmin load file:///srv/ ¬
foobar_repos

When Subversion loads a repository dump into an existing (populated) repository, it
preserves the dates when the loaded repository’s revisions were committed, but not the
revision numbers. Instead, it adds each revision as a new revision in the existing repository,
with revision numbers being incremented from a starting point of the existing repository’s
HEAD revision. For example, say you have two repositories; the first repository has 15
revisions numbered 1–15 and the second has 12 revisions numbered 1–12. If you dump the
first repository and load it into the second repository, the revisions 1–15 will be added as
revisions 13–27 in the second repository.

Splitting a Single Repository

The converse to merging two repositories into one is to take a single repository and split
it into two separate repositories. To illustrate, let’s say that instead of two repositories
namedfooproj andbarproj, you start with a single repository namedfoobar_repos
that contains both projects (in root directories namedfooproj andbarproj, respectively).
Now, let’s say that those projects have grown extremely large, and your server no longer
has the power to serve both projects. So, you decide that because the projects don’t share
much, it would be easiest to just split them into two different repositories and serve them
from separate servers.

The best way to accomplish a repository split is by using the toolsvndumpfilter.
With svndumpfilter, you can dump a repository and either include only paths that begin
with a set of prefixes or exclude paths that begin with a set of prefixes. In our case, we want
to create two repositories from two different root directories, so we’ll run the dump filter
twice and include only the project we want each time, as in the following example steps.

“svnbook” — 2005/4/14 — 14:55 — page 129 — #150i
i

i
i

i
i

i
i

9.3 Migrating an Existing Repository 129

1. Create two new (empty) repositories to hold each of the split repositories.

$ svnadmin create /srv/fooproj
$ svnadmin create /srv/barproj

2. Dump the original repository and run it through a filter that will only include the
fooproj project directory. Then, load that into the newly created repository.

$ svnadmin dump /srv/foobar_repos | svndumpfilter include --drop- ¬
empty-revs --renumber-revs /fooproj | svnadmin load --ignore- ¬
uuid /srv/fooproj

• Using the --drop-empty-revs and --renumber-revs options with
svndumpfilter will cause the revisions of the newly created repository to be
collapsed down, with any revisions that didn’t include changes to thefooproj
project removed. If the revision numbers are important to you, you can cause
Subversion to leave them the same by leaving out those two options.

• The--ignore-uuid option is important, because Subversion will set the repos-
itory UUID to the UUID from the dump file if you are loading into an empty
repository. You don’t want your two newly create repositories to end up with
the same UUID though, so--ignore-uuid will tell Subversion not to change
the UUID. Because the UUIDs of the repositories will change, users of the
repository will have to check out new working copies from the appropriate new
repository.

3. Repeat the dump and load to populate thebarproj repository.

$ svnadmin dump /srv/foobar_repos | svndumpfilter include --drop- ¬
empty-revs --renumber-revs /barproj | svnadmin load --ignore- ¬
uuid /srv/barproj

9.3 Migrating an Existing Repository

Sometimes, a Subversion repository will be created as part of a brand new project. In those
cases, getting initial data into the repository is easy—there is none. More often than not,
though (especially because Subversion is so new), a new Subversion repository will be part
of a migration away from another version control system. As part of that migration, there
is a whole history of data that most people aren’t going to want to lose. Therefore, the ideal
solution is to be able to take the entire repository history from the old system and migrate
it over to Subversion.

The two most common version control systems that people migrate to Subversion from
are almost certainly CVS and Microsoft’s Visual SourceSafe. This has led to the creation
of migration tools that allow you to take repositories from both systems and create a Sub-
version repository that preserves the history of all of the files in the old repository.

“svnbook” — 2005/4/14 — 14:55 — page 130 — #151i
i

i
i

i
i

i
i

130 Chapter 9 Organizing Your Repository

9.3.1 The Basic Migration Process

Whatever the system that you are migrating from, there are a few things that you should
always remember. Failure to heed these warnings will not harm pets or small children, but
could result in loss of data, or even loss of a job.

• Always back up your existing repository before attempting any sort of migration.
Just because the migration tool shouldn’t mess with your old repository doesn’t mean
that, if something bad happens, it won’t.

• Always back up your existing repository before attempting any sort of migration.
Just because the migration tool shouldn’t mess with your old repository doesn’t mean
that, if something bad happens, it won’t. (Yes, I meant to say that twice.)

• Have a migration plan. Do you intend to move everyone over to Subversion imme-
diately? If not, are some people going to continue using the previous system as their
primary VCS while others migrate completely, or is everyone going to mirror all of
their changes into both systems during a transition period?

• Keep the old repository around, just in case. Until you are positive that your new
Subversion repository is going to work out, make sure that you can go back to the
old system.

• Test everything in the new repository after the migration. Make certain that the
HEAD revision of your repository is correct and working inside the Subversion
repository. It might even be a good idea to run a diff on all of the files in a working
copy of your Subversion repository, to make sure they match the files from your old
VCS.

• Know what you’re losing. Because the VCS that you’re migrating from is not Sub-
version, it doesn’t store exactly the same things that Subversion does. Invariably,
some data (however minor) will be lost in the transition. Make sure you know what
you are losing, and store it somewhere else if it’s important to keep (properties may
be a good place to store information that you want to save).

9.3.2 Migrating from CVS

If your existing project source is stored in a CVS repository, you are in luck. Thecvs2svn
utility provides excellent conversion tools for migrating a CVS repository to SVN, while
preserving most (if not all) of your history data. You can even import data from a CVS
repository into an existing Subversion repository that already contains other data, and can
pick and choose exactly which data you want to import.

You can acquirecvs2svn from the project’s Web site,cvs2svn.tigris.org. The
program is a Python script, so it doesn’t require any installation, and can run on either
MS Windows or a UNIX-like system, as long as you have Python and a couple of other
prerequisites installed. To find out exactly what you need to install, you can look at the
official cvs2svn documentation on the project’s Web site.

“svnbook” — 2005/4/14 — 14:55 — page 131 — #152i
i

i
i

i
i

i
i

9.3 Migrating an Existing Repository 131

Full Repository Migration

A complete migration of an existing CVS repository to a brand new Subversion repository
can be accomplished by runningcvs2svn with the name of the Subversion repository
and the CVS repository. If the Subversion repository referred to doesn’t already exist,
cvs2svn will create it for you (unless you pass--existing-svnrepos to tell it to only
use a Subversion repository that already exists).

$ cvs2svn -s /var/svnrepos /var/cvsroot

If you would rather havecvs2svn create a Subversion dumpfile, instead of directly
importing into a repository, you can pass--dump-only instead of-s repository.

$ cvs2svn --dump-only /var/cvsroot

Then, you can load the dumpfile into a Subversion repository later, using thesvnadmin
load command.

$ cat cvs2svn-dump | svnadmin load /var/svnrepos

Partial Repository Migration

If you don’t want to migrate an entire CVS repository,cvs2svn allows you to only migrate
part of the repository. For example, you can migrate just the trunk of a repository by
running the conversion with the--trunk-only option.

$ cvs2svn --trunk-only -s /var/svnrepos /var/cvsroot

Or, you can convert a custom selection of branches and tags by using the--exclude
option to tellcvs2svn what parts of the repository youdon’t want to be converted. The
exclude option allows you to pass regular expressions thatcvs2svn will use to determine
which branches/tags to ignore during the conversion. For instance, the following example
will convert an entire repository, except for the branches that were used for fixing issues in
the issue-tracking system.

$ cvs2svn --exclude='issue-*' -s /var/svnrepos /var/cvsroot

Handling Data Differences

CVS and Subversion are very similar, but they don’t store data in exactly the same way. The
most obvious difference, of course, is the way the two handle branches and tags. Instead
of using copies, like Subversion does, CVS deals with tags and branches differently than it
deals with the repository trunk. That means that whencvs2svn converts the repository, it
needs to convert the CVS branches and tags into copied directories inside the Subversion
repository.

By default, cvs2svn creates top-levelbranches, tags, andtrunk directories and
places branches and tags correctly into their respective directories. If you want to create

“svnbook” — 2005/4/14 — 14:55 — page 132 — #153i
i

i
i

i
i

i
i

132 Chapter 9 Organizing Your Repository

a repository that places branches, tags, and the trunk somewhere other than the default
top-level directories, you can do so by passing the--branches, --tags, and--trunk
options, respectively. For instance, the following example shows a conversion that will
place the converted repository into a subdirectory specific to the CVS repository’s project.

$ cvs2svn --trunk='myproject/trunk' --branches='myproject/branches' -- ¬
tags='myproject/tags' -s /var/svnrepos /var/cvsroot

Another fairly major difference between Subversion and CVS is the handling of revi-
sion numbers. CVS keeps revision numbers for each file individually, whereas Subversion
keeps a global repository revision number. In most cases, this change isn’t a big deal, but
sometimes developers will remember the revision numbers to use later. If you don’t want
to lose the file-specific CVS revision numbers when you perform the migration, you can
passcvs2svn the --cvs-revnums option. This tells it to create a property to store the
CVS revision numbers for each file that is converted.

Handling end-of-line markers can be another sticky area of conversion. CVS’s standard
mode of operation is to convert line endings to the native line-ending format for the local
operating system of the working copy when a file is checked out. Subversion, on the other
hand, never makes any modifications to the file, by default. If you have a CVS repository,
though, it is likely that some of your developers have come to rely on the default CVS line-
ending modifications. To make the conversion a little bit easier,cvs2svn automatically
sets thesvn:eol-style property tonative for all files that CVS hasn’t been explicitly
told not to do line-ending conversions for. If you don’t wantcvs2svn to set all of the files
from your CVS repository to do line-ending conversions when they’re checked out, you
can pass the--no-default-eol option when it converts the repository.

CVS doesn’t know anything about MIME types for files. Subversion, however, can use
MIME types constructively in a number of situations, which would make it useful if the
repository conversion could automatically set thesvn:mime-type property for all of the
files in your CVS repository. Well, as you may have guessed already, it can do just that. If
you passcvs2svn the--mime-types=FILE options, withFILE pointing to amime.types
file, it will attempt to assign the MIME type for every file it converts.

The mime.types file tells cvs2svn what MIME types it should match to files with
given file extensions. Each entry in the file will contain a MIME type, followed by a list of
the file extensions that should be matched with it. For example, you might have an entry in
yourmime.types file that toldcvs2svn to give all files that ended in.c, .cpp, or .h the
MIME type text/x-c, which would look something like the following.

text/x-c c cpp h

If you have Apache installed on your system, you probably have a defaultmime.types
file somewhere. You may want to find that file and use it as a starting point for writing your
ownmime.types file to use when converting your repository.

If you’re using--mime-types, you may also want to havecvs2svn decide whether it
should set thesvn:eol-style based on the MIME type that it sets for each file. To do so,

“svnbook” — 2005/4/14 — 14:55 — page 133 — #154i
i

i
i

i
i

i
i

9.3 Migrating an Existing Repository 133

you need to pass the--eol-from-mime-type option tocvs2svn. However, this option
will only have an effect if the--mime-types option is also used.

A final difference between CVS and Subversion that needs to be addressed is the way
keywords are handled. CVS automatically performs keyword substitutions on all files that
aren’t explicitly identified as binary when the file is added to the repository. Conversely,
Subversion doesn’t perform keyword expansions on any files, unless it is explicitly told
to. However, if you use a lot of keyword expansions in your CVS repository, the odds are
that you would like to continue to use them in your new Subversion repository. Therefore,
by default,cvs2svnwill set thesvn:keywords property on all of the files it converts to
“author id date” (except ones marked as binary in CVS). If youdon’t want the property
set, you can turn it off with--keywords-off.

9.3.3 Migrating from SourceSafe

Microsoft’s Visual SourceSafe is not the darling of the version control market. In fact, it
seems to be a common wisdom within Subversion circles that there are two kinds of VSS
users in the world: those who have lost data to a corrupted database, and those who will.
With such a charmless reputation, it’s no wonder that migrations to VSS seem to be one of
the most common types of migration performed. Fortunately, that means that if you find
yourself clamoring to get away from VSS, there are a number of tools available to aid you
in your plight.

The most full-featured tool available appears to be thevss2svn.pl conversion script,
which is available fromvss2svn.tigris.org. As I’m writing this book, the script is
still listed as being in an alpha release, but it does have support for converting most of
the information in a typical VSS repository. When you run the script, you will give it an
existing VSS repository and an existing SVN repository (which can be a brand new one
you just created). It then gets the data out of the VSS repository and inserts it into the
Subversion.

The basic operation for thevss2svn.pl script is pretty simple. If you have VSS prop-
erly installed on your system, you can run the script from a Windows command prompt;
just tell it which VSS project to migrate, and what Subversion repository to migrate it into.
For example, if you want to migrate the projectfoo from your VSS repository into a newly
created (empty) repository, you could run the following.

C:\vss2svn>vss2svn.pl --vssproject $/foo --svnrepo http://svn.example. ¬
com/svnrepos/

The vss2svn.pl script also lets you do more complicated processing by allowing
you to specify projects that should be excluded from the migration using--vssexclude,
listing either absolute paths to exclude or paths relative to the project specified by the
--vssproject option. You can also perform other processing on the migration, such
as specifying messages that should be appended to every log message for migrated files
(--comment), or you can tellvss2svn.pl to set thesvn:date property for each migrated
revision to reflect the original VSS commit date. If your VSS repository requires a login

“svnbook” — 2005/4/14 — 14:55 — page 134 — #155i
i

i
i

i
i

i
i

134 Chapter 9 Organizing Your Repository

and password, you can specify that with the--vsslogin option, giving it a username and
password, separated by colons.

If vss2svn.pl turns out to be insufficient for converting your repository, you may want
to do a bit of searching online, as there are a few other VSS conversion tools being passed
around. I can’t vouch for how well or poorly any of them work, but as long as you have
your database backed up, no harm should come to your data.

9.3.4 Migrating from Other VCSs

There are a number of other version control systems for which people have generated con-
version scripts. The scripts appear to be in varying degrees of completion, and look to have
often been created with just enough power and flexibility to convert the scriptwriter’s own
repository. However, that may just be enough for your repository too, and if it isn’t, the
modifications necessary to make it work may very well be easier than writing your own
conversion tool from scratch.

Some of the version control system converters that I was able to find include a converter
for a Perforce repository (this converter is linked to from Subversion’s Web site), and a
number of converters for a ClearCase repository.

9.3.5 What If There’s No Migration Tool?

So, what if you don’t use CVS or SourceSafe, but instead your entire code repository is
in Bob’s Discount VCS (or more likely, Bob’s Mind-Bogglingly Expensive VCS)? In that
case, you have a couple of options. The first step, of course, is to search online to see if
someone else needed to migrate from your VCS to Subversion and wrote a conversion tool.
You may also want to search the Subversion users’ mailing list to see if someone out there
did a similar conversion and is willing to share any tools that she created (or just some
good advice about the problems she ran into). You also have the option of writing your
own conversion tool if there is no sufficient tool already written. The source for existing
conversion tools may be invaluable here. Or, you can just keep the old repository running
as a reference and go from there.

If no tool exists (and creating one is impractical), your best bet is to check out a working
copy of your current repository’s HEAD, and thensvn import that into a new Subversion
repository. Then, you may want to go through and recreate important tags or long-running
branches by hand. Simply check out the appropriate tags/branches and usesvn import to
add them to the new repository in the appropriate place. The new branches and tags won’t
have any history link to the files in the main trunk, but nothing else will have a history
either, and Subversion won’t care that there’s no link down the road when you want to
merge files from a branch or tag into the main trunk. If, for some reason, you decide that
it is important for the branches and tags to be linked to the front, you can achieve that by
creating the branch or tag inside the Subversion repository (using the newly imported trunk
HEAD), and then copy over the versions of the files in the tag/branch from a working copy
of the old repository.

After you have the new repository created, it’s a good idea to keep the old repository up
and running, in case someone finds that he needs some of the older repository information

“svnbook” — 2005/4/14 — 14:55 — page 135 — #156i
i

i
i

i
i

i
i

9.3 Migrating an Existing Repository 135

(I suggest making it read-only). In most cases, though, you’ll probably find that the old
repository is rarely accessed. After a time, you may even find that you can mothball the old
repository, and just keep a backup of the data that could be restored later if needed.

On the other hand, if your project’s development process depends heavily on retrieving
and comparing data from old revisions, separating your new and old data into different
repositories may not seem like such a good idea. If there are no tools available (and cre-
ating them isn’t an option), two separate repositories may be your only option. There are,
however, a couple of things that you can do, which may make things a little bit easier to
deal with.

• Keep working copies of both repositories handy. That way, if you need some in-

“svnbook” — 2005/4/14 — 14:55 — page 136 — #157i
i

i
i

i
i

i
i

136 Chapter 9 Organizing Your Repository

this approach, it’s best to use a property to keep track of where the merge occurred
from, or at the very least make sure it’s documented in the log for the merge commit.

• If you’re really ambitious, you might want to modify a Web-based repository brows-
ing tool (such as ViewCVS or WebSVN) to support both Subversion and your old
version control system. Then, the Web site could serve as a frontend to both VCSs,
making the transition between the two as seamless as possible.

9.4 Summary

In this section, you’ve learned many of the considerations that should go into laying out
a new repository. You saw the basicbranches/tags/trunk layout scheme, and saw a
number of variations on that layout, along with some of the layout considerations that will
help you support the different potential uses for the branch and tag concepts. Additionally,
you learned about converting an existing repository from another version control system,
with some discussion on the tools available to perform those conversions. In the case where
no conversion tools are available, you learned some techniques for handling a migration to
Subversion that doesn’t include migrating the old repository.

“svnbook” — 2005/4/14 — 14:55 — page 137 — #158i
i

i
i

i
i

i
i

Chapter 10

Administrating the Repository

Day-to-day, most Subversion repositories require little intervention on the part of an ad-
ministrator. There are, however, a few essential skills that a good administrator needs to
know to keep everything running smoothly, such as setting up user access, backing up the
data in the repository, and recovering from crashes.

10.1 Controlling Access to the Repository

Subversion supplies you with a number of different repository access schemas that can be
used from a Subversion client (as illustrated in Figure 10.1). Each schema represents not
only a different access mechanism, but also a differing level of access control available to
the administrator. The range of control varies from simply being able to use the operat-
ing system’s file access controls to limit access to the whole repository using direct local
repository access, to fine-grained per-directory access control via HTTP/HTTPS. Addition-
ally, with all of the access methods (except direct local access), you can control whether
users are allowed to access the repository through an insecure, unencrypted (albeit slightly
faster) connection, or are required to access the repository through an encryption layer,
such as SSH or SSL.

Subversion Client (svn)

local (file://) svnserve (svn://)
svnserve/ssh
(svn+ssh://)

WebDAV (http://)

Subversion Repository

Figure 10.1.The respository access schema layer.

137

“svnbook” — 2005/4/14 — 14:55 — page 138 — #159i
i

i
i

i
i

i
i

138 Chapter 10 Administrating the Repository

10.1.1 Direct Access Control

Subversion repositories on your local machine can be accessed directly by using a local
access schema, through afile:// URL. This is a handy way to access a repository that is
only going to be used by one person, or even a couple of people using the same machine.
However, this method doesn’t scale up particularly well as the number of users grows.
Subversion itself does not supply any sort of built-in access controls for direct repository
access, so your ability to control access is limited to your operating system’s capability to
control read/write access to the repository itself. Also, there is no built-in way to provide
access controls of a finer grain than whether a user has read or write access to the whole
repository. You can use hook scripts (see Chapter 11, “The Joy of Automation”) to provide
better control, but because the user needs full filesystem access to the repository, those
controls can be circumvented.

The security advantage gained from using direct access to access a repository is the
lack of network access. Direct access doesn’t require you to have any sort of server process
running, and requires no network ports to be opened. Therefore, if you limit repository
access to direct access, there is no way for anyone to access the repository without local
access to the machine. (Remember, never access a Subversion repository from a network
share if you’re using Berkeley DB as your storage backend.)

10.1.2 svnserve Access Control

An alternate to direct access is the standalone Subversion server,svnserve. It allows you
to make the repository available to remote users, while retaining access that is available
only to certain users. Additionally, repository access can be performed using a custom
Subversion protocol (easier) or through a tunneled SSH or RSH connection (more secure).
Unfortunately, access throughsvnserve does have the same all-or-nothing limitations that
direct access does, although hook scripts can still be used to limit access.

Unlike direct access, the Subversion protocol does not require you to allow filesystem
access to every user, so hook script access controls are a little more secure when using
the Subversion protocol—but passwords are transferred in plaintext. If you use tunneled
SSH/RSH, you don’t have to worry about plaintext passwords, but you do need to provide
filesystem-level access to the repository, so hook script access controls could theoretically
be circumvented. In general,svnserve is not a good choice if security is a concern.

If svnserve is started with either the-i or -d options, it will handle requests on a
dedicated port, communicating over the custom Subversion access protocol. Access is
provided to all users that are found in a Subversion-specific password file, pointed to by the
svnserve configuration file. Thesvnserve configuration file is namedsvnserve.conf,
and is located in theconf directory of the repository that the file refers to (each repository
has its ownsvnserve.conf file).

The svnserve.conf file

The svnserve.conf file tells svnserve how it should handle user authentication. It is
set up similar to the Subversion user configuration files (see Chapter 7, “Configuring the

“svnbook” — 2005/4/14 — 14:55 — page 139 — #160i
i

i
i

i
i

i
i

10.1 Controlling Access to the Repository 139

Client”), and has a single section named[general]. In that section, there are a number of
options that you can set.

If you would like to allow anonymous access to the repository, you can set up the
anon-access option. If you want to allow anonymous users to get files from the reposi-
tory, but not commit, you can setanon-access to read. Or, if you want to allow anony-
mous users full access to the repository, you can give them read/write access with the
valuewrite. On the other hand, if you don’t want any sort of anonymous access, set
anon-access to none.

Assuming you would like more than just anonymous access to the repository, you will
need to set up some users with access. To tell Subversion where to find the file containing
these users, you point it to the password file by setting thepassword-db file to the path to
the password file. I’ll describe the contents of the password file shortly.

Sometimes, you will have multiple repositories that should all share the same set of
users. If you would like users to be able to authenticate with all of the repositories as
a single group (i.e., cached authentication with one repository allows access to the other
repositories), you can set up a realm. The realm is set with thesvnserve.conf option
realm, and should be the name you would like to use for the realm (users will see this
when they log in). As a word of caution, make sure you have each repository in the realm
point to the same password file. Otherwise, a user’s ability to log into the realm may be
dependent on which repository the user accesses first.

A completesvnserve.conf file may look something like this:

[general]
anon-access = read
password-db = /srv/svnrepos/conf/passwd
realm = Very Snazzy Repositories

The Passwords Database File

The passwords database for a repository (identified by thesvnserve.conf file) contains a
list of username/password pairs that identify the valid users for that repository. Each entry
will be of the formusername = password, with the passwords stored in their plaintext
form (so make sure that only authorized people have access to the password file). The
collection of username/password pairs will then all fall under the[users] section, as you
can see in the following sample password database.

[users]
bill = ABadPassword
bob = K@tZ7&D()g$5

Secure Communication over SSH

Another option that is available for securingsvnserve is tunneling it over SSH, by using an
svn+ssh:// URL (or svn+rsh:// to tunnel over RSH). If you are tunnelingsvnserve,
thesvnserve program will be run locally on the server machine, using the-t option. It

“svnbook” � 2005/4/14 � 14:55 � page 140 � #161i
i

i
i

i
i

i
i

140 Chapter 10 Administrating the Repository

will also be run as the OS-level user who invoked the SSH tunnel session. That means two
things.

• Instead of listing the users in a Subversion-specific password database file, each user
will need to be a full user on the server system, with access to log in via SSH.

• Each user with access to the repository will need either read or read/write access to
the actual repository, just as with direct access.

With SSH tunneling, thesvnserve.conf file is not needed. After the user has authen-
ticated, access is essentially identical to direct repository access.

10.1.3 HTTP/HTTPS Access Control

By far, your most flexible security options come from using the Apache HTTP/HTTPS
repository server. In addition to allowing similar authentication options tosvnserve, the
Apache server allows you to define per-directory security constraints. This allows you to
give individual users access to only some of the directories in a repository, instead of being
forced to use all-or-nothing authentication.

Setting Up Password Protection

After you have Apache set up and serving a repository (see Chapter 3, “Installing Subver-
sion”), you’re probably going to want to protect it from unauthorized access (even open
source projects don’t usually allow unfettered write access to their repositories—it helps
keep references to petrified movie stars out of the code). To add password authentication
to your repository, you need to add a couple of lines to the<Location> section that points
to your Subversion repository. These entries will tell Apache that it should require a user-
name and password from all who try to connect, as well as where to find the file that lists
the users and their passwords.

Apache supports two types of authentication: basic password protection and digest
password protection. Basic authentication has wider support among Web browsers, but it
sends passwords in what is essentially plaintext form. Digest authentication offers much
better password security by using a challenge/response mechanism that avoids the trans-
mission of the password itself. Although it is not quite as well supported, unless you need
to have your users access the repository via an ancient browser, you are much better off
using digest (thesvn client program supports digest authentication). A password protected
repository location entry with digest authentication will end up looking something like the
following example.

<Location /myrepos>
DAV svn
SVNPath /srv/svnrepos
AuthType Digest
AuthName "My Subversion Realm"
AuthDigestDomain /myrepos/

“svnbook” — 2005/4/14 — 14:55 — page 141 — #162i
i

i
i

i
i

i
i

10.1 Controlling Access to the Repository 141

AuthDigestFile /srv/svnrepos/svn-auth-file
Require valid-user

</Location>

In this case, the five options of real interest are the four that begin withAuth andRequire.

• TheAuthType entry tells Apache that it should use digest authentication for chal-
lenging the client.

• TheAuthName entry gives a realm name, which is displayed to the user when logging
in. This realm is also used to match the username/password that the user gives when
authenticating.

• TheAuthDigestDomain entry gives a domain for the authentication. All paths un-
derneath the given domain are included in an authenticated domain (for example,
/myrepos/trunk/ or /myrepos/branches).

• TheAuthDigestFile entry defines the file where the digest passwords are stored.

• Require informs Apache that it should require users to enter a valid username/pass-
word before allowing access.

The digest password file should be a file created withhtdigest, containing the user-
names, realms, and encrypted passwords of every user that is allowed access to the reposi-
tory. The file originally is created by runninghtdigest with the-c option, which tells it
to create a new file. The following example shows how you might create a new password
file containing the userfredj. Notice that the realm matches theAuthName given in your
<Location> description earlier. This is necessary for the given username/password pair
to work for that location. As you can see,htdigest prompts you for the password to use
before creating the file.

$ htdigest -c /srv/svnrepos/svn-auth-file "My Subversion Realm" fredj
Adding password for fredj in realm My Subversion Realm.
New password:
Re-type new password:
Adding password for user fredj

After you have an existing digest file, you can usehtdigest to add to that file by
leaving off the-c argument.

Further Securing with SSL

The problem with password authentication under Apache is that it only keeps unauthorized
users from accessing the repository, but does nothing to protect the data as it travels between
the server and client. The casual user is prevented from going through your repository, but
determined attackers will have no problems capturing data in transit. Therefore, in order

“svnbook” — 2005/4/14 — 14:55 — page 142 — #163i
i

i
i

i
i

i
i

142 Chapter 10 Administrating the Repository

to tack on an added layer of security, it is a good idea to also use the Secure Socket Layer
(SSL) to encrypt all data that travels over the network.

The first thing you need to do when enabling SSL for Apache is to make sure that the
mod_ssl.somodule is loaded into Apache when it starts. This is accomplished in Apache
by callingLoadModule ssl_module mod_ssl.so somewhere in the Apache configura-
tion files. In many cases, this will already exist in your base Apache install, but may need
to have something defined in order to turn it on, such as by running Apache with a-D SSL
option.

After you have SSL enabled in Apache, you need to set your repository share to require
the use of SSL for communications. This is done simply by adding the aSSLRequireSSL
statement to your repository<Location>. So, the repository location from earlier would
become.

<Location /myrepos>
DAV svn
SVNPath /srv/svnrepos
AuthType Digest
AuthName "My Subversion Realm"
AuthDigestDomain /myrepos/
AuthDigestFile /srv/svnrepos/svn-auth-file
Require valid-user
SSLRequireSSL

</Location>

Creating an SSL Certificate

SSL works on a trust-by-association mechanism for securely ensuring a site’s identity. Any
site that uses SSL will have a certificate that identifies the site (name, IP address, do-
main, and so on). That certificate will then be digitally signed by a certificate authority
that vouches for the certificate’s authenticity. That way, if someone attempts to intercept
communications to your server by pretending to be you, he won’t have the proper signed
certificate and the Web browser or Subversion client will warn the user that something is
amiss.

Certificate authorities (CAs) come in two flavors. The first variety is the large commer-
cial CA, such as Verisign or Thawte, which gives your certificate a wide trust base (for
a hefty annual cost, in most cases). Then, there are locally created certificate authorities,
usually generated for intranets, where trust can more easily be established. Additionally,
you can also self-sign a certificate, which is by far the easiest approach to getting an SSL-
protected server up and going, but it is also the most vulnerable to attacks that intercept data
from clients and pretend to be your server (this is known as a man in the middle attack).

If you want to set up SSL on your Web server, you need to set up some sort of SSL
certificate. Dealing with a commercial CA and creating your own intranet CA are beyond
the scope of this book. The steps toward creating a self-signed certificate are fairly simple
though. If the number of developers accessing your repository is small (especially if they’re
all on an intranet), this is probably sufficient.

“svnbook” � 2005/4/14 � 14:55 � page 143 � #164i
i

i
i

i
i

i
i

10.1 Controlling Access to the Repository 143

The first step toward creating a certificate is to generate a private key, which will be
stored locally and not be accessible to anyone else. The key is generated by using the
openssl program, with thegenrsa command. In its simplest form, the command takes
the name of the encryption cypher to use (des3 in the following example), the number of
bits to use (at least 1024), and a file to output the key into. To improve the security of
your key, you should also provide a source of random data to be used when calculating the
key. The best source to use is/dev/random (assuming you’re on a UNIX-like machine
that has a/dev/random); but if that is not available, you can also enter a file that has been
otherwise populated with random data, or even a list of randomly chosen files from your
system, separated by colons.

Whenopenssl genrsa is run, it asks you for a passphrase, which protects your key
from unauthorized users, even if the key itself is compromised. The downside to the
passphrase is that it needs to be typed every time the Web server is started (which is likely
undesireable). Therefore, you will probably want to remove the passphrase from the file
and ensure that the resulting private key file is only readable by the root user, which you
can do by running theopenssl rsa command.

$ openssl genrsa -des3 -rand /dev/random -out svnsrv.key 1024
$ openssl rsa -in svnsrv.key -out svnsrv.pem

“svnbook” — 2005/4/14 — 14:55 — page 144 — #165i
i

i
i

i
i

i
i

144 Chapter 10 Administrating the Repository

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

After you’ve created the certificate request, you can then use that to create a self-signed
certificate.

$ openssl req -x509 -days 365 -in svnsrv.req -key svnsrv.pem -out ¬
svnsrv.crt

Configuring Your SSL Certificate in Apache

The last thing you need to do to configure Apache to use SSL is to set it up to create a virtual
host that is accessible on port 443 (the default SSL port). In your Apache configuration
files, you need to add a<VirtualHost> directive similar to the following.

<VirtualHost _default_:443>
DocumentRoot "/srv/www/localhost/htdocs"
SSLEngine on
SSLCertificateFile /etc/apache2/ssl/svnsrv.crt
SSLCertificateKeyFile /etc/apache2/ssl/svnsrv.pem

</VirtualHost>

Per-directory Access Control

One of the big advantages of using Apache as your repository server is the ability to control
user access to the repository on a per-directory basis. For each subdirectory in the reposi-
tory, you are able to specify read or read/write access (ornoaccess) for individual users or
groups of users.

To set up access on a per-directory basis, you need to load themod_authz_svn.so
module by placing aLoadModule mod_authz_svn.so entry after theLoadModule en-
try for mod_dav_svn.so. Then, configure your repository to use the Authz module, by
pointing it to an access file, using theAuthzSVNAccessFile option. I’ll explain shortly
how to set up the access file. First, though, this is how you might build on the example
<Location> section we’ve been using.

<Location /myrepos>
DAV svn
SVNPath /srv/svnrepos
AuthzSVNAccessFile /srv/svnrepos/svn-authz-access
AuthType Basic
AuthName "My Subversion Repository"
AuthUserFile /srv/svnrepos/svn-auth-file
Require valid-user
SSLRequireSSL

</Location>

“svnbook” � 2005/4/14 � 14:55 � page 145 � #166i
i

i
i

i
i

i
i

10.1 Controlling Access to the Repository 145

The Authz access file itself can be placed anywhere, but needs to be readable by
Apache. The repository directory is a good choice, because the repository already needs to
be accessible by Subversion, and logically you then keep the authorization file near to the
repository.

The access file itself contains a number of directory sections, followed by the users who
are allowed (or disallowed) access to that directory (and its subdirectories). For example,
you might want to give read access for the whole repository to all valid users, but only give
write access to the usersmelinda andjoe, which would give you an access file that looked
like the following:

[/]
* = r
melinda = rw
joe = rw

Then, if you also want to giveandrew write access to/branches, and deny access
to /trunk/private_project to everyone exceptbob, you could add the following two
entries to your file. Notice that the wildcard entry in the private project section has no
permissions listed after the=. This tells Subversion to deny all access to the given users (in
this case, everyone who isn’t explicitly listed).

[/branches]
andrew = rw

[/trunk/private_project]
* =
bob = rw

Additionally, you can set up groups of users that can be used in place of individual users
in the directory permission sections. For instance, you might create a group that would be
used for all of the developers on the projectfoo, to give them all read/write access to that
project’s directory. The following example shows how you would set up that group, and
then use it in the directory section forfoo. The@ is used in front of thefoodevs group
name to indicate that you are specifying a group, and not an individual user.

[groups]
foodevs = joe, bob, janet, trisha

[/foo]
* = r
@foodevs = rw

If you are using theSVNParentPath directive instead ofSVNPath (see Chapter 3 for
more information), you can have all of your repositories share a single access file. To
specify permissions for a specific repository, a section label should have both the repository

“svnbook” — 2005/4/14 — 14:55 — page 146 — #167i
i

i
i

i
i

i
i

146 Chapter 10 Administrating the Repository

name and the path separated by a colon, as in the following access entries that set different
permissions for the trunk directories of two different repositories.

[repos_1:/trunk]
betty = rw

[repos_2:/trunk]
* = r
kate = rw

If you are usingSVNParentPath and youdon’t specify a specific repository, the given
entry will apply to that path in all of your repositories. This can be handy, for instance, to
have a common set of permissions for every/tags directory.

If you use wildcards in your Authz access file, permission will be granted for all valid
users, but anonymous access will still be denied. If you would like to allow anonymous
access, you need to add theSatisfy Any directive to your<Location>, so that it would
look like this:

<Location /myrepos>
DAV svn
SVNPath /srv/svnrepos
AuthzSVNAccessFile /srv/svnrepos/svn-authz-access
AuthType Basic
AuthName "My Subversion Repository"
AuthUserFile /srv/svnrepos/svn-auth-file
Require valid-user
Satisfy Any
SSLRequireSSL

</Location>

10.1.4 Authenticating against a Windows Domain Controller

Using Samba and Apache, you can get a Subversion repository on a Linux server to use a
Windows Domain Controller (WDC) as the source for its valid user list and authentication
information. This can be very handy if you have an existing Windows Domain that you use
for other server authentication, as it negates the necessity for you to keep multiple sets of
usernames up to date.1

Configuring Apache

The first thing that you need to get working is themod_auth_pam module for Apache.
PAM (Pluggable Authentication Manager) will be used by Apache to authenticate with
Samba (which will in turn talk to the domain controller). Most Apache installations don’t

1. The steps for authenticating with a WDC, described in this section, were graciously provided by Stuart
Robinson and his employer, Absolute Systems (www.absolutesys.com).

“svnbook” � 2005/4/14 � 14:55 � page 147 � #168i
i

i
i

i
i

i
i

10.1 Controlling Access to the Repository 147

havemod_auth_pam, so to get it you need to download it from the PAM project’s Web site,
pam.sourceforge.net/mod_auth_pam/. You should be able to build and install it by
runningmake andmake install in themod_auth_pam source.

After you havemod_auth_pam installed, you need to enable it in Apache, by adding a
LoadModule line to the Apache configuration file, which will look similar to the following
example.

LoadModule auth_pam_module modules/mod_auth_pam.so

Additionally, you need to create a new file named/etc/pam.d/httpd (or edit if it
already exists). This sets up PAM to grant access to users that have a Windows Domain
account, but no local system account. To set this up, you will want yourhttpd file to look
like the following.

#%PAM-1.0
auth required pam_nologin.so
auth required pam_stack.so service-system-auth
account required pam_permit.so

After this is all done, Apache should be set up correctly. You can restart the Apache
server and you’ll be good to go. However, before Windows Domain accounts will work,
you also need to set up Samba.

Configuring Samba

To configure Samba, you need to edit some of the options in the/etc/samba/smb.conf
file. This file contains a large number of options, but the ones you need to edit are in the
[global] section. When edited, the file will need to look something like the following.

[global]
workgroup = MYWORKGRP
server string = Subversion
security = domain
password server = 192.168.0.128
wins server = 192.168.0.128
winbind enum users = yes
winbind enum groups = yes
obey pam restrictions = yes
realm = mydomain.com

The details of all the possible Samba options are well beyond the scope of this book.
However, the important options to pay attention to when setting up Windows Domain ac-
counts are theworkgroup, password server, andwins server. The IP addresses point
to the WINS server, and theworkgroup option defines the Windows Domain that you
would like your Subversion server to connect to.

Next, you need to set up the Kerberos configuration files to point to the Windows Do-
main. To the file/etc/krb.conf, you need to add the lines

“svnbook” — 2005/4/14 — 14:55 — page 148 — #169i
i

i
i

i
i

i
i

148 Chapter 10 Administrating the Repository

myworkgrp
myworkgrp 192.168.0.128:88
myworkgrp 192.168.0.122:88 admin server

And to the/etc/krb5.conf file, you need to add adefault_realm entry to the
[libdefaults] section, so that it looks something like the following.

[libdefaults]
default_realm = myworkgrp
dns_lookup_realm = true
dns_lookup_kdc = true

Also, to the same file, you need to add the following line to the[realms] section.

[realms]
myworkgrp = {
kdc = 192.168.0.128:88
admin_server = 192.168.0.128:88
}

Then, you need to set up/etc/nsswitch.conf to include references towinbind.
(Note: These are not the only entries in the file, just the ones that should referencewinbind.)

passwd: files winbind
shadow: files winbind
group: files winbind
protocols: files winbind
services: files winbind
netgroup: files winbind
automount: files winbind

After /etc/nsswitch.conf is edited, you need to set up PAM to usewinbind. To do
this, edit the/etc/pam.d/system-auth file and add the following three lines:

auth sufficient /lib/security/$ISA/pam_winbind.so ¬
use_first_pass
account [default=bsd success=ok user_unknown=ignore] /lib/security/ ¬
$ISA/pam_winbind.so
password sufficient /lib/security/$ISA/pam_winbind.so use_authtok

When all of these files are correctly configured, you can restartsmb andwinbind (likely
by running/etc/init.d/samba restart and/etc/init.d/winbind restart). Af-
ter things are restarted, you can tell Samba to join the Windows Domain by running

$ net join -w MYWORKGRP -U Administrator

“svnbook” — 2005/4/14 — 14:55 — page 149 — #170i
i

i
i

i
i

i
i

10.2 Backing Up the Repository 149

10.2 Backing Up the Repository

I could tell you a story about a friend of mine losing vital data to a hard-drive crash, at the
most inconvenient of times. I could tell you the story of a colleague losing weeks’ worth of
work because someone erased the wrong partition. Or, I could even tell you a story about
the time I lost a college term paper because lightning struck my dorm. I won’t, though,
because you undoubtedly have your own stories of data loss and no desire to hear about
someone else’s misfortune. Because of your own personal experience, you almost certainly
have no need for a lecture on the importance of regular backups. So, I won’t give you one.
Instead, I’ll just show you how you can ensure that you don’t lose your repository at a most
inopportune moment.

10.2.1 Hotcopying the Repository

The best way to back up an entire Subversion repository is through use of thesvnadmin
hotcopy command. The hotcopy command ensures that the repository gets copied in a
manner that is safe, even if other users are accessing the repository during the copy. If you
are using a Berkeley DB (BDB) database backend, thesvnadmin hotcopy command is
critical (unless you can be absolutely certain the repository will not be accessed during the
copy). If you just use a standard filesystem copy of the repository, even a simple read access
could cause corruption in a BDB repository. If you are using a FSFS (filesystem-based
backend) repository instead, the consequences of copying without using thesvnadmin
hotcopy command are not as dire, but you could have a bad revision file if the copy occurs
in the middle of a commit. The safest choice in most instances is to always usesvnadmin
hotcopy to copy your repository.

Performing a hotcopy withsvnadmin hotcopy is easy. All you need to do is run the
command with the name of the repository and the final copy.

$ svnadmin hotcopy /srv/myrepos /mnt/backup/myrepos.backup

If you want Subversion to clean out unnecessary log files when it makes the copy, you
can pass the--clean-logs option.

The Subversion source also includes a convenience Python script that you can use to
perform hotcopies, namedhot-backup.py. Thehot-backup.py script takes the repos-
itory to back up, and a directory where the backup should be created. It then creates a
new hotcopy named after the copied repository with the HEAD revision of that repository
appended, so that multiple backups won’t overwrite each other.

$ hot-backup.py /srv/myrepos /mnt/backup/
Beginning hot backup of '/srv/myrepos'.
Youngest revision is 265
Backing up repository to '/mnt/backup/myrepos-265'...
Done.

“svnbook” � 2005/4/14 � 14:55 � page 150 � #171i
i

i
i

i
i

i
i

150 Chapter 10 Administrating the Repository

$ ls /mnt/backup/
myrepos-10
myrepos-146
myrepos-265

10.2.2 Dumping the Repository

Another way to back up a Subversion repository is through use of thesvnadmin dump
command, which dumps the contents of a repository into a text file that can later be used to
populate another repository. Dumping the repository is not nearly as efficient as perform-
ing a hotcopy, but it does have its advantages. For instance, repositories can be dumped
incrementally, so each dump doesn’t need to contain the entire repository.

To perform a dump of your repository, say that you have a repository located at/srv/
svnrepos that you want to back up. If you run the dump command with no options, except
the name of the repository to dump, it will dump the entire contents of every revision of
that repository to standard out (i.e., your console screen).

$ svnadmin dump /srv/svnrepos
--- Snipped Massive Amounts of Output ---

That’s probably not what you want (unless you can read and memorizereally fast).
Instead, you want to add one more thing and redirect the output into a file, as with the
following example. That way, the only thing output to the console will be the revisions that
it has processed, as it progresses (which are sent to standard error, not standard out).

$ svnadmin dump /srv/svnrepos > svnrepos-091504.dump
* Dumped revision 0.
* Dumped revision 1.
* Dumped revision 2.
--- Snipped Output ---
* Dumped revision 1487.
* Dumped revision 1488.

Daily backups of your whole repository can get to be pretty big, pretty fast. Given that
your old revisions will never change—unless you mess with revision properties—that may
mean a lot of data is getting backed up with excessive redundancy. And even though storage
space is cheap, that may mean a lot of wasted time and space, which does eventually add
up. Subversion does have a solution, though, in the form of incremental dumps.

If you dump a repository with the--incremental option, and a range of revisions,
it will only dump those revisions, such that multiple incremental backups can later be run
consecutively to perform a full restore on the repository. In other words, if I dump the
first 50 revisions of a repository and then later dump the next 75 into a different file, I can
completely restore the first 125 by loading the first dump followed by the second dump.

$ svnadmin dump -r 3:5 --incremental /srv/svnrepos > svnrepos-r3-r5. ¬
dump
* Dumped revision 3.

“svnbook” — 2005/4/14 — 14:55 — page 151 — #172i
i

i
i

i
i

i
i

10.2 Backing Up the Repository 151

* Dumped revision 4.
* Dumped revision 5.

As I mentioned, though, there is a downside to doing all of your backups incrementally,
because changes to revision properties in previously archived revisions won’t be backed
up. There are a number of ways that you can work around this issue, and still make use of
incremental backups.

• Don’t do anything. By default, revision properties are immutable. If you you never
allow revision properties to be changed, you never have to worry about a revision
property change being lost at a later date. If you do allow some revision properties
to be changed by allowing them in a hook script, you can add specific logic to your
pre-commit script that will only allow unarchived revision properties to be modified
(see Chapter 11 for more information).

This has the advantage of being the easiest solution to deal with, but it means you
lose the ability to make backdated changes to things like log files if an error is found.
If you use revision properties to store custom data that makes past revision properties
volatile, this may also be impractical.

• Explicitly rearchive changed revisions. If a developer makes a change to a revision
property in a revision that has been previously archived, make it that developer’s
responsibility to inform an administrator and trigger a re-archiving of that block of
incremental revisions. For example, if the archive on June 15th contained revisions
38 through 75, and you make a change to the log for revision 46, you would then
want to recreate the June 15th archive for revisions 38 through 75 and replace the old
archive file.

If changes to archived revision properties are rare, this may be the best solution. It
allows you to take advantage of incremental dumps to save time and space, while
providing a procedure for modifying archived revisions if necessary. The downside,
though, is that it is the developer’s responsibility to make sure everything stays in
sync. If the developer forgets to note the change, it could easily cause problems in
the future, long after everyone involved has forgotten what change was made.

• Make periodic full backups, in addition to more frequent incremental dumps. For
instance, you might make incremental backups every night, but make a full repository
backup every week or month. This reduces the chance of losing a change to archived
revision properties, while still reducing your backup load significantly. Of course,
you still run the risk of losing a change if a crash occurs before the next full backup,
so you should weigh the risk carefully before using it.

10.2.3 Automating Your Backups

There is an innumerable variety of automated backup tools available to the discerning sys-
tems administrator, many very expensive, complex, or feature rich (some are even all three).
For the administrator of a small and/or open source project, though, these heavyweight

“svnbook” � 2005/4/14 � 14:55 � page 152 � #173i
i

i
i

i
i

i
i

152 Chapter 10 Administrating the Repository

backup tools are often overkill. Therefore, in this section, I will show you how to do sim-
ple automated incremental backups of your Subversion repository, using justcron, and the
Subversion dump command on a UNIX-like system. If you are using Windows instead,
there are similar options available to you.

An Incremental Dumping Script

The first thing you need is a script that will create an incremental repository dump, starting
with where your last incremental backup left off. Creating the incremental dump is easy,
but retaining state from one dump to the next can be a little trickier. The following example
script shows the solution that I used for my own company’s Subversion repository backups.
First, it mounts the backup server (via Samba) and performs a hotcopy of the repository.
Then, it performs a dump of the revisions that have been committed since the last backup
and sends the dump file to an offsite backup server.

#!/bin/sh
Makes a backup of a subversion repository
Usage: backup_subversion.sh REPOS

SAMBASHARE="//backupsvr/subversion"
SAMBAPASSWD="backupPasswd"
MOUNTPOINT="/mnt/backup_subversion"
REPOSBASE="/srv/repositories"
REPOS="${1}"

OFFSITE="backupusr@offsitebackup.example.org"

Mount the samba shared backup server
/bin/mount -t smbfs -o password=${SAMBAPASSWD} "${SAMBASHARE}" "${ ¬
MOUNTPOINT}"

Remove the old "yesterday" backup (from two days ago)
/bin/rm -rf "${MOUNTPOINT}/${REPOS}.yesterday"

Rename yesterday's backup
/bin/mv "${MOUNTPOINT}/${REPOS}" "${MOUNTPOINT}/${REPOS}.yesterday"

Perform a hotcopy of the repository
/usr/bin/svnadmin hotcopy "${REPOSBASE}/${REPOS}" "${MOUNTPOINT}/${ ¬
REPOS}"

Unmount the samba share
/bin/umount "${MOUNTPOINT}"

Get (and save) some information about the revisions for
the incremental backup

“svnbook” — 2005/4/14 — 14:55 — page 153 — #174i
i

i
i

i
i

i
i

10.2 Backing Up the Repository 153

/usr/bin/svnlook youngest "${REPOSBASE}/${REPOS}" > "${REPOSBASE}/${ ¬
REPOS}/end.rev"
BEGIN=̀ cat "${REPOSBASE}/${REPOS}/begin.rev"̀
END=̀ cat "${REPOSBASE}/${REPOS}/end.rev"̀

If no new revisions have been created, there's nothing to send ¬
offsite
if [$BEGIN == $END]; then exit 0; fi

Make the incremental dump of the changes made to the
repository since the last backup.
/usr/bin/svnadmin dump --incremental -r ${BEGIN}:${END} \

"${REPOSBASE}/${REPOS}" > "/tmp/${REPOS}-${BEGIN}-${END}.dump"

If the dump was successful, use SCP to send the dumpfile to the ¬
offsite
backup server
if [$? == 0]
then
/usr/bin/scp "/tmp/${REPOS}-${BEGIN}-${END}.dump" ${OFFSITE}:~
echo $((${END} + 1)) > "${REPOSBASE}/${REPOS}/begin.rev"

fi

Setting Up Cron

Now that you have your script for doing automatic incremental dumps, you need to set up
the backups to happen automatically, usingcron.

1. Runcrontab for the user that owns the Subversion repository, with the-e option to
indicate that you want to edit the file.

$ crontab -u svnuser -e

2. Add a line to your crontab that will run the incremental backup every night (in this
case, at 3:00 AM).

0 3 * * * /srv/svnrepos/backup.sh /srv/svnrepos

3. After you have your automated backup script set to run, you can send it to a long-
term archive using whatever means best fits your server setup. For instance, you
might copy it to a shared network drive on a backup server or archive it to a tape
drive or CD-ROM.

10.2.4 Recovering

Near tragedy! Your server failed and you lost the entire Subversion repository! Fortunately,
you’ve made regular backups, and can restore everything to the way it was last night at 4:00

“svnbook” � 2005/4/14 � 14:55 � page 154 � #175i
i

i
i

i
i

i
i

154 Chapter 10 Administrating the Repository

AM (you have been making backups, right?).
If you are recovering from a backup made usingsvnadmin hotcopy, all you need to

do to restore the backup is to copy the backup version back to your Subversion server and
make sure all of the permissions/connection settings are set up properly.

If you are restoring from incremental dumps, the process is a little more involved, but
still reasonably easy.

1. Get your server back online, with all of the necessary Subversion software set up
and restored to the correct state (if you’ve backed up your configuration settings, this
should be an easy step).

2. Create a new empty repository for storing the data, withsvnadmin create.

$ svnadmin create /srv/svnrepos

3. Start with your first incremental repository dump file (or your only one, if you
haven’t been using incremental backups) and load it back into the repository, using
thesvnadmin load command, with the newly created repository as an argument,
and the contents of the dump file fed to it viastdin.

$ cat svnrepos.dump | svnadmin load /srv/svnrepos

4. If you have more repository dump files, restore them by repeating step 3 for each of
the dump files, in the correct order (it’s very important that you load them in order,
from oldest to newest).

That’s it. Your restored repository should be back up and running.

10.3 Unwedging Your Repository

If you are using the Berkeley DB backend, you may occasionally find that the repository
gets “wedged” after a system crash, failed transaction, or other nasty event. This can hap-
pen when the database (for one reason or another) fails to remove an internal lock, which
causes every subsequent request to hang indefinitely. Fortunately, fixing the problem is
usuallyeasy. In most cases, if you run thesvnadmin recover command, you’ll be back
up and running (although with a large repository, the command might take a while to run).
Because this command may modify files in the repository, make sure you run it as the
user who owns the repository. You should also make sure that nothing else is accessing
the repository while you perform the recovery (i.e., shut down Apache orsvnserve). Al-
though the recover command obtains a lock on the database, you can still have problems
if another process was already accessing the repository when you started the recovery. If
possible, it’s also a good idea to make a copy of your repository before you run a recovery,
just in case.

$ svnadmin recover /srv/svnrepos
Please wait; recovering the repository may take some time...

“svnbook” — 2005/4/14 — 14:55 — page 155 — #176i
i

i
i

i
i

i
i

10.3 Unwedging Your Repository 155

Recovery completed.
The latest repos revision is 13729.

The svnadmin recover command is a wrapper for the most common use case of
the Berkeley DB recovery command,db_recover. Unfortunately, the most common use
case is sometimes not enough to recover a broken repository. So, ifsvnadmin recover
fails, you may need to try a catastrophic recovery withdb_recover itself. To perform a
catastrophic recovery, you need to have an intact backup of your repository, plus all of the
log files that have been generated since that backup was made (or just all of the log files
that have ever been generated for your repository). Then, you need to follow these steps.

1. Shut down any Subversion servers to ensure that no one is accessing your repository.

2. Move the corrupted repository out of the way.

$ mv /srv/svnrepos /srv/svnrepos.wedged

3. Restore a backup of the repository to the original repository location (for instance,
/srv/svnrepos).

4. Copy any log files from your corrupted repository into the recovered backup version.

$ cp /srv/svnrepos.wedged/db/log* /srv/svnrepos/db/

If you have backups of log files that are stored elsewhere, you can copy them in, too.
If you do copy log files from multiple places, make sure you copy from oldest backup
to newest backup. Multiple backups may have different versions of the same log file,
so copying from oldest to newest will ensure that you have the newest version of
each log file.

5. Rundb_recover with the-c option.

$ db_recover -cv -h /srv/svnrepos/db

6. If the recovery was successful, you can safely remove the corrupted repository.

$ rm -rf /srv/svnrepos.wedged

If you are recovering from a complete set of log files instead of a backup repository,
you can skip steps 2 and 3. Instead, copy any necessary log file backups into the corrupted
repository directory and run the recovery directly on it. You may need to remove the cor-
rupted repository table files:nodes, revisions, representations, changes, strings,
transactions, anduuids. Of course, you should still make a backup of the corrupted
repository before you attempt the recovery.

“svnbook” — 2005/4/14 — 14:55 — page 156 — #177i
i

i
i

i
i

i
i

156 Chapter 10 Administrating the Repository

10.4 Upgrading Subversion

Eventually, you are going to want to upgrade your Subversion installation. Presumably,
you would like to do this without damaging your existing repository and its precious data.
Fortunately, the Subversion developers thought about this, and have made upgrading Sub-
version a relatively easy task.

The exact effort that needs to be put into an upgrade depends on the version you are
upgrading to.

• If you are upgrading to a patch release (e.g., from 1.1.0 to 1.1.1), you don’t have to
take any special action, other than upgrading the Subversion executables per the soft-
ware upgrade process for your particular system. Additionally, you can rest assured
that you will be able to undo the upgrade if the new version fails to work correctly for
you. Subversion policy states that all patch releases will be forward and backward
compatible, so if you perform the upgrade and have problems with the new version,
you can always go back to the previous version.

• If you are upgrading a minor release (e.g., from 1.0 to 1.1), the upgrade process
is identical to patch releases. Just upgrade the executables and go. Although mi-
nor releases will always be forward compatible, they won’t necessarily be backward
compatible. After you have performed an upgrade, you may not be able to take your
repository back to an older version.

• If you are upgrading to a new major version release (e.g., from 1.0 to 2.0), it is
possible that the database format has changed, and your current database won’t work
after the upgrade. This means that you need to create a dump of the database before
the upgrade, upgrade Subversion, then usesvnadmin load to reload the data into
a new repository, just as if you were recovering after a crash (see Section 10.2.4,
“Recovering”).

It’s very important, though, to perform the dump before you upgrade Subversion, as
the new version may not be able to dump the old repository.

I cannot stress enough, however, the importance of backing up your repository before
even thinking about a Subversion upgrade, even if you are not going across a major version
release. You never know what will happen during an upgrade, and a simple mistakecould
potentially destroy your repository.

10.5 Summary

In this chapter, you learned about Subversion repository access control. The discussion
included security options for local repository access,svnserve access, and access via
Apache. Additionally, you saw how to secure an HTTP connection with SSL and how to
provide user authentication using a Windows Domain Controller.

“svnbook” — 2005/4/14 — 14:55 — page 157 — #178i
i

i
i

i
i

i
i

10.5 Summary 157

You learned about creating backups of a Subversion repository, as well as how to au-
tomate those backups on a UNIX-like system. You also learned how to recover a database
from backups, and how to revive a wedged Berkeley DB-based repository. Finally, you
learned about some of the things to take into consideration when upgrading Subversion.

“svnbook” — 2005/4/14 — 14:55 — page 158 — #179i
i

i
i

i
i

i
i

“svnbook” — 2005/4/14 — 14:55 — page 159 — #180i
i

i
i

i
i

i
i

Chapter 11

The Joy of Automation

The whole point of computers is to make our lives easier and expand the possibilities of
what can be done, yet most of us spend an inordinate amount of time in front of the com-
puter making our lives more tedious and repetitive. Tedious and repetitive then lead to
boring, and boring leads to mistakes (another area where computers aresupposedto im-
prove us).

Why do we torture ourselves with such mundane pursuits? Because we’renot lazy
enough. That’s right, people pursue repetitive boredom (and the errors that result) because
they don’t get fed up with the work enough to find a way to avoid it. Does that sound like
you? I didn’t think so. That’s why I know you’re salivating over the prospect of learning
how to craft Subversion into a tool that works for you, rather than letting it become a master
that demands you to divide your time further than it already is.

In this chapter, you will learn all about the various tricks and tools available to you in
Subversion to not only automate the mundane tasks specific to your development process
that go along with organized use of a version control system, but also to automate the
safeguards that help ensure everyone follows the rules that your process establishes.

The value of reducing repetition is obvious to everyone. No one wants to do the same
thing over and over again. Repetition is also the place where computers most excel. The
value of safeguards is also an easy one to recognize, but the extent of their value is of-
ten underappreciated. Sure, we all understand the need for security that protects against
malicious attack, but in a development project, that is rarely the biggest danger to protect
against. Much more insidious is the danger from an attack of inattention. All of us have
done it. A moment’s hurriedness or lack of thought leads to a forgotten procedure, which
leads to any number of dozens of negative scenarios, from broken builds and hidden bugs
to incomplete or incorrect documentation.

By taking the time, up front, to customize Subversion’s automation tools to fit your
development process, you will almost certainly end up with happier, more productive de-
velopers who are able to follow the development process with more consistency and fewer
errors. This leads to less administrative work, and (with any luck) frees you up to pursue
more automation that can start the cycle anew.

Subversion provides a number of hooks that give you a point where you can integrate
automation tools into the Subversion client or server. It provides several execution points,
where hook scripts can be run, to process or examine the data before or after Subversion
places it into the repository. Additionally, it provides metadata in the form of properties

159

“svnbook” — 2005/4/14 — 14:55 — page 160 — #181i
i

i
i

i
i

i
i

160 Chapter 11 The Joy of Automation

and strictly formatted output (for ease of parsing) that allows you to examine Subversion
with other tools in your development chain. Finally, if that’s not enough automation for
you, Subversion provides an API that you can use to interact with a Subversion repository
using the same entry points as the Subversion client.

11.1 An Introduction to Hooks

Subversion provides for the capability to have scripts automatically run on the server at
various repository access points. These scripts are able to examine the data that flows into
the repository and make decisions about whether specific actions should be allowed, as
well as trigger other side effects based on the data supplied (such as send an e-mail).

Each hook script is a program that is invoked on a particular trigger, to perform the
necessary processing for that hook. Normally, hook scripts are shell scripts, but that is not
a restriction. Hook scripts can be written in any interpreted or compiled language (for the
rest of this discussion, I will refer to all forms as scripts). The only requirement is that they
be some sort of executable that the Subversion server can run. When run, each hook script
can either perform all of the necessary processing internally, or it can call one or more
external programs and use their output.

Hook scripts are specific to a repository, and are stored in a directory namedhooks
inside the directory that thesvnadmin create command created to store the repository
database. The trigger action for each script is defined by its name (in Windows, they should
also end in.exe or .bat). The different trigger actions available are the following.

• start-commit

• pre-commit

• post-commit

• pre-revprop-change

• post-revprop-change

When one of these actions occurs, Subversion invokes the appropriate script, and passes
to it relevant information (which varies, depending on the action) via arguments. For all
of the hook scripts exceptpost-commit andpost-revprop-change, if the script returns
a non-zero value, Subversion will reject the data that was being processed (bothpost-
actions occur after the processing, and can’t cause an interruption).

11.1.1 Available Hook Scripts

Subversion supports several hook scripts, which are triggered on different events.

start-commit

The first thing Subversion does when it receives a repository commit is to invoke the
start-commit script (if one exists), even before it creates a transaction for the commit.

“svnbook” — 2005/4/14 — 14:55 — page 161 — #182i
i

i
i

i
i

i
i

11.1 An Introduction to Hooks 161

This gives the hook script a chance to examine the target repository, and the user making
the commit, and make a decision on whether that user is authorized to access that reposi-
tory. One possible use for this script would be to prevent denial of service attacks against
the repository from huge unauthorized commits.

The arguments passed tostart-commit are

1. The path to the repository used for this commit

2. The name of the user attempting to make the commit

pre-commit

If a commit makes it past thestart-commit script, Subversion creates a new transaction
(which allows the repository to be returned to the state it was in before the commit attempt),
in case the commit fails for any reason. After Subversion has created this transaction, it
invokespre-commit. Thepre-commit script is able to examine the transaction, and make
a decision on whether that data meets the requirements for a commit.

The arguments passed topre-commit are

1. The path to the repository used for this commit

2. The name of the transaction for the commit

post-commit

This script is called after a commit has completed successfully. Because the commit has
already happened, it has no power to affect the commit itself, but can perform logging or
trigger other side effects.

The arguments passed topost-commit are

1. The path to the repository used for this commit

2. The revision number of the commit

pre-revprop-change

When a revision property is modified, Subversion invokes this script before actually per-
forming the change. If you want to change revision properties, this script isrequired. If
it isn’t present, Subversion triggers a failure on every attempted revision property change.
Because revision properties are unversioned, this script can be useful for disallowing dan-
gerous (or otherwise undesired) revision property changes. It can also be useful for making
a backup of modified revision properties before actually performing a commit, which can
be very useful in avoiding accidental property data loss.

The arguments passed topre-revprop-change are

1. The path to the repository used for this property change

2. The revision for which the property is being changed

“svnbook” — 2005/4/14 — 14:55 — page 162 — #183i
i

i
i

i
i

i
i

162 Chapter 11 The Joy of Automation

3. The user attempting the property change

4. The name of the property being changed

In addition to the arguments sent to the script, Subversion also passes the revision prop-
erty value itself on the script’s standard input stream (stdin), instead of as an argument.

post-revprop-change

This script is called after a revision property change has successfully completed. Because
the change has already occurred, the scripts can’t affect the commit itself. It can, however,
be useful for logging or generating some other side effect.

The arguments passed topost-revprop-change are

1. The path to the repository used for this property change

2. The revision for which the property is being changed

3. The user attempting the property change

4. The name of the property being changed

11.1.2 What a Hook Script Can Do

Hook scripts have a lot of latitude in what they’re allowed to do when they run. There are
really only a few restrictions (which I discuss in the next section), and everything else is
fair game. However, there are a few actions that you will find most of your scripts needing
to do, which deserve a little extra attention.

Examining the Repository

In a very few cases, the information provided in the arguments to the hook script is suffi-
cient for the script to perform all of its required processing. The rest of the time, though,
the script needs to examine the repository to get the information it needs. To perform its
examinations, there are no enforced restrictions on what tools Subversion is allowed to use,
but it is usually safest to use thesvnlook program instead ofsvn, in order to avoid the
potential of modifying the repository (which is strictly forbidden, but also not enforced).
The specifics of what you can get out ofsvnlook are explained in detail, in Section 11.3.1,
“The Subversion Commands.”

Thesvnlook program is a tool for examining the repository. It has many of the same
commands assvn, but without the capability to modify the repository in any way. Unlike
svn, svnlook doesn’t operate on working copies, nor can it communicate with a remote
repository. Instead,svnlook must be used to examine a repository located on the local
system.

“svnbook” — 2005/4/14 — 14:55 — page 163 — #184i
i

i
i

i
i

i
i

11.1 An Introduction to Hooks 163

Examining Transactions

Thepre-commit hook script is provided with a unique argument, the name of a transac-
tion. With this transaction name,svnlook can examine a transaction that is in-process,
before the changes therein become a permanent part of the repository. To refer to a trans-
action, you have to runsvnlook with the --transaction parameter, which takes the
transaction’s name, just as--revision would take the revision number (the only practical
way to get a transaction name is when it is a parameter to apre-commit script).

As a simple example, the following script gets the log message for the commit that is
currently being processed, and appends it to an external log file that keeps track of all the
commits attempted, regardless of whether they succeed.

#!/bin/sh

Get the pre-commit script arguments
$1 = The repository path
$2 = The transaction name

RPS = "$1"
TXN = "$2"

Append the log message to a log record.
/usr/bin/svnlook log --transaction "$TXN" "$RPS" > /var/log/txn.log

Exit with zero, to allow the transaction processing to continue.
exit 0

Running External Programs

In addition to running Subversion commands from within hook scripts, you are free to run
any other external programs that you need to in order to perform the desired processing in
the script. This allows you to not only take advantage of already existing programs that
perform the actions you need, but it also allows you to write your own external programs
and scripts that can be shared among multiple hook scripts (either in the same repository or
across multiple repositories). In fact, it is generally good practice to write all of your real
hook script processing in one or more external scripts, and then call those from the actual
hook script, in the correct order.

11.1.3 What a Hook Script Can’t Do

Hook scripts are very flexible in their allowed actions, but there are a few restrictions that
you need to be aware of. It is especially important for you to read this section carefully,
because most of these restrictions are not enforced by Subversion. The results of trying
to perform these forbidden actions can range from silent failure to potential repository
corruption.

“svnbook” — 2005/4/14 — 14:55 — page 164 — #185i
i

i
i

i
i

i
i

164 Chapter 11 The Joy of Automation

Don’t Modify the Repository

You might be tempted to write a hook script that modifies a transaction. It would be handy
to automatically modify code to fit a certain coding style, or encrypt certain files for added
security. However, hook scripts should never modify the transaction they are operating on.
Subversion has no mechanism for reporting back to the working copy if a transaction is
modified, so the working copy and repository would become out of sync if you did modify
the transaction.

Because none of the Subversion command-line tools have facilities that would allow
you to modify the transaction, this is not a hard rule to follow. However, it is possible
for a custom program using the Subversion libraries to modify a transaction, so consider
yourself warned about not doing it.

Communication with Client Is Limited

Subversion will buffer anything that a hook script sends to standard error, and if the script
fails, that output will be sent to the client and displayed along with the commit failure mes-
sage. However, that is the extent of the direct capability a hook script has to communicate
with the client. There is no way to give feedback to the user if the commit succeeds, nor is
there a way to get any additional information from the user while the hook script is running.

If you need to get extra information to a user after a successful commit, you could get
around the communication limitation by writing the output of the script to a log file that
the user could access (possibly via a Web server), or by sending an e-mail. Getting extra
informationfrom the user is a more difficult limitation to work around, but you may be able
to do it if you’re creative. For instance, you could have the user place information in the log
message that would be parsed by the hook script. Or, if you need to get information in the
middle of hook script execution, you could find some alternate means of communication
that works outside of the Subversion framework, such as an automated message sent to an
instant messaging account that waits for a response to be sent back.

11.1.4 Tips for a Good Hook Script

There are a few things that you want to keep in mind when you are writing hook scripts. If
you are an experienced script writer (or programmer of another sort), many of these things
will be second nature to you, but if not, this is a good place to learn; and even if you are
an experienced programmer, it is probably worthwhile to think about some of the points in
this section in the context of writing good Subversion hook scripts.

You can also find some template scripts, which are automatically generated in the
hooks subdirectory for your repository, when the repository is generated. These exam-
ples will give you a good idea what each hook script can do, and some ideas for what you
might use that particular script for. You should note, though, that the scripts referred to in
the templates are fictitious scripts that are merely there for illustration (although at least
one—commit-email.pl—does exist in the utility scripts that Subversion supplies). Later
on in the chapter, I will discuss how you might write some of the scripts alluded to in the
templates.

“svnbook” — 2005/4/14 — 14:55 — page 165 — #186i
i

i
i

i
i

i
i

11.1 An Introduction to Hooks 165

Keep It Short

Hook scripts run whenever the action they are associated with is triggered. With the ex-
ception of the two revision property scripts, that meansevery time a commit is performed.
Furthermore, every user has to wait for the execution of each relevant hook script (that’s
three on a successful commit) to execute, in its entirety, before being able to move on to
other things. In an active development environment where commits are done frequently,
that is a lot of time spent waiting for Subversion to finish running hook scripts.

Some time is expected, of course, but significant delays will quickly annoy your users,
which will lead to fewer commits, which will make your repository less useful to you.
Therefore, it is vital that all of your hook scripts run in as small an amount of time as
possible. As a rule of thumb to figure out how short you should keep your hook script run
times, I would suggest that you consider how often you think your average user will be
committing changes to the repository. If you expect frequent commits (many per hour),
you should keep the hook script runtimes under a few seconds each for the average case. If
you expect less frequent commits (just a few per day, or less), it may be acceptable to have
longer runtimes for your hook scripts; but remember that user feedback is minimal, so you
want to make sure that things are kept short enough that users don’t worry that the commit
has locked up.

If you have a hook script with a long-running side effect, you might consider running
it in the background, so that your hook script can finish and allow the commit to complete
(thus returning control to the user) before the hook script itself has completed. Obviously,
this is not practical for hook scripts that depend on the output of a program to decide
whether the commit should succeed, but if the side effect is entirely independent (such as
sending an e-mail or modifying a developer’s Web site), it might be a good way to make
commits to the repository feel faster without sacrificing functionality.

Do You Really Want It Every Time?

Subversion hook scripts will run every single time a commit is made, which for most people
is a lot. Before you set up a hook script, put some thought into whether you really need it to
run every time a commit is made. There are a lot of things that seem useful when you first
think of them, but end up being nothing but annoying when they are put into practice. If a
hook script has a side effect, like sending an e-mail or instant message that the user doesn’t
usually care about, it will quickly get ignored—it’s just human nature to make repetitive
actions a habit that doesn’t require any conscious thought. Then, when the side effect is
something important, it is likely to not be noticed.

For every hook, you need to carefully consider whether the script that you want to have
run is really going to produce something that is of value to the receiver more often than not.
If the answer is “no,” you might want to consider adding a few checks to your hook script
that will help determine when the information is actually useful, and refrain from sending
it out at other times. Alternately, you can set up the hook script to perform the operation
every n revisions (e.g.,if revnum % 10 == 0). Not only will your users be happier, but
they will also be more likely to notice and react to important side effects from the script.

“svnbook” — 2005/4/14 — 14:55 — page 166 — #187i
i

i
i

i
i

i
i

166 Chapter 11 The Joy of Automation

Early On: Log What You Do

When you have developed a new hook script, it is a given that you will want to test it before
making a deployment to the real repository. Pre-release testing can only go so far, though,
and it is often the case that things that worked great in the lab will break under the pressure
of real-world usage. In the case of Subversion hook scripts, this is especially ominous, due
to the importance of a live repository, and the difficulty of noticing problems when there
is no feedback to the user. Furthermore, if a commit is accepted that shouldn’t have been,
you can easily end up with broken data in your repository (not the kind that breaks the
repository, but the kind that doesn’t run as it’s supposed to).

To avoid problems in the future, a new hook script that is introduced to a live reposi-
tory shouldalways(unless it’s trivially simple) be run for a reasonable period with copious
amounts of debugging output being sent to a log somewhere. This will save you many
headaches and long hours in the future, not only by helping you pinpoint where any prob-
lems are occurring, but also by making it easier for you to correct any errors that occur,
before they cause a chain reaction.

Remember the Edge Cases

Accounting for edge cases is an important tenet of software develpment, but one that is
easy to forget in the context of writing small systems, such as hook scripts. When a hook
script is run, you want to make sure that it can handle any sort of data that Subversion will
allow the user to throw at it. For instance, if yourpre-commit script expects a certain
format of log message, make sure that it will properly handle not just wildly incorrect log
messages, but also the log messages that are similar to the required format, but not quite
correct (such as a keyword in the middle of data).

Reuse What You Can

Subversion comes from the culture of the UNIX world. In the UNIX world, there are many
small, single-task programs that can be easily strung together to perform larger tasks. This
makes development of complex scripts much easier, and allows programs to make use of
well-tested components that can be shared among multiple applications. In other operating
systems (Windows mostly), this sort of single-task application is not nearly so prevalent.
This means that hook scripts don’t have available to them the same rich set of default tools
to use for processing the data they receive.

A first instinct may be to write all of the missing functionality into your hook script,
but this can lead to bloated, slow scripts that are hard to debug. You are much better off
if you take the UNIX approach and create individual component scripts that perform the
individual tasks that you need performed. This makes it easier to share those tasks among
multiple scripts and repositories, as well as making debugging of component functionality
much easier.

Another option for Windows users, if you are looking for a rich set of UNIX-like
tools for your hook scripts to take advantage of, is to install a Windows package (such
as Cygwin, which provides a wealth of UNIX tools) that gives you a prebuilt set of com-

“svnbook” — 2005/4/14 — 14:55 — page 167 — #188i
i

i
i

i
i

i
i

11.2 Making the Most of Hook Scripts 167

ponent programs that can be integrated into your scripts. This not only saves you the time
spent writing the functions themselves, but also the time spent debugging and testing the
components.

11.1.5 The Pre-made Subversion Scripts

To aid you in your quest to generate the perfect Subversion hook script, the developers of
Subversion provide you with a set of pre-made scripts that provide useful utilities com-
monly found in hook scripts. If you made an installation of Subversion from a binary
package, you will likely find them in a directory such as

/usr/share/svn/tools/hook-scripts

If they are not installed on your system, you can get them by downloading the Subversion
source and looking in thetools/hook-scripts subdirectory. The scripts that you find
should include (at the least) the following scripts.

• commit-access-control.pl

• svnperms.py

• commit-email.pl

• propchange-email.pl

• mailer.py

11.2 Making the Most of Hook Scripts

When working with your own Subversion repositories, you will invariably come up with
innumerable ideas for possible places where automation will make your life easier. In
fact, if you’re anything like me, you’ll find that the potential ways you can think of for
automating your troubles away are far greater in number than your time available. To help
you out a bit, in this section, I’ll talk about some of the ways that you might add hook scripts
to Subversion to help with automation, along with some ideas on implementing them.

11.2.1 Automatically Send E-mails

If you have a mailing list set up that is dedicated to Subversion commit reports, you can
set up a commit script to e-mail that list every time someone makes a commit, either with
just the log or with a full diff of all the changes applied to the repository. Users who are
interested in keeping track of Subversion development can then subscribe to the e-mail to
see when changes are made, rather than needing to periodically check the Subversion logs
to see what has changed.

You can also check the section of the repository where the commit was made, and send
e-mails to different mailing lists in response. There are a couple of reasons why you might
want to do this.

“svnbook” � 2005/4/14 � 14:55 � page 168 � #189i
i

i
i

i
i

i
i

168 Chapter 11 The Joy of Automation

• If you have multiple projects in your repository, you may want commit e-mails for
each project to go to that project’s own mailing list. This helps allow you to keep
projects logically separated, even though they reside in the same physical repository
(which gives you the advantage of allowing code to move between the two).

• You may find it useful to only send out notifications for changes made to the trunk
of your project. This allows individual developers to perform a lot of small com-
mits on a branch created for a given task without spamming the mailing list with
huge numbers of e-mails. Then, when a change is merged into the trunk, all of those
changes will be sent out in one compiled e-mail that shows the changes made during
the merge.

Redundant Archival E-mails

A mailing list that receives commit messages can also be used as an emergency archive for
restoring a lost repository. It is, of course, no substitute for nightly backups of the repository
itself, but it could save you the loss of a single day’s changes if a crash were to occur. If you
have an archival mailing list where all repository commits (with full diffs, log messages,
and other metadata) are sent, and your repository is lost in the middle of the day, you could
go back to those archival e-mails and restore all of the changes that had been applied to the
repository since the last repository backup.

To make a potential restoration even easier, you could set up yourpost-commit script
to automatically runsvnadmin dump to create an incremental backup file that could then
be e-mailed to an archival e-mail drop. The following script shows how you might write
such a script. The script itself is written in Python, but even if you don’t know Python, it
should be clear what is happening.

#!/usr/bin/python
Subversion commit archival program.
Takes a repository, a revision number, and an email address

import commands
import smtplib
from email.MIMEText import MIMEText

Some variables that may need to be set for a specific repository
svnbinpath = '/usr/bin/'
svnadmin = svnbinpath + 'svnadmin'

fromaddr = 'svnrepos@mydomain.com'

Runs 'svnadmin dump' and get its output
def dumpRevision(repos, revision):

“svnbook” — 2005/4/14 — 14:55 — page 169 — #190i
i

i
i

i
i

i
i

11.2 Making the Most of Hook Scripts 169

dump = getstatusoutput('%s dump --incremental -r %s %s'
% svnadmin, revision, repos)

if dump[0] != 0:
svnadmin failed
return None

else:
return the dump
return dump[1]

Creates an email with the supplied revision dump
def createDumpMessage(address, revision, dump):
msg = MIMEText(dump)
msg['Subject'] = 'Dump of revision %s' % revision
msg['From'] = fromaddr
msg['To'] = address

Sends the supplied email message
Uses the local systems SMTP system
def sendDumpMessage(address, msg):
s = smtplib.SMTP()
s.connect()
s.sendmail(fromaddr, [address], msg.as_string())
s.close()

Main execution point for the program
This will use the other three functions to email a repository dump
if __name__ == '__main__':
Check to see that we have enough arguments
if sys.argv.length() < 4: exit(1)

Parse the arguments
repository = sys.argv[1]
revision = sys.argv[2]
address = sys.argv[3]

Get the repository dump and email it
dump = dumpRevision(repository, revision)
if dump == None: exit(2)

msg = createDumpMessage(address, revision, dump)
sendDumpMessage(address, msg)

“svnbook” � 2005/4/14 � 14:55 � page 170 � #191i
i

i
i

i
i

i
i

170 Chapter 11 The Joy of Automation

Communicating with an Issue Tracker

Some issue-tracking systems can be controlled by sending them e-mails. For example, you
may be able to create a new open issue, update an existing issue, or close an issue just
be sending a properly formatted e-mail to the tracker. If you have your users format their
log files properly, you can parse them automatically in apost-commit hook script and
generate the messages to send to the issue tracker automatically.

Having the hook script automatically notify the issue tracker will remove one extra step
from your user’s commit process, which should reduce the chance for error. Of course,
the downside is that the log message needs to be properly formatted for the issue tracker
to be able to parse it properly. Ideally, the best way to help ensure proper formatting is
to keep the formatting simple and distinct in a way that can be parsed even when mixed
with unformatted text. For example, you might use a unique tag that would identify issue
numbers or status changes. The parser could then search unformatted text for those tags
and react appropriately. Additionally (or alternately), you could use apre-commit hook
script to check log messages for incorrect formatting and return an error if it doesn’t parse
correctly.

Subversion Supplied Scripts

Because automatically sending e-mails is such a commonly desired action, Subversion
even provides three different example scripts that you can use for sending e-mails. They are
robust enough to use “as is” for many purposes, and reasonably easy to modify if they don’t
quite fit your needs. Two of the scripts (commit-email.pl andpropchange-email.pl)
are written in Perl, and the third (mailer.py) is written in Python, so you have a choice of
language to attack if you need to make modifications. All three can easily be run in your
post-commit hook script to send e-mails.

commit-email.pl

Thecommit-email.pl script can be run by providing it with the repository, revision num-
ber, and an e-mail address, and it will send an e-mail with the author of the commit, the
date, the log, and a list of the changes made. You can also set up multiple invocations of
commit-email.pl to each match a specific subdirectory in the repository and only send
an e-mail if a file in that subdirectory changed during the commit. In this way, you can
configure different mailing addresses for different projects in the same repository.

The following examplepost-commit script shows how you might set up a hook script
to runcommit-email.plwith two different mailing addresses for the trunks of two projects
in the repository (stored in/project1/trunk and/project2/trunk).

#!/bin/sh

Get the post-commit script arguments
$1 = The repository path
$2 = The revision number

“svnbook” — 2005/4/14 — 14:55 — page 171 — #192i
i

i
i

i
i

i
i

11.2 Making the Most of Hook Scripts 171

RPS = "$1"
REV = "$2"

Send commit emails
COMMIT_EMAIL = /usr/local/share/tools/hook-scripts/commit-email.pl
$COMMIT_EMAIL "${RPS}" ${REV} -m "project1/trunk" "project1- ¬
list@mydomain.com"
$COMMIT_EMAIL "${RPS}" ${REV} -m "project2/trunk" "project2- ¬
list@mydomain.com"

propchange-email.pl

If you want to send out notification e-mails when revision properties change, you can
use thepropchange-email.pl script instead. It works almost identically tocommit-
email.pl, except it takes a property name and user in addition to the repository and revi-
sion number.

In this examplepost-revprop-change hook script, you can see how you might use
propchange-email.pl to send a notice to an administrator every time someone made a
change to a log file.

#!/bin/sh

Get the post-revprop-change script arguments
$1 = The repository path
$2 = The revision number
$3 = The user making the change
$4 = The property being changed

RPS = "$1"
REV = "$2"
USER = "$3"
PROP = "$4"

Send a property change email
PRPCHG_EMAIL= "/usr/local/share/tools/hook-scripts/propchange-email.pl"
ADDRESS = "repos-admin@mydomain.com"
if
test ["$PROP"="svn:log"]

then
$PRPCHG_EMAIL "$RPS" "$REV" "$USER" "$PROP" "$ADDRESS"

fi

“svnbook” � 2005/4/14 � 14:55 � page 172 � #193i
i

i
i

i
i

i
i

172 Chapter 11 The Joy of Automation

mailer.py

Subversion also provides an example Python script that performs the same function as
commit-email.pl. Additionally, mailer.py lets you set up complex sets of groups that
determine which addresses to e-mail based on regular expressions that match the files that
were changed. To find out more about the specifics of how this script works, see the script
itself, and the sample configuration file that is included with it.

11.2.2 Send Notifications via RSS

RSS (Really Simple Syndication) has become a very popular means of getting notifications
on changes to news sites, blogs, and other Web sites with rapidly changing content. It’s
not just limited to Web sites, though. In fact, it can easily handle any sort of frequently
modified serial data, such as the record of commits made to a Subversion repository.1

RSS feeds are supplied to RSS readers as XML files, available through a Web browser.
To get the latest RSS feed for a site, the reader simply redownloads the RSS feed XML file
from a predetermined URL. So, if you set up a post-commit hook script to update the RSS
feed every time a commit is made to the repository, you can have an up-to-date RSS feed
of repository activity. This is especially handy in a rapid development environment, where
short build/test cycles make it important for everyone to keep up with the activities of their
coworkers.

Generating the RSS

To generate the RSS feed, you need a script, similar to the following one, that takes the
repository and extracts the information about the last repository commit. The script itself
is fairly long, but I’ll go over what’s happening shortly.

#!/bin/bash

Main configuration variables
ReposName=$1
RepositoriesDir=/svnrepos/repositories
MaxItems=100

Setup misc. variables
Repos=$RepositoriesDir/$ReposName
RssFile=/var/www/html/rss/$ReposName.xml
RssFileTmp=/var/www/html/rss/$ReposName.xml.tmp
RssHeader=$Repos/rss/header
RssFooter=$Repos/rss/footer
RssItemsDir=$Repos/rss/items

1. The scripts and techniques in this section were graciously provided by Stuart Robinson and his employer,
Absolute Systems (www.absolutesys.com).

“svnbook” � 2005/4/14 � 14:55 � page 173 � #194i
i

i
i

i
i

i
i

11.2 Making the Most of Hook Scripts 173

#===
Attempts to create a lock file so that this script isn't
affected by other instances that might be started at the same time.
If a lock-file already exists, this script is exited immediately.
AcquireLockFile ()
{
LockFile=/svnrepos/locks/$ReposName.rssGen.lock
if [-a $LockFile]; then
Another process is currently updating the RSS feed, so exit.
echo "Lock-file $LockFile exists. Exiting."
echo ""
exit 1
fi
Create the lock file
touch $LockFile
echo "Lock-file $LockFile acquired."
}

#===
ReleaseLockFile ()
{
rm -f $LockFile
echo "Lock-file $LockFile released."
}

#===
ComputeFirstAndLastItemRevisions ()
{
echo "Computing first and last item revisions:"
SvnHeadRevision= ` svnlook youngest $Repos `
LastItemToInclude=$SvnHeadRevision
FirstItemToInclude=$((LastItemToInclude-MaxItems+1))
if [[$FirstItemToInclude -lt 0]]; then
FirstItemToInclude=1
fi

echo " First revision to include: $FirstItemToInclude"
echo " Last revision to include : $LastItemToInclude"
echo " Max items : $MaxItems"
}

#===
DeleteOldItemFiles ()

“svnbook” � 2005/4/14 � 14:55 � page 174 � #195i
i

i
i

i
i

i
i

174 Chapter 11 The Joy of Automation

{
echo "Deleting old item files"
FirstMissingItem=$((LastItemToInclude+1))
Move all items we want to keep to tmp, and then delete all others.
if [[! -a $RssItemsDir/tmp]]; then
mkdir $RssItemsDir/tmp
fi
for ((Rev=LastItemToInclude; Rev >= FirstItemToInclude; Rev--))
do
if [[-a $RssItemsDir/Item.$Rev]]; then
#echo " Moving $RssItemsDir/Item.$Rev to $RssItemsDir/tmp"
mv $RssItemsDir/Item.$Rev $RssItemsDir/tmp
else
We need items from FirstItemToInclude -> LastItemToInclude, but
the current item is missing, so record the revision number so
we can later access SVN to create the missing items.
FirstMissingItem=$Rev
#echo " DEBUG: FirstMissingItem=$FirstMissingItem"
fi
done
#echo " Removing all other Item files in $RssItemsDir"
rm -f $RssItemsDir/Item.*

Now move the items we want to keep back to $RssItemsDir
#echo " Moving the files we're keeping from $RssItemsDir/tmp back to ¬
$RssItemsDir"
mv -f $RssItemsDir/tmp/Item.* $RssItemsDir
rmdir $RssItemsDir/tmp
}

#===
Creates new Items to represent each of the SVN revisions for
which there are currently no item-files in $RssItemsDir (for revision
numbers >= FirstItemToInclude, and <= LastItemToInclude).
CreateNewItemFilesFromSVN ()
{
Now access SVN to create RSS items for all revisions from $MaxRev ¬
+1 -> $LatestRevision
echo "Accessing SVN to create missing items"
echo " First missing item: Rev $FirstMissingItem"
echo " Last missing item: Rev $LastItemToInclude"
for ((Rev=FirstMissingItem; Rev <= LastItemToInclude; Rev++))
do

“svnbook” � 2005/4/14 � 14:55 � page 175 � #196i
i

i
i

i
i

i
i

11.2 Making the Most of Hook Scripts 175

echo " Creating <Item> for SVN revision $Rev"
RssItemFile=$RssItemsDir/Item.$Rev
echo " ItemFile=$RssItemFile"
echo " Computing vars..."

AuthorId= ` svnlook -r $Rev author $Repos 2>&1 `
Author= ` getent passwd | grep $AuthorId | cut -d: -f 5 `
CommitMsg= ` svnlook log -r $Rev $Repos 2>&1 `
CommitDate= ` svnlook -r $Rev date $Repos 2>&1 `
CommitDateRss= ` echo $CommitDate | sed -e "s/\([^]*\) \([^]*\) ¬
\([^]*\).*/\\1T\\2+02:00/" `
Sample valid date=<dc:date>2004-06-07T17:03:30+02:00</dc:date>
URL="http://svnserver/viewcvs?rev=$Rev&root=$ReposName&view=rev"
FirstModifiedPath= ` svnlook -r $Rev changed $Repos | cut -b5 ¬

-1000 | sed -e "s{\([^/]*/[^/]*\).*{\1{" | uniq `
Category= ` echo $FirstModifiedPath | sed -e "s&\(.*\)/\(.*\) ¬

&\\2 (\\1)&" `
echo " Done computing vars"

echo " <item>" > $RssItemFile
echo " <title><![CDATA[$CommitMsg]]></title>" >> $RssItemFile
echo " <link><![CDATA[$URL]]></link>" >> $RssItemFile
echo " <description><![CDATA[$CommitMsg]]></description>" >> ¬

$RssItemFile
echo " <category>$Category</category>" >> $RssItemFile
echo " <dc:creator>$Author</dc:creator>" >> $RssItemFile
echo " <dc:date>$CommitDateRss</dc:date>" >> $RssItemFile
echo " <pubDate>$CommitDateRss</pubDate>" >> $RssItemFile
echo " </item>" >> $RssItemFile
echo "CommitDateRss=$CommitDateRss"
done
}

#===
Echos the contents of RssHeader, followed by each of the Rss Item ¬
files
in revision-number-order, followed by RssFooter to the Rss file being ¬
generated.

AssembleThePieces ()
{
echo "Assembling the pieces"
cat $RssHeader > $RssFileTmp

local PubDate= ` date +"%a, %d %b %Y %T %Z" `

“svnbook” � 2005/4/14 � 14:55 � page 176 � #197i
i

i
i

i
i

i
i

176 Chapter 11 The Joy of Automation

echo " <dc:date>$PubDate</dc:date>" >> $RssFileTmp
echo " <pubDate>$PubDate</pubDate>" >> $RssFileTmp
echo " <lastBuildDate>$PubDate</lastBuildDate>" >> $RssFileTmp

Add all RSS items to the RSS file
for ((Rev=LastItemToInclude; Rev >= FirstItemToInclude; Rev--))
do
cat $RssItemsDir/Item.$Rev >> $RssFileTmp
done

Add the RSS footer
cat $RssFooter >> $RssFileTmp
mv -f $RssFileTmp $RssFile
}

#===
Generates a new RSS file for the repository.
GenerateRssFile ()
{
AcquireLockFile
ComputeFirstAndLastItemRevisions
DeleteOldItemFiles
CreateNewItemFilesFromSVN
AssembleThePieces
ReleaseLockFile
echo "Done."
}

GenerateRssFile

Setting Up Variables

Let’s take a look at this script, section by section. The first section sets up a number of
useful variables that will be used throughout the rest of the script.

Main configuration variables
ReposName=$1
RepositoriesDir=/svnrepos/repositories
MaxItems=100

Setup misc. variables
Repos=$RepositoriesDir/$ReposName
RssFile=/var/www/html/rss/$ReposName.xml
RssFileTmp=/var/www/html/rss/$ReposName.xml.tmp

“svnbook” — 2005/4/14 — 14:55 — page 177 — #198i
i

i
i

i
i

i
i

11.2 Making the Most of Hook Scripts 177

RssHeader=$Repos/rss/header
RssFooter=$Repos/rss/footer
RssItemsDir=$Repos/rss/items

The first three variables are the important configuration variables that need to be cus-
tomized for the specific location of the script. TheReposName variable indicates the name
of the repository associated with the feed. In this case, that variable is taken from the first
argument sent to the script, which is supplied by thepost-commit hook script that calls
thegenRSS script. TheRepositoriesDir variable points to the directory where all of the
Subversion repositories are stored. So, if you have two repositories,/var/svnrepos1
and /var/svnrepos2, you would setRepositoriesDir equal to/var. Finally, the
MaxItems variable stores the maximum number of items that is included in the RSS feed.

Locking the Script

Because commits can occur very close together, it would be possible for this script to end
up running concurrently with another instance of itself. To avoid that, and serialize the
running of the script, we need to create a lock that will be acquired when the script is run,
and released when it is finished. If another script attempts to acquire the lock at the same
time, the script will exit.

#===
Attempts to create a lock file so that this script isn't
affected by other instances that might be started at the same time.
If a lock-file already exists, this script is exited immediately.
AcquireLockFile ()
{
LockFile=/svnrepos/locks/$ReposName.rssGen.lock
if [-a $LockFile]; then
Another process is currently updating the RSS feed, so exit.
echo "Lock-file $LockFile exists. Exiting."
echo ""
exit 1
fi
Create the lock file
touch $LockFile
echo "Lock-file $LockFile acquired."
}

#===
ReleaseLockFile ()
{
rm -f $LockFile
echo "Lock-file $LockFile released."
}

“svnbook” � 2005/4/14 � 14:55 � page 178 � #199i
i

i
i

i
i

i
i

178 Chapter 11 The Joy of Automation

This section of the script consists of two fairly simple functions. The first function,
AcquireLockFile() simply checks to see if the lock file exists. If it does, the script exits.
If there is no lock file, the script creates one by runningtouch. When the script exits, the
ReleaseLockFile() function is called. This function simply removes the lock file that
AcquireLockFile() created, thus freeing up the next instance of the script to run.

Computing Revision Range

Next, we need to compute the range of revisions that will be included in the RSS feed,
which will be made up of a number of revisions equal to the value ofMaxItems (as set
at the beginning of the script), from the HEAD revision back. So, ifMaxItems is equal
to 100, and the repository is currently at revision 1400, the range is from revision 1301
through revision 1400.

#===
ComputeFirstAndLastItemRevisions ()
{
echo "Computing first and last item revisions:"
SvnHeadRevision= ` svnlook youngest $Repos `
LastItemToInclude=$SvnHeadRevision
FirstItemToInclude=$((LastItemToInclude-MaxItems+1))
if [[$FirstItemToInclude -lt 0]]; then
FirstItemToInclude=1
fi

echo " First revision to include: $FirstItemToInclude"
echo " Last revision to include : $LastItemToInclude"
echo " Max items : $MaxItems"
}

The HEAD revision of the repository is found by runningsvnlook youngest, which
returns the revision number of the youngest revision in the repository. Then, the beginning
of the range is calculated by subtracting theMaxItems value from the HEAD revision. If
the first revision happens to fall below zero (i.e., there aren’tMaxItems revisions in the
repository), the start of the range is set to the beginning of the repository.

Deleting Old Files

ThegenRSS script creates an item file for each revision contained in the current RSS feed.
As new revisions are committed, old revisions fall off the back of the list, and their item
files need to be deleted. TheDeleteOldItemFiles() function shown next handles the
cleanup of those files as they become obsolete.

#===
DeleteOldItemFiles ()

“svnbook” — 2005/4/14 — 14:55 — page 179 — #200i
i

i
i

i
i

i
i

11.2 Making the Most of Hook Scripts 179

{
echo "Deleting old item files"
FirstMissingItem=$((LastItemToInclude+1))
Move all items we want to keep to tmp, and then delete all others.
if [[! -a $RssItemsDir/tmp]]; then
mkdir $RssItemsDir/tmp
fi
for ((Rev=LastItemToInclude; Rev >= FirstItemToInclude; Rev--))
do
if [[-a $RssItemsDir/Item.$Rev]]; then
#echo " Moving $RssItemsDir/Item.$Rev to $RssItemsDir/tmp"
mv $RssItemsDir/Item.$Rev $RssItemsDir/tmp
else
We need items from FirstItemToInclude -> LastItemToInclude, but ¬

the current
item is missing, so record the revision number so we can later ¬

access SVN
to create the missing items.
FirstMissingItem=$Rev
#echo " DEBUG: FirstMissingItem=$FirstMissingItem"
fi
done
#echo " Removing all other Item files in $RssItemsDir"
rm -f $RssItemsDir/Item.*

Now move the items we want to keep back to $RssItemsDir
#echo " Moving the files we're keeping from $RssItemsDir/tmp back to ¬
$RssItemsDir"
mv -f $RssItemsDir/tmp/Item.* $RssItemsDir
rmdir $RssItemsDir/tmp
}

BecausegenRSS doesn’t have any idea how many revisions have been added since the
last time the script was run, figuring out which item files to remove would be a difficult
task. So, instead,genRSS figures out which item files it wants to keep (the ones that
correspond to revisions in the current range) and moves those into a temporary directory.
Then, it removes all of the item files that remain in theRssItemsDir directory. After the
obsolete files have been removed, it can then move the still-valid files back and remove the
temporary directory.

Inside this function,genRSS also generates the variableFirstMissingItem. This
indicates the first revision to be included in the RSS feed for which there is no existing
item file. That way,genRSS only has to generate item files for new revisions, instead of
wasting time generating files it already has.

“svnbook” � 2005/4/14 � 14:55 � page 180 � #201i
i

i
i

i
i

i
i

180 Chapter 11 The Joy of Automation

Creating the Feed

Now, we come to the heart ofgenRSS, the functions that actually generate the RSS feed
data. There are two functions here. The first,CreateNewItemFilesFromSVN(), creates
the item files that will contain information about each revision in the feed. Then, the
AssembleThePieces() function takes those items and creates an RSS feed XML file that
it then puts up on the Web server for all (or some, depending on your access controls) to
see.

#===
Creates new Items to represent each of the SVN revisions for
which there are currently no item-files in $RssItemsDir (for revision
numbers >= FirstItemToInclude, and <= LastItemToInclude).
CreateNewItemFilesFromSVN ()
{
Now access SVN to create RSS items for all revisions from $MaxRev ¬
+1 -> $LatestRevision
echo "Accessing SVN to create missing items"
echo " First missing item: Rev $FirstMissingItem"
echo " Last missing item: Rev $LastItemToInclude"
for ((Rev=FirstMissingItem; Rev <= LastItemToInclude; Rev++))
do
echo " Creating <Item> for SVN revision $Rev"
RssItemFile=$RssItemsDir/Item.$Rev
echo " ItemFile=$RssItemFile"
echo " Computing vars..."

AuthorId= ` svnlook -r $Rev author $Repos 2>&1 `
Author= ` getent passwd | grep $AuthorId | cut -d: -f 5 `
CommitMsg= ` svnlook log -r $Rev $Repos 2>&1 `
CommitDate= ` svnlook -r $Rev date $Repos 2>&1 `
CommitDateRss= ` echo $CommitDate | sed -e "s/\([^]*\) \([^]*\) ¬
\([^]*\).*/\\1T\\2+02:00/" `
Sample valid date=<dc:date>2004-06-07T17:03:30+02:00</dc:date>
URL="http://svnserver/viewcvs?rev=$Rev&root=$ReposName&view=rev"
FirstModifiedPath= ` svnlook -r $Rev changed $Repos | cut -b5 ¬

-1000 | sed -e "s{\([^/]*/[^/]*\).*{\1{" | uniq `
Category= ` echo $FirstModifiedPath | sed -e "s&\(.*\)/\(.*\) ¬

&\\2 (\\1)&" `
echo " Done computing vars"

echo " <item>" > $RssItemFile
echo " <title><![CDATA[$CommitMsg]]></title>" >> $RssItemFile
echo " <link><![CDATA[$URL]]></link>" >> $RssItemFile

“svnbook” — 2005/4/14 — 14:55 — page 181 — #202i
i

i
i

i
i

i
i

11.2 Making the Most of Hook Scripts 181

echo " <description><![CDATA[$CommitMsg]]></description>" >> ¬
$RssItemFile
echo " <category>$Category</category>" >> $RssItemFile
echo " <dc:creator>$Author</dc:creator>" >> $RssItemFile
echo " <dc:date>$CommitDateRss</dc:date>" >> $RssItemFile
echo " <pubDate>$CommitDateRss</pubDate>" >> $RssItemFile
echo " </item>" >> $RssItemFile
echo "CommitDateRss=$CommitDateRss"
done
}

TheCreateNewItemFilesFromSVN() function loops through all of the new revisions
that are to be included in the RSS feed, and usessvnlook to get useful information about
each revision, which is then parsed (into an RSS-friendly format) and fed into an RSS item
file for later inclusion in the RSS feed.

The first bit of information parsed is the author of the revision.

AuthorId= ` svnlook -r $Rev author $Repos 2>&1 `
Author= ` getent passwd | grep $AuthorId | cut -d: -f 5 `

The svnlook author command is used to get the revision, which is then stored in
AuthorId. The username that’s returned isn’t really what we want, though. It would be
much better to have the actual full name of the user who committed the revision. So, we
instead callgetent passwd, which returns the contents of the/etc/passwd file, and then
search it for the username of the author. After that is found,cut is used to extract the user’s
real name, which should be stored in the fifth colon-separated field of the password entry.

Next, genRSS usessvnlook log to retrieve the log message for the revision, and
svnlook date to retrieve the time and date of the commit. RSS feeds, however, need a
fairly specific format for date information, which happens to be a little bit different from the
date format thatsvnlook date returns. Therefore, it is necessary to process the returned
date, and massage it into a format suitable for RSS, which is achieved in the code snippet
that follows by usingsed to retrieve the date and time fromsvnlook date’s output and
replace the whole string with a modified version that matches the required RSS format.
Note the+02:00 on the replace side of thesed expression. That is the time-zone indicator,
and shows that the time is two hours ahead of Coordinated Universal Time (formerly known
as Greenwich Mean Time, abbreviated UTC). This needs to be modified for your local site,
in order to give the correct local time zone.

CommitDate= ` svnlook -r $Rev date $Repos 2>&1 `
CommitDateRss= ` echo $CommitDate | sed -e "s/\([^]*\) \([^]*\) ¬
\([^]*\).*/\\1T\\2+02:00/" `

If svnlook datewere to output2004-10-02 17:40:08 +0200 (Sat, 02 Oct 2004),
the RSS format would look like2004-10-02T17:40:08+02:00.

“svnbook” � 2005/4/14 � 14:55 � page 182 � #203i
i

i
i

i
i

i
i

182 Chapter 11 The Joy of Automation

After getting the log and date, the script generates a URL where users will be taken if
they click on the link provided for the RSS feed entry in their RSS reader. In this case, the
URL generated takes the user to a page in a ViewCVS site that shows the changes for the
particular revision. This, of course, assumes that there is in fact a ViewCVS site set up and
running. For more information about ViewCVS, take a look at Chapter 8, “Integrating with
Other Tools.”

URL="http://svnserver/viewcvs?rev=$Rev&root=$ReposName&view=rev"

Next,genRSS generates a category entry for the RSS item, based on the modified paths.
As with the date modification,genRSS usessed to massage the output garnered from
svnlook changed to get a category name that identifies the section of the repository that
was modified. This parsing is necessarily very repository specific, and you probably need
to generate your ownsed commands to parse the output in order to get a meaningful
category. If parsing the changed files doesn’t make sense as a means to get a category,
you may instead want to have the user put a category line in her log message that can be
extracted.

FirstModifiedPath= ` svnlook -r $Rev changed $Repos | cut -b5-1000 | sed ¬
-e "s{\([^/]*/[^/]*\).*{\1{" | uniq `

Category= ` echo $FirstModifiedPath | sed -e "s&\(.*\)/\(.*\)&\\2 (\\1) ¬
&" `

Finally, all of the data that has been gathered is output into an item file, in the appropri-
ate XML format for the RSS feed.

echo " <item>" > $RssItemFile
echo " <title><![CDATA[$CommitMsg]]></title>" >> $RssItemFile
echo " <link><![CDATA[$URL]]></link>" >> $RssItemFile
echo " <description><![CDATA[$CommitMsg]]></description>" >> ¬
$RssItemFile
echo " <category>$Category</category>" >> $RssItemFile
echo " <dc:creator>$Author</dc:creator>" >> $RssItemFile
echo " <dc:date>$CommitDateRss</dc:date>" >> $RssItemFile
echo " <pubDate>$CommitDateRss</pubDate>" >> $RssItemFile
echo " </item>" >> $RssItemFile

After the item files have all been generated, it’s time to assemble them all into a full
RSS feed XML file. This is accomplished by theAssembleThePieces() function, which
is shown here.

#===
Echos the contents of RssHeader, followed by each of the Rss Item
files in revision-number-order, followed by RssFooter to the Rss file
being generated.

“svnbook” � 2005/4/14 � 14:55 � page 183 � #204i
i

i
i

i
i

i
i

11.2 Making the Most of Hook Scripts 183

AssembleThePieces ()
{
echo "Assembling the pieces"
cat $RssHeader > $RssFileTmp

local PubDate= ` date +"%a, %d %b %Y %T %Z" `
echo " <dc:date>$PubDate</dc:date>" >> $RssFileTmp
echo " <pubDate>$PubDate</pubDate>" >> $RssFileTmp
echo " <lastBuildDate>$PubDate</lastBuildDate>" >> $RssFileTmp

Add all RSS items to the RSS file
for ((Rev=LastItemToInclude; Rev >= FirstItemToInclude; Rev--))
do
cat $RssItemsDir/Item.$Rev >> $RssFileTmp
done

Add the RSS footer
cat $RssFooter >> $RssFileTmp
mv -f $RssFileTmp $RssFile
}

As you can see in the preceding code, the RSS feed file is generated by successively
inserting the RSS header, publication date, each item file, and RSS footer into a temporary
RSS file. After the full file is created, that is then moved over to replace the old live RSS
file.

The RSS header and footer are stock pieces of XML, which are stored in their own files.
The header file contains various pieces of information about the Subversion repository, and
needs to be customized for your particular repository.

As an example, here is what the header might look like. Notice that you need to cus-
tomize most of the tags under the<channel> tag to match your repository.

<?xml version="1.0" encoding="iso-8859-1"?>
<rss version="2.0"

xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:sy="http://purl.org/rss/1.0/modules/syndication/"
xmlns:admin="http://webns.net/mvcb/"
xmlns:slash="http://purl.org/rss/1.0/modules/slash/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:content="http://purl.org/rss/1.0/modules/content/">

<channel>
<title>InteractV1 Code Updates</title>
<link>http://svnserver/viewcvs/?root=InteractV1</link>
<description>News about recent code updates to InteractV1</ ¬

description>

“svnbook” — 2005/4/14 — 14:55 — page 184 — #205i
i

i
i

i
i

i
i

184 Chapter 11 The Joy of Automation

<webMaster>nstrydom@absolutesys.com</webMaster>
<managingEditor>tcl@absolutesys.com</managingEditor>
<dc:language>en-us</dc:language>
<sy:updatePeriod>hourly</sy:updatePeriod>
<sy:updateFrequency>1</sy:updateFrequency>
<sy:updateBase>2000-01-01T12:00+00:00</sy:updateBase>

The footer, then, is quite simple, and just closes off a couple of tags that are still open
at the end of the RSS feed.

</channel>
</rss>

Tying It All Together

Finally, at the end of thegenRSS script is the function that ties everything together. The
GenerageRssFile() function calls each of the other functions in the proper order, and
outputs"Done." when it is finished. After the function is declared, the script immediately
calls it.

#===
Generates a new RSS file for the repository.
GenerateRssFile ()
{
AcquireLockFile
ComputeFirstAndLastItemRevisions
DeleteOldItemFiles
CreateNewItemFilesFromSVN
AssembleThePieces
ReleaseLockFile
echo "Done."
}

GenerateRssFile

Taking Action on the Post-commit

Now that you have thegenRSS script, you need to set up yourpost-commit script to run
it, which will give you a script something like the following example.

#!/bin/sh

REPOS=$1
REV=$2

REPOSNAME= ` /bin/basename $REPOS `
/svnrepos/scripts/genRSS $REPOSNAME

“svnbook” � 2005/4/14 � 14:55 � page 185 � #206i
i

i
i

i
i

i
i

11.2 Making the Most of Hook Scripts 185

For the most part, this is a very straightforward script. The one “gotcha” that you might
notice, though, is theREPOSNAME variable, which is constructed using thebasename com-
mand to strip off everything but the trailing repository name. This is because thegenRSS
script takes the name of the repository, not the full path to the repository.

11.2.3 Implement Fine-grain Access Controls

The Authz module for Apache and WebDAV allows you to restrict access to specific direc-
tories to individual users or groups of users. What if you usesvnserve though? It doesn’t
have the fine-grained access controls of Authz built in. Or, what if you need to restrict write
access to a specific file? Authz only allows restrictions to be placed on a per-directory ba-
sis. These cases are wherepre-commit hook scripts can come in handy. With a hook
script, you can check the permissions of the user against the directory (or file) where the
commit is taking place, before allowing it to be applied (unfortunately, there is no way to
run a hook script before a read takes place; as the French say, such is life).

Like e-mailing of commits, access controls are another very common use of hook
scripts. As such, Subversion provides two example scripts, similar to the e-mail commit
scripts. Each of these scripts allows you fine-grained access control over commits, on a
per-file or per-directory basis. If you need to make modifications, there is a Perl script and
a Python script, which you can use depending on your language of choice.

commit-access-control.pl

You run thecommit-access-control.pl script by passing it the repository in question,
the transaction name, and a configuration file with the user permissions for the repository.
If the script determines that the user performing the commit has the proper permission, it
exits with a return status of0; otherwise it exits with a1.

The following example shows how you might write apre-commit script that runs
commit-access-control.pl and decide whether to allow the commit.

#!/bin/sh

Get the pre-commit script arguments
$1 = The repository path
$2 = The transaction name

RPS = "$1"
TXN = "$2"

Check the repository permissions
ACCESS_CONTROL = /usr/local/share/tools/hook-scripts/commit-access- ¬
control.pl
CONFIG_FILE = /var/repos/svnrepos/access_control.conf
${ACCESS_CONTROL} "${RPS}" "${TXN}" "${CONFIG_FILE}" || exit 1

“svnbook” � 2005/4/14 � 14:55 � page 186 � #207i
i

i
i

i
i

i
i

186 Chapter 11 The Joy of Automation

It passed everything appropriately
exit 0

The configuration file thatcommit-access-control.pl uses is very similar to the
Authz configuration. Each section name is enclosed in brackets ([sec name]) and con-
tains entries for a pattern tomatch directories against (for determining which directories
the group applies to), a list ofusers to grant the permission to, and anaccess option that
determines whether the allowed access isread-only or read-write.

The following example shows a config file that sets up three permissions sections, giv-
ing read permission to everyone, write permission for the trunk to only two users, and write
permission to branches to a select few users.

[global]
match = .*
access = read-only

[trunk permissions]
match = /trunk
users = fred ethel
access = read-write

[branches]
match = /branches
users = fred ethel joe linda betty

Thematch section uses the Perl regular expression syntax to match directories to apply
the permissions to. The syntax itself is beyond the scope of this book, but you should have
little trouble finding good Perl documentation if you look online or at your local bookstore.

If you know a little bit of Perl, you should feel free to examine the source code for
commit-access-control.pl to see how it works. You should also feel free to experi-
ment a little and modify the script to better fit your needs. It’s not only in the spirit of open
source, but it’s also a great way to learn.

svnperms.py

If you are thinking that you would like to make a few of your own custom modifica-
tions to thecommit-access-control.pl file, but Perl isn’t your cup of tea, you might
want to take a look atsvnperms.py. This script performs almost exactly the same func-
tion ascommit-access-control.pl, but is written in Python instead of Perl. Like
commit-access-control.pl, svnperms.py takes a repository and transaction, and de-
termines whether the user has write permissions based on a supplied configuration file. The
syntax ofsvnperms.py is a little different thancommit-access-control.pl, as is the
syntax of its permissions configuration file. If you look at thesvnperms.py source, you
should quickly see how it differs though. You can also runsvnperms.py by itself with no
options to see the usage message.

“svnbook” — 2005/4/14 — 14:55 — page 187 — #208i
i

i
i

i
i

i
i

11.2 Making the Most of Hook Scripts 187

$./svnperms.py
missing required option(s): repository, either transaction or a ¬
revision
Usage: svnperms.py OPTIONS

Options:
-r PATH Use repository at PATH to check transactions
-t TXN Query transaction TXN for commit information
-f PATH Use PATH as configuration file (default is repository

path + /conf/svnperms.conf)
-s NAME Use section NAME as permission section (default is

repository name, extracted from repository path)
-R REV Query revision REV for commit information (for tests)
-A AUTHOR Check commit as if AUTHOR had committed it (for tests)
-h Show this message

11.2.4 Enforce Policy

Any software development project is going to have a number of policies that are unique to
that project (even though they may be similar to policies on other projects). One of the jobs
of a project manager is to help ensure that those policies are correctly followed. Due to for-
getfulness, laziness, stubbornness, and occasionally incompetence, ensuring that policies
are followed can be a tough job, and allowing them to slip (even slightly, sometimes) can
cause a lot of headaches down the road.

In many cases, though, the policies that need to be followed are well-defined enough
that a script can be written to parse the source that is being committed to a repository and
check it for compliance with project policies. If that is the case, the script can be run as part
of a pre-commit hook script, which allows Subversion to reject any commits that don’t
comply with policy.

Some of the policies that you might want to consider testing in yourpre-commit script
are

• Check compliance with source code style rules. Many projects have style rules (in-
dentation, bracket placement, variable naming, and so on) that all code committed
to the project should follow. Many of these rules are easily tested by an automated
checker (GNU Indent is a popular choice for C code), and either fixed or rejected with
reasons for failure. If your project requires submitters to check their code against a
standard before committing, you can have a script run the checker when it receives
the commit and reject any code that doesn’t fit the requirements.

• Ensure that submitted source compiles. If a user commits code to the repository that
doesn’t compile, it can cause delays and headaches as other developers have to sort
out why things no longer work and are potentially blocked in their own development
until a fix is committed. By running a build of the source before allowing the commit,
you can help prevent broken source trees. This tends to be a more useful hook if it
only checks against the trunk (or other shared branches) and allows branches used

“svnbook” � 2005/4/14 � 14:55 � page 188 � #209i
i

i
i

i
i

i
i

188 Chapter 11 The Joy of Automation

only by individual developers to be committed broken.

• Validate submitted changes with the project’s test suite. Many projects have a suite of
test programs to help ensure that features work (and continue to work after changes
are made). If such tests exist, it is usually important for developers to run those tests
before submitting changes to the Subversion repository. Unfortunately, that doesn’t
always happen, and submitted changes may introduce subtle problems in areas other
than their main area of operation. By automatically running the project’s test suite
(or a subset, if it’s too large to run on every commit), you can help reduce these
instances. This tends to be a more useful hook if it only checks against the trunk (or
other shared branches) and allows branches used only by individual developers to be
committed broken.

• Use properties to check status of outside processes. For example, you might require
that all source code be validated in a peer review before it is placed into the main
source trunk. To help ensure that those peer reviews have taken place, you could
require that all changes submitted to the repository include a property change that
adds the date or the peer review for those changes to a property showing the peer
review history of the file.

• Enforce repository modification policies. For instance, users should be able to cre-
ate new tags intags/, but you probably don’t want them to modify anything in
those tags (tags/*/*). Nor do you likely want to have users create files directly in
branches/ ortags/. Instead, they should only create directories. Furthermore, you
could limit those directories to directories that have history, thus preventing a tag or
branch created from a fresh directory addition.

11.2.5 Log Revision Property Changes

When revision properties are changed, the change is applied immediately and the old value
is lost forever. This makes revision properties extremely volatile if you allow them to
be changed. On the other hand, there are times when changing revision properties can
be useful, especially if you add your own revision properties to support your development
process. Therefore, the best solution for overcoming the shortcomings of the revision prop-
erty, while allowing them to be changed for reasonable purposes, is to create a log of each
revision property’s history. Whenever that revision property changes, you log the previous
value of the property into an unversioned file stored somewhere on disk. Then, later, if
someone needs to retrieve the old value for a revision property, he can check that file and
find the information he wants.

The followingpre-revprop-change hook script shows how you might go about log-
ging all of your revision property changes.

#!/bin/sh

REPOS="$1"

“svnbook” — 2005/4/14 — 14:55 — page 189 — #210i
i

i
i

i
i

i
i

11.2 Making the Most of Hook Scripts 189

REV="$2"
USER="$3"
PROPNAME="$4"

echo "Changing revision property ${PROPNAME} on revision ${REV} at ` / ¬
bin/date ` " >> ${REPOS}/revprop.log
echo "========== Old Value =========="
echo ` /usr/bin/svn propget ${PROPNAME} --revprop --revision ${REV} ¬
file://${REPOS} ` >> ${REPOS}/revprop.log
echo "========== End Old Value =========="
echo

exit 0

As you can see, this is a pretty simple script. First, it echoes some information about
the property being changed (the property name, the revision number, and the date/time of
the change). Then, it retrieves the old value by runningsvn propget, and echoes that
value into the log file, too. Finally, it exits with status zero, so that Subversion will allow
the property change to take place.

You may be asking why I usesvn propget instead ofsvnlook propget. The an-
swer is thatsvnlook propget doesn’t allow you to retrieve revision properties. Because
svn doesn’t take raw revision paths, though, I have to add thefile:// schema onto the
beginning of$REPOS when I put it on the command line.

11.2.6 Make Tags Immutable

One of Subversion’s more controversial features is its lack of CVS-style tags (or VSS-
style labels), where a particular revision can be “tagged” with an identifier that gives it
special meaning. In Subversion, tagging is done with cheap copies, and are technically
identical to branches. The only thing that sets tags apart from branches is the convention
that copies placed into “branches” directories are branches, and copies placed into “tags”
directories are tags. The upside to this is flexibility (hierarchical or alternate branches and
tags directories), but the downside is a lack of enforcement for the immutability that is
generally desired for tags.

Generally, tags are meant to be static identifiers of the state of the repository at a given
point in time. If you want people making changes and committing them to the tag, you
would make it a branch, right? The problem with using Subversion copies for tags is that
those tags arenot immutable. In fact, you can check out a tag and freely commit changes
to it, just as with any other directory, because Subversion doesn’t have any concept of tags
being anything special. Of course, your history isn’t lost, because the tag will be fully
versioned. But if someone accidentally commits a change to a tag, it may not be noticed by
others who check out the tag, thinking they are getting a static snapshot of the repository at
a specific point in time.

The easiest solution for keeping tags static is to simply make it project policy. Make
sure everyone on the development team knows not to modify any files in thetags directory,

“svnbook” � 2005/4/14 � 14:55 � page 190 � #211i
i

i
i

i
i

i
i

190 Chapter 11 The Joy of Automation

and let the team police itself by occasionally checking histories and ensuring that no one
has made any changes they weren’t supposed to. Because everything is versioned, it will
be relatively easy to undo any changes that are made, and everything should run smoothly.

Are you laughing yet? If you have much experience with development projects (and,
more specifically, developers), you will know that relying on everyone to always do the
correct thing is setting yourself up for problems. People make mistakes, and occasionally
do malicious things (even on a small project). Therefore, if a policy can be enforced through
technical means, without unduly causing detriment to the developer’s productivity, that is
almost always better than just stating the policy and hoping everyone follows it correctly.

One way that you can enforce the immutability of tags in Subversion is to use hook
scripts that check data that is being committed, and ensure that nothing in thetags direc-
tory is being modified. You can do this, for instance, in apre-commit script that checks
which files are being modified, usingsvnlook changed, and rejects any commits with
changes inside thetags directory. Of course, you still want to be able to add new tags, and
probably want to be able to delete tags, too, so you’ll want to check specifically for files
that have been updated, while allowing adds and deletes. The following example script
shows one way that you might implement this functionality using thesvnperms.py script.

#!/bin/sh

Grab the repository name and the transaction number from
the script's arguments.
REPOS="$1"
TXN="$2"

Run svnperms.py to check the permissions
/usr/bin/svnperms.py -r ${REPOS} -t ${TXN} -s SimpleAuth
exit 0

The matchingsvnperms.conf file should be created in$REPOS/conf/, and will look
something like the following example. In this example, thetrunk andbranches directo-
ries are fully modifiable, but users can only create or delete directories at the top level of
thetags directory. Any attempts to add, modify, or remove files or directories inside a tag
will fail.

[SimpleAuth]
trunk/.* = *(add,remove,update)
branches/.* = *(add,remove,update)
tags/*/* = *()
tags/[^/]+/ = *(add,remove)

It might be helpful to also be able to set properties on the tags themselves (i.e., the
directory contained at the top level of thetags directory). If you’d like to allow properties

“svnbook” — 2005/4/14 — 14:55 — page 191 — #212i
i

i
i

i
i

i
i

11.3 Taking Advantage of Metadata 191

to be set, you can addupdate to the list of actions that can be performed in the last entry
of thesvnperms.conf file, so that it looks like this:

tags/[^/]+/ = *(add,remove,update)

Because the only modification you can do to a directory (other than move or delete
it) is modify properties, this has the effect of just allowing properties to be set for the tag
directories, without allowing the contents of the tag to be modified.

Another common concern with tags: What happens when you do have to change a tag,
but modifications have been disallowed? If someone accidentally commits a tag prema-
turely, or tags the wrong directory, you don’t want to be stuck with an incorrect tag. Also,
you might find it useful to regularly change some tags to point to a different part of the
repository, such as with a “current development tree” or “last successful build” tag. In
these cases, you don’t want a hook script that disallows modifications to get in the way.

To allow certain users to modify tags, without opening up modification permissions to
everybody, you can make use ofsvnperms.py’s groups. By adding anadmin group, you
can assign specific users to have permission to modify tags. The updatedsvnperms.conf
file with this added in will look something like the following.

[groups]
admins = bill fred

[SimpleAuth]
trunk/.* = *(add,remove,update)
branches/.* = *(add,remove,update)
tags/*/* = *() @admins(add,remove,update)
tags/[^/]+/ = *(add,remove)

11.3 Taking Advantage of Metadata

Subversion provides a wealth of metadata about version files, which can be leveraged when
writing scripts to automate things in Subversion, both on the client and server side. By
knowing what information is available, and how to effectively get at it, you will greatly
increase your ability to write scripts that will help to automate Subversion’s integration
into your software development process.

11.3.1 The Subversion Commands

There are two Subversion programs that you will commonly use when accessing a Sub-
version repository from your scripts,svn andsvnlook. The choice generally depends on
whether you are running server side or client side. In a client-side script, youmustusesvn,
becausesvnlook requires direct access to the actual repository, rather than access through
svnserve or Apache. On the server side, though, you are often better off usingsvnlook
because it makes a lot of metadata easier to retrieve, and protects you from accidentally
modifying a repository in a hook scripts (where such modifications should not occur but
are allowed by the system).

“svnbook” — 2005/4/14 — 14:55 — page 192 — #213i
i

i
i

i
i

i
i

192 Chapter 11 The Joy of Automation

svn

The details of usingsvn are described in detail in Chapter 5, “Working with a Working
Copy,” so I won’t repeat them here. I will, however, briefly review the commands that are
useful for examining repository metadata, as well as the specific metadata that you’ll be
able to retrieve using each of the commands.

svn blame Allows you to retrieve the author responsible for each line in a file, as well
as the revision where that line was last modified. In most cases, this is a useful command
when run by itself, to provide information to a developer. The author/revision metadata can
be useful though, and you may find instances where this is a useful command to use in an
automated script.

svn info Provides a variety of pieces of metadata information about an individual ver-
sioned file or directory in a working copy (svn info won’t work with a URL). Much of
this information is useful for automation, and can be easily retrieved fromsvn info’s
output. The individual entries that can be retrieved are

• Path (directory, file). This is the path, relative to the base of the repository, where the
file or directory is found.

• Name (file). This is the name of the file by itself, without preceding path information.

• URL (directory, file). This is the URL to the file or directory in the repository.

• Repository UUID (directory, file). This is a unique identifier, which identifies which
repository the file came from, regardless of URL. It allows the Subversion client to
identify a unique repository, regardless of whether the URL is of the formsvn://,
http://, or something else entirely.

• Revision (directory, file). This is the current revision of the given file in the working
copy.

• Node Kind (directory, file). This identifies whether the item being examined is a file
or a directory.

• Schedule (directory, file). This is used to identify files that are scheduled for addition
or deletion from the repository.

• Last Changed Author (directory, file). This is the last user to make a change to the
file or directory.

• Last Changed Rev (directory, file). This is the last revision in which the directory
or file was modified.

• Last Changed Date (directory, file). This is the date and time of the last modifica-
tion to the file or directory.

• Text Last Updated (file). This is the date of the last time thesvn update com-
mand changed the file’s text in the working copy.

• Properties Last Updated (file). This is the date of the last time thesvn update
command changed a property of the file in the working copy.

“svnbook” — 2005/4/14 — 14:55 — page 193 — #214i
i

i
i

i
i

i
i

11.3 Taking Advantage of Metadata 193

• Checksum (file). This is a checksum of the file checked out into the working copy. It
can be used to make sure that the correct file was downloaded, or to see if the local
file has been modified.

svn log You can use this command to retrieve the log history of a file or directory. This
is most useful in automated scripts if the log files are structured, so that a script can parse
them for useful information. For instance, you might have developers enter the issue tracker
ticket number for a commit in a predictable manner, such that an automated script would be
able to read through the logs and find all of the revisions that applied to a particular issue.

svn status This command is useful for finding the current state of a repository or work-
ing copy. It outputs status in a very strict, easily parsed format, making retrieval of specific
items of information fast and trivial.

In addition to these metadata retrieval commands, you can also get information about
custom metadata (i.e., properties) using thesvn property commands.

svn propget With this command, you can get the individual values of individual prop-
erties from a file or directory. The usefulness of any individual property in automation can
vary wildly, but well-chosen properties can be extremely useful. On the client side, scripts
that validate the state of all project-required properties can be a useful tool for develop-
ers, allowing them to see if a commit will be allowed before actually attempting it (which
should also give the developer more useful error output if the file doesn’t pass).

svn proplist This command allows you to see all of the properties set on a particular file
or directory, which can be useful in a client-side automated script to verify the existence
of certain properties, and act accordingly. For example, a script could retrieve all of the
properties available and process the file based on which properties are there. If there are
a lot of optional properties, this is almost certainly faster than testing each property for
existence individually.

svnlook

Thesvnlook command is easily one of the more useful tools available to you when writing
scripts that will run on the server, with local access to the repository. It provides you
with the ability to inspect a variety of aspects of the repository, including transactions
that have not yet been fully committed to the repository. Some of its commands mirror
those available insvn (albeit with slightly different inputs and outputs), but many provide
information that is difficult to get using the client (or in a form better suited to using with a
script).

Thesvnmirrored commands cover the query commands that don’t affect the repository
itself in any way. For the most part, they work similar to their equivalent commands in

“svnbook” — 2005/4/14 — 14:55 — page 194 — #215i
i

i
i

i
i

i
i

194 Chapter 11 The Joy of Automation

svn, with the addition of a--transaction (or -t) argument that allows you to inspect a
transaction instead of a revision, given the transaction number. The transaction number is
supplied as an argument to thepre-commit andpre-revprop-change hook scripts, or
can be found by runningsvnadmin lstxns. Additionally, thesvnlook commands take
the local path to the repository, instead of a URL, and won’t work with a working copy.

svnlook cat This command works exactly the same as thesvn version. It takes a repos-
itory and the path to a file in the repository and outputs that file’s contents.

$ svnlook cat --revision 1492 /var/svnrepos /repos/trunk/groceries.txt
One Gallon Milk
A Dozen Eggs
Steak
Apples
Hamburgers
Bread

svnlook diff This diff command is similar to thesvn diff command, but with fewer
options. Unlike thesvn diff command,svnlook diff is only meant to show the differ-
ences that were applied to a repository in a given revision, rather than giving the differences
between two arbitrary versions. Therefore, the following example would output all of the
changes that were applied in revision 1972, using the GNU diff format. Changes are shown
across all files that were changed in that revision. There is no way to specify individual files.

$ svnlook diff --revision 1972 /var/svnrepos
Modified: trunk/ParseTree.h
==
--- trunk/ParseTree.h 2004-09-28 05:15:43 UTC (rev 1971)
+++ trunk/ParseTree.h 2004-09-28 05:52:14 UTC (rev 1972)
@@ -2,33 +2,51 @@
#define PARSE_TREE_H

#include "ParsedElem.h"
+#include "UnparsedElem.h"
#include <string>
#include <list>

svnlook info Instead of giving information about a particular file, this command gives
information about a particular revision in the repository. Specifically, it gives the user who
committed the revision, the date of the revision, the revision number, and the log entry for
that revision.

$ svnlook info --revision 1000 /var/svnrepos
bill

“svnbook” � 2005/4/14 � 14:55 � page 195 � #216i
i

i
i

i
i

i
i

11.3 Taking Advantage of Metadata 195

2004-05-11 14:30:43 -0500 (Tue, 11 May 2004)
27
Added ready status output.

svnlook log Thesvnlook log command is identical to thesvn log command, except
it only gives a single log entry for a specific revision or transaction.

$ svnlook log --transaction 34 /var/svnrepos
Implemented a logging algorithm.

svnlook propget This command gives exactly the same output as thesvn propget
command. You just need to feed it a repository, a property name, and a path to a file in the
repository.

$ svnlook propget --revision 356 /var/svnrepos svn:ignore /trunk/src
*.o
*.so
*.a

svnlook proplist Similarly, the proplist command works identically to the
svn proplist command, and lists all of the properties associated with a file, at the sup-
plied revision.

$ svnlook proplist --revision 558 /var/svnrepos /trunk/src
svn:ignore
svn:keywords

If you would like, you can also see the values of each property by passing the--verbose
(or -v) parameter.

In addition to the commands that more or less mirror commands fromsvn, svnlook
provides a number of commands that are not available in the Subversion client, but which
can be very useful when writing hook scripts, and other server-side automation tools.

svnlook author This command prints the username of the person who committed the
designated revision or transaction.

$ svnlook author --revision 17834 /var/svnrepos
dwnorth

svnlook changed With this command, you are able to see exactly which files have been
changed for a particular revision, in a manner similar to the output ofsvn status. Each
file that was modified in that revision is shown, with its full path relative to the root of the
repository, preceded by two columns of output that tell what has changed in the file.

“svnbook” — 2005/4/14 — 14:55 — page 196 — #217i
i

i
i

i
i

i
i

196 Chapter 11 The Joy of Automation

$ svnlook changed --revision 238 /var/svnrepos
U trunk/etc/csh.login
A trunk/etc/httpd.conf
D trunk/etc/profile.env
_U trunk/etc/passwd

The first column shows changes that have been made to the contents of the file.

U: The file’s contents were modified.

A: The file was added to the repository.

D: The file was removed.

Additionally, the second column indicates files that have had a property modified, with aU.

svnlook date The date command outputs the date that a revision was created.

$ svnlook date /var/svnrepos
2004-09-29 18:33:13 -0500 (Wed, 29 Sep 2004)

svnlook dirs-changed This command outputs all of the directories that were changed
in a given revision or transaction. Changed directories include directories that had a prop-
erty modified or directories that contain files which were modified. Directories that had a
subdirectory added or removed are also shown.

$ svnlook dirs-changed --transaction 19 /var/svnrepos
trunk/
branches/release_1_0_1

svnlook history This command allows you to examine the path that a file has taken,
through copies and moves. When you runsvnlook history with the path to a file or di-
rectory in your repository, it outputs the revision history of that file, showing every revision
where that file or directory was modified, along with the path to the file at that revision.

$ svnlook history /var/svnrepos /tags/release_1_0
REVISION PATH
-------- ----
5630 /tags/release_1_0
5407 /branches/release_candidate
5304 /branches/release_candidate
5207 /branches/release_candidate
5206 /trunk
5205 /trunk
...

“svnbook” — 2005/4/14 — 14:55 — page 197 — #218i
i

i
i

i
i

i
i

11.3 Taking Advantage of Metadata 197

3 /trunk
2 /trunk
1 /trunk

If you give svnlook history an explicit revision (using--revision, or -r), it only
outputs the history of the given file up to that point.

$ svnlook history --revision 4 /var/svnrepos /tags/release_1_0
REVISION PATH
-------- ----

4 /trunk
3 /trunk
2 /trunk
1 /trunk

svnlook tree You can examine the hierarchy of files in your repository by using the
svnlook tree command. If you run the command with no path argument, it shows the
entire tree of files in your repository at the supplied revision. If, instead, you provide the
command with a path into the repository, it shows that directory and all files/subdirectories
contained within.

$ svnlook tree /var/svnrepos /branches/release_1_0
release_1_0/
hello_world/
hello_world.c
Makefile
docs/
README.txt

svnlook uuid Each repository has a unique ID that allows it to be identified independent
of the URL used to access it. You can output this ID by runningsvnlook uuid.

$ svnlook uuid /var/svnrepos
8ebba8bb-42e5-0310-8fa5-bfaad3eac2b1

svnlook youngest You can find the most recently committed revision of a repository by
running this command. It has no options, and just takes the path to a repository. Because
its output is simply the revision number, it is especially useful in scripts.

$ svnlook youngest /var/svnrepos
2592

“svnbook” � 2005/4/14 � 14:55 � page 198 � #219i
i

i
i

i
i

i
i

198 Chapter 11 The Joy of Automation

11.4 The Subversion API

Subversion clients interact with a Subversion repository by linking against the Subversion
client libraries, which provide a comprehensive API for manipulating the repository. By us-
ing the Subversion APIs, you can write complex applications to provide new tools capable
of providing new functionality, wrapping old functionality in a manner more conducive to
your process, or automating complex tasks. There are even bindings for the API available
in a number of different languages (currently, C, C++, Java, Perl, and Python).

The Subversion libraries are a large and full-featured set of interfaces that could proba-
bly fill an entire book of their own. So, instead of going into a long-winded (read:boring)
discussion on how to call this function or initialize that data structure, I’ll instead whet your
appetite by diving in and showing you a small example program.

11.4.1 svntag

The example program is calledsvntag. Subversion’s tagging via copies can be confusing
for some users who are coming from a CVS background. To make the transition from CVS
to Subversion easier for them, this program automatically creates a “tag” by copying the
trunk into the/tags directory, while requiring only a tag name from the user.

Of course, this particular example could be accomplished much more easily by just
writing a script that wraps thesvn copy command, but it serves its purpose here of illus-
trating the Subversion API. To better serve as an example, it is also somewhat incomplete
in its error checking and hardcodes a few pieces of information that should never be hard-
coded in a production application (such as the base URL for the repository).

#include <unistd.h>

#include <svn_client.h>
#include <svn_config.h>
#include <svn_pools.h>
#include <svn_cmdline.h>

/* Define some global structs */
svn_client_ctx_t* context;
svn_opt_revision_t revision;

/* Define some path strings */
const char* baseURL = "http://svn.mydomain.com/testrepos/";
const char* tagsDir = "tags/";
const char* trunkDir = "trunk";
const char* tagname;
char* destURL;

/* The base string for tags */
const char* logBase = "Created new tag: ";

“svnbook” � 2005/4/14 � 14:55 � page 199 � #220i
i

i
i

i
i

i
i

11.4 The Subversion API 199

/* Creates the commit log for the tagging */
svn_error_t* getCommitLog(const char** log_msg, const char** tmp_file,

apr_array_header_t* commit_items,
void* baton, apr_pool_t* pool)

{
/* Fill the commit log */
*log_msg = apr_psprintf(pool, "%s%s", logBase, tagname);

return SVN_NO_ERROR;
}

/* Initialize the Subversion API context */
svn_error_t* initializeContext(apr_pool_t* pool)
{
/* Create a new context */
SVN_ERR(svn_client_create_context(&context, pool));

/* Get the configuration data structure for the context */
SVN_ERR(svn_config_get_config(&(context->config), NULL, pool));

/* Set the callback function for setting the commit log */
context->log_msg_func = getCommitLog;
context->log_msg_baton = NULL;

return SVN_NO_ERROR;
}

/* Parse the command line */
int parseCmdLine(int argc, char** argv, apr_pool_t* pool)
{
if(argc != 2) {
printf("Usage: svntag TAGNAME\n");
return -1;

}

/* Set the tag name */
tagname = argv[1];

/* Construct the destination URL */
destURL = apr_psprintf(pool, "%s%s%s", baseURL, tagsDir, tagname);

return 0;

“svnbook” — 2005/4/14 — 14:55 — page 200 — #221i
i

i
i

i
i

i
i

200 Chapter 11 The Joy of Automation

}

int main(int argc, char** argv)
{
apr_pool_t* pool;

/* Perform command-line application initializations */
svn_cmdline_init("svntag", stderr);

/* Initialize the memory pool */
pool = svn_pool_create(NULL);

/* Parse the command line */
if(parseCmdLine(argc, argv, pool) < 0) return -1;

/* Initialize the Subversion API */
SVN_INT_ERR(initializeContext(pool));

/* Set the revision */
revision.kind = svn_opt_revision_head;

/* Perform the copy */
{
svn_client_commit_info_t* commitInfo;
char* trunkURL;

trunkURL = apr_psprintf(pool, "%s%s", baseURL, trunkDir);
SVN_INT_ERR(svn_client_copy(&commitInfo,

trunkURL,
&revision,
destURL,
context,
pool));

}

return 0;
}

That’s it. That’s the whole program. I’ll explain how to compile it in a little while, but
first, let’s look at what each part of the program does, and why.

“svnbook” — 2005/4/14 — 14:55 — page 201 — #222i
i

i
i

i
i

i
i

11.4 The Subversion API 201

Initial Includes and Defines

At the beginning of the program, you see a number of includes, as well as the definitions
for several global variables. Let’s start by looking at the includes.

#include <unistd.h>

#include <svn_client.h>
#include <svn_config.h>
#include <svn_pools.h>
#include <svn_cmdline.h>

The Subversion API consists of a large number of header files that segregate the API
into different subsets of functionality. For example, if you need to deal with contex-
tual diffing, you would includesvn_diff.h. If you you need to deal with authentication
to a repository, includesvn_auth.h. In this program, as you can see, we’ve included
four Subversion API header files (plus the commonunistd.h header). Three of these,svn_cmdline.h, svn_config.h, andsvn_pools.h, provide common functionality that
is needed in almost every application. The third,svn_cmdline.h, provides the interface
to the libsvn_client library, which includes functions for implementing the familiar
Subversion client commands.

After the header includes, you see a number of global variable defines.

/* Define some global structs */
svn_client_ctx_t* context;
svn_opt_revision_t revision;

/* Define some path strings */
const char* baseURL = "http://svn.mydomain.com/testrepos/";
const char* tagsDir = "tags/";
const char* trunkDir = "trunk";
const char* tagname;
char* destURL;

/* The base string for tags */
const char* logBase = "Created new tag: ";

The first two of these are structures from the Subversion API that probably make no
sense to you. That’s okay; ignore them for now. I’ll discuss their purpose later, when I
show where they are actually used. After the structures are a bunch of strings. These are
used for storing the URLs given to the Subversion API, as well as the log message for
inclusion with each tagging.

Memory Pools

Before we continue with our program, let’s take a minute to talk aboutmemory pools. The
Subversion libraries are built atop the Apache Portable Runtime (APR) project. APR is a
library designed to give a portable interface to programs, which then communicates with

“svnbook” � 2005/4/14 � 14:55 � page 202 � #223i
i

i
i

i
i

i
i

202 Chapter 11 The Joy of Automation

the platform-specific interfaces of different operating systems. This library is the reason
why Subversion is runnable on such a wide array of different platforms. One of APR’s
more complex interfaces is its memory pool system. To allow memory to be allocated and
disposed of cleanly and efficiently, APR allows programs to create a memory pool that
provides a dynamically allocated block of memory. Programs can then use that memory
as they see fit, and then deallocate the entire block at an appropriate time. Additionally,
APR allows blocks of memory to be chained together (and intelligently shared behind the
scenes). Chained memory pools can then be cleared individually or all at once (a very
powerful feature).

The Subversion libraries make extensive use of APR memory pools, and expose them
frequently in the Subversion API. To make their creation a little bit easier in the context of
Subversion, though, the Subversion API wraps the APR memory pool manipulation func-
tions with its own versions. In the case of our program, we’ll use thesvn_pool_create()
function, which acts as a wrapper to theapr_pool_create_ex. I’ll explain its use in a
little more detail when I discuss themain() function in a little while.

Initializing the Client Context

Moving to the list, we’ll skip over thegetCommitLog() function (for now) and look at the
next function,initializeContext().

svn_error_t* initializeContext(apr_pool_t* pool)
{
/* Create a new context */
SVN_ERR(svn_client_create_context(&context, pool));

/* Get the configuration data structure for the context */
SVN_ERR(svn_config_get_config(&(context->config), NULL, pool));

/* Set the callback function for setting the commit log */
context->log_msg_func = getCommitLog;
context->log_msg_baton = NULL;

return NULL;
}

The Subversionsvn_client_ctx_t structure is used to store context for a client pro-
gram’s repository access session. This includes callback functions that are used by various
client command functions, as well as configuration information. Contexts also include the
concept of abaton, which is used to pass state information to the various callback functions
(each callback function has an associated baton). The client context structure is defined as
follows.

typedef struct svn_client_ctx_t
{
svn_auth_baton_t * auth_baton;

“svnbook” — 2005/4/14 — 14:55 — page 203 — #224i
i

i
i

i
i

i
i

11.4 The Subversion API 203

svn_wc_notify_func_t notify_func;
void * notify_baton;
svn_client_get_commit_log_t log_msg_func;
void * log_msg_baton;
apr_hash_t * config;
svn_cancel_func_t cancel_func;
void * cancel_baton;

} svn_client_ctx_t;

Looking back to theinitializeContext() function, you’ll see that it starts off by
callingsvn_client_create_context(). This takes our empty context pointer and allo-
cates a new context structure for us to use. Notice how it also takes a pointer to our memory
pool, which it uses for allocating the actual context.

You’ll also notice that the wholesvn_client_create_context() function call is
wrapped with theSVN_ERR macro. This is a convenience macro that is used for checking
the return value of the enclosed function for an error. Ifsvn_client_create_context()
returns a non-nullsvn_error_t pointer, theSVN_ERR macro will return the error value
from the current function.

Next, we make a call tosvn_config_get_config() and pass a pointer to theconfig
field in our context, along with our memory pool. This function is used to load standard
Subversion configuration information from the standard Subversion configuration files. If
we had passed a string with the path to a directory (instead ofNULL) as the second argument,
svn_config_get_config() would have loaded the configuration from that directory in-
stead of the standard system-wide and user-specific sources.

Finally, the last remaining item we need to initialize in our context is the log mes-
sage callback function. This function is called whenever Subversion needs to obtain a log
message for a commit. In this case, we set it up to point togetCommitLog(), which I
will discuss in the next section. Because our commit log function doesn’t need any state
propagated from one call to the next, we can set the log message baton toNULL.

Setting the Commit Log

Let’s go back up a little ways and look at thegetCommitLog() function that we skipped
over earlier.

svn_error_t* getCommitLog(const char** log_msg, const char** tmp_file,
apr_array_header_t* commit_items,
void* baton, apr_pool_t* pool)

{
/* Fill the commit log */
*log_msg = apr_psprintf(pool, "%s%s", logBase, tagname);

return SVN_NO_ERROR;
}

ThegetCommitLog() function is responsible for supplying a log message to the Sub-
version client library backend, on demand. The function is never directly called by our

“svnbook” � 2005/4/14 � 14:55 � page 204 � #225i
i

i
i

i
i

i
i

204 Chapter 11 The Joy of Automation

program, but instead, a pointer to it is set in the client context structure and called inter-
nally by various other client library functions. When this function is called, it receives
pointers to two unallocated strings (which it is responsible for filling). It also receives an
array consisting of some or all of the items being committed, a pointer to the commit log
baton that was set for the client context, and a pointer to the pool that should be used for
all allocations.

The two unallocated strings that the commit log function is responsible for allocating
are the log message (log_msg) and a path indicating a temporary file that contains the log
message (tmp_file). If there is no temporary file, thetmp_file parameter can be set to
NULL. Similarly, if you want to cancel the commit, you can set thelog_msg variable to
NULL.

In the case of ourgetCommitLog() function, though, we just want to set a simple log
message that gives the name of the tag that was created. So, we use theapr_psprintf()
function to generate our log message, and setlog_msg to point to it. Theapr_psprintf()
function works the same as ansprintf(), but takes a pointer to the memory pool to
allocate the string.

The Main Program

Finally, we come to the main function of our program. This is where the previous functions
are all tied together. It is also where the actual copying of thetrunk directory occurs.

int main(int argc, char** argv)
{
apr_pool_t* pool;

/* Perform command-line application initializations */
svn_cmdline_init("svntag", stderr);

/* Initialize the memory pool */
pool = svn_pool_create(NULL);

/* Parse the command line */
if(parseCmdLine(argc, argv) < 0) return -1;

/* Initialize the Subversion API */
SVN_INT_ERR(initializeContext(pool));

/* Set the revision */
revision.kind = svn_opt_revision_head;

/* Perform the copy */
{
svn_client_commit_info_t* commitInfo;
char* trunkURL;

“svnbook” — 2005/4/14 — 14:55 — page 205 — #226i
i

i
i

i
i

i
i

11.4 The Subversion API 205

trunkURL = apr_psprintf(pool, "%s%s", baseURL, trunkDir);
SVN_INT_ERR(svn_client_copy(&commitInfo,

trunkURL,
&revision,
destURL,
context,
pool));

}

return 0;
}

At the top of themain() function, you’ll see a pointer of typeapr_pool_t declared.
This is the main memory pool for our program, and it is passed around to every other
function that needs it.

After the memory pool is declared, the first thing ourmain() function does is call the
svn_cmdline_init() function, which performs initializations for the underlying Subver-
sion library, specific to a command-line program. After that, we’ll initialize our memory
pool with a call tosvn_pool_create(). Normally,svn_pool_create() takes a pointer
to the pool’s parent pool, but because this is our base memory pool, we have no parent, and
passNULL instead.

The next part of themain() function parses the program’s command-line parameters.
TheparseCmdLine() function is one local to our program that extracts the tag name from
the command parameters. The function itself is self-explanatory enough that I won’t go
into it specifically.

Following the command-line parsing, we call theinitializeContext() function
that was discussed earlier. You’ll notice that theinitializeContext() function call
is wrapped by theSVN_INT_ERR() macro. This is a convenience macro supplied by the
Subversion API that checks the return result of the function for an error. If an error occurs,
it outputs the error tostderr and returnsEXIT_FAILURE.

The revision structure is set to point to the HEAD revision (because our program
always copies from HEAD).

Finally, the actual copy of the directory is performed. This is done using the function
svn_client_copy(), which takes the path to be copied from, a pointer to the revision,
the destination URL, the context that we set up earlier, and our memory pool. It also takes
a pointer to ansvn_client_commit_info_t structure, which will be filled with some
information about the commit that occurred.

Compiling the Program

Our program needs to be compiled with a few references to the Subversion libraries, as well
as the APR libraries and the Neon library. The best way to get these libraries is through the
svn-config program. In some versions of Subversion, though, the output ofsvn-config
is broken and won’t produce valid values for passing directly togcc. Instead, you may

“svnbook” — 2005/4/14 — 14:55 — page 206 — #227i
i

i
i

i
i

i
i

206 Chapter 11 The Joy of Automation

have to runsvn-config separately and copy the valid parameters by hand (or if you’re
using a Makefile, write a filter to strip out the invalid values). In this case, I compiled the
preceding application using the following command lines. You’ll note, though, that I had to
also add-lsvn_client-1 to the command line for linking, even though it is not included
by svn-config �libs output.

$ svn-config --cflags
-g -O2 -march=athlon -fomit-frame-pointer -pthread -DNEON_ZLIB - ¬
DNEON_SSL
$ svn-config --includes
-I/usr/include/subversion-1 -I/usr/include/neon @SVN_DB_INCLUDES@ - ¬
I/usr/include/apache2 -I/usr/include/apache2
$ gcc -g -O2 -march=athlon -fomit-frame-pointer -pthread -DNEON_ZLIB ¬
-DNEON_SSL -Wall -I/usr/include/subversion-1 -I/usr/include/neon -I ¬
/usr/include/apache2 -I/usr/include/apache2 -c svntag.c
$ svn-config --libs
-lneon -lz -lssl -lcrypto -ldl -lxml2 -lz -lpthread -lm -L/usr/lib - ¬
laprutil-0 -lgdbm -ldb-4.1 -lexpat -L/usr/lib -lapr-0 -lrt -lm - ¬
lcrypt -lnsl -lpthread -ldl
$ gcc -g -O2 -march=athlon -fomit-frame-pointer -pthread -DNEON_ZLIB ¬
-DNEON_SSL -Wall -lneon -lz -lssl -lcrypto -ldl -lxml2 -lz -lpthread ¬
-lm -L/usr/lib -laprutil-0 -lgdbm -ldb-4.1 -lexpat -L/usr/lib - ¬
lapr-0 -lrt -lm -lcrypt -lnsl -lpthread -ldl -lsvn_client-1 svntag.o ¬
-o svntag

11.5 Summary

In this chapter, you have learned a lot of things about automating your use of Subversion.
You saw how you could make use of hook scripts to verify commits to a repository, as well
as to use those hook scripts to perform other actions in response to commits. Additionally,
you saw a number of different example scripts that can be used in your hook scripts or
modified to fit your particular needs. You also learned about how to take advantage of
Subversion’s metadata when automating things and, finally, you saw an example of how to
use the Subversion API to write programs that directly interact with Subversion.

“svnbook” — 2005/4/14 — 14:55 — page 207 — #228i
i

i
i

i
i

i
i

Part IV

The Software Development
Process

“svnbook” — 2005/4/14 — 14:55 — page 208 — #229i
i

i
i

i
i

i
i

“svnbook” — 2005/4/14 — 14:55 — page 209 — #230i
i

i
i

i
i

i
i

Chapter 12

Development Process Policies

A version control system is just one of the many tools that are used in your development
process. Certainly, it is an important tool, and a good version control system is vital to
an effective development methodology, but even the best VCS is still only as effective
as the process it is used in. In Part IV, I will examine the many aspects of the software
development process, and the ways in which Subversion can best fit into those policies.
By the end, you should have a solid grasp on the concepts necessary to design your own
development process to fit Subversion intoyour development environment.

Any good process is made up of policies that proscribe what should be done in certain
situations. Therefore, if you are going to design your development process to make use of
Subversion, it only makes sense to start by looking at the policies that should be considered
when integrating with version control. In this chapter, we’ll examine different version
control policies and how they should be integrated into an overall software development
process.

12.1 Effective Branching and Tagging

Branching and tagging inside Subversion is one of its more flexible features, due to the
use of simple cheap copies for both actions. Within an organized software development
process, though, flexibility is only good to a point, before it becomes a hinderance to people
trying to work together. To avoid this chaos, you need to develop guidelines for branching
and tagging. If you have simple rules for what branches and tags should be created, when
they should be created, and what they should be named, you will find that you have greatly
increased the ability for your developers to make use of the project’s branches and tags to
aid in collaboration on the project.

12.1.1 Branch and Tag Creation and Organization

Before you can effectively make use of branches and tags, you need to decide what circum-
stances warrant the creation of branches and tags, and how those branches and tags will be
organized in the repository. Because creating branches and tags is fast, and essentially uses
no space, there is little reason to be stingy with their use. On the other hand, you don’t
want to waste time creating branches and tags that hold no value for anyone. If the copies

209

“svnbook” — 2005/4/14 — 14:55 — page 210 — #231i
i

i
i

i
i

i
i

210 Chapter 12 Development Process Policies

just sit around collecting dust and littering your repository hierarchies, the useful branches
may become harder to find and use.

If you’re coming from a CVS background (or another similar VCS), you will find that
tags are much less necessary in Subversion than they were in CVS. For example, CVS
users often use tags to preserve the state of their work before a large commit in case the
commit was interrupted (which would cause an incomplete commit that could be hard
to recover from). With Subversion, though, all commits are atomic, so this is no longer
a concern. Similarly, it is a common practice with CVS to create tags before and after
feature commits, so that the differences can be easily examined later. This is also no longer
necessary, because Subversion’s global revision numbers make it easy to compare the state
of the entire repository before and after any commit. Subversion also makes the timing
of tag creation less important, because you can use the--revision option when you use
svn copy to create a new tag, in order to create a tag from a revision other than the current
HEAD revision.

There are a number of different things that you might use branches and tags for, and for
each there is a different set of issues to consider when deciding your policies for creating
and organizing them. Let’s take a look at a few of the different branch and tag categories
that you might have, and the policies you might use.

Software Version Branches

Often, you will have multiple versions of a project being developed simultaneously. For
example, say you have a project that is creating an application called FooMatic. When
version 1.0 of FooMatic is released, you want to mark the point in development where that
occurred, and then continue developing the main trunk in preparation for FooMatic 2.0.
Now, say it’s six months after the release of FooMatic 1.0, and you’re well on the way to
FooMatic 2.0. Despite all of your careful beta testing, though, version 1.0 wasn’t perfect,
and someone finds a bug. The version 2.0 development group, however, has completely
changed that section of the code, and the bug doesn’t even apply anymore. You don’t want
to tell all of your customers that they’ll have to wait for the next version to get the bug fixed
though. They need it fixed now. Fortunately, when you released 1.0, you created a tag for
that version. Now, when bugs are found, you can create a new branch from the 1.0 tag, fix
the bug, and release a new (tagged) bug-fix version without interrupting development on
version 2.0. When a fix applies to both versions, you can use a merge to copy the changes
from one branch to another.

Alternately, you can make a branch every time you release a version of the software
to the public that you want to support with fixes in the future and maintain it as a separate
line of development. If you release version 1.0, it is likely that you’ll want to release minor
versions that fix bugs and security issues before the release of version 2.0. So, make version
1.0 a separate branch from development of 2.0 when you make the 1.0 release. Then, create
tags of minor releases from that branch as they are developed. If you release minor feature
releases (1.0, 1.1, 1.2, and so on), you’ll probably want each of those to be a separate
branch, too, so that you can release 1.0.1 while you’re developing 1.1.0.

“svnbook” — 2005/4/14 — 14:55 — page 211 — #232i
i

i
i

i
i

i
i

12.1 Effective Branching and Tagging 211

Your best choice is to pick a version number level and make a unique branch for each
release at that granularity. So, if you pick the major revision numbers, you’d have a branch
for 1.0, 2.0, 3.0, and so on. If you pick the first level of minor revisions, you’d have branches
named 1.0, 1.1, 1.2, 2.0, and 2.1. The choice of the exact level to branch on is dependent on
the way any individual project releases software, but consistency is much more important
than one particular choice of branch point. In general, I suggest standardizing on one or
two levels of minor revision numbers.

When it comes to organizing these revision branches, there are a couple of ways to
approach the process. The first is to see the release branches the same as any other branch.
Your current main line of development occurs in/trunk, and whenever a release is made,
you create a new branch in/branches/releases/. If you think about it, all of your
development is really occurring on a release branch, regardless of whether you call the
development on the trunk a release branch. So, instead of having a/trunk, you might
want to consider having two top-level directories named/releasedev and/releases,
as shown in Figure 12.1. In/releasedev, put a branch for each release of the project that
is currently being developed. Then, when a version is actually released, move it into the
/releases directory (where the release will be treated as an immutable tag) and create a
copy of the new release in/releasedev that will become the next development version.

Quality Assurance Branches and Betas

Many projects have a development team and a quality assurance team. In such a case, it can
be helpful to have two branches of development—one that the developers use for their day-
to-day work and another that the quality assurance (QA) team uses for its testing. When

/

/releases /releasedev

/myproj_1_0

/myproj_1_1

/myproj_1_2

/myproj_2_0

Figure 12.1.A repository with release branches instead of a trunk.

“svnbook” — 2005/4/14 — 14:55 — page 212 — #233i
i

i
i

i
i

i
i

212 Chapter 12 Development Process Policies

the development team finishes a feature or fix (or on a fixed schedule), the changes on the
development branch are merged to the QA branch for the testers to inspect.

One approach to this setup is to have two fixed branches. All development occurs
on one branch, and is then merged over to the QA branch for testing. Another approach
is to have a single QA branch, with multiple development branches. For instance, each
developer could be working on her own branch, which would be periodically merged into
the QA branch. Then, when a QA tester finds an issue, she can create a new branch with
the state of the project where the issue occurred. A developer would then be able to fix the
issue on that branch and merge the fix back into the QA branch when it’s finished.

To organize QA branches, we can build on the release branches structure suggested in
the previous section. Instead of having a single directory for each project release, create two
branches, so that you have a structure where you will have something like/releasedev/
version_1_0/dev/ and/releasedev/version_1_0/qa/. This gives you a develop-
ment branch and a quality assurance branch for each version of the software that is being
actively developed.

As development on a project advances, you will invariably release beta versions of the
software to testers outside of your quality assurance team. These versions are generally cre-
ated from your quality assurance branches, and will be immutable releases, just like a final
version release. One option for organizing beta releases is to store them in/releases/,
just as you would a final version release. Or, you can make a distinction by creating another
top-level directory named/betas/ where beta releases can be tagged.

Task Branches

Another area where branches can be useful are in task branches. For each individual feature
or issue that a developer is going to work on, she creates a task branch. On the task branch,
the developer can make small, incremental changes and commits until that particular task
is finished. When the task is complete, it can be merged back into the main trunk, or into a
QA branch. For example, in Figure 12.2, you can see how task branches are created from
the last release of the project, and then merged into a QA branch, which is then moved to
create the next bug-fix release of the project.

There are a few policies that you need to decide on when using task branches. Who will
create the branches? When will task branches be created? What granularity of task requires
a task branch? How will the branches be organized? There is, of course, no universal “right
answer” to these questions. Instead, the answers are based on the myriad of intricacies that
define your project.

Who will create the branch? The obvious answer is to have the developer who will be
working on that particular task create the branch. Whenever a developer starts a new task,
he creates a new branch. It’s simple, and it works well for projects with a lot of developer
freedom. If you have a large project with lots of managerial oversight, though, it might
be easier to keep track of the tasks currently in progress if task branches are created by
a project manager responsible for assigning tasks. When a task is assigned, the branch
is created and handed to a developer to implement. This might also be a good choice
for sensitive projects where the main trunk would not be available to every developer for
security reasons. When a developer is assigned a task, the project manager would only have

“svnbook” — 2005/4/14 — 14:55 — page 213 — #234i
i

i
i

i
i

i
i

12.1 Effective Branching and Tagging 213

/qa/release_1_0_1

/releases/
release_1_0_0

/tasks/issue_1134

/tasks/issue_1072

/tasks/issue_1045

/releases/
release_1_0_1

Figure 12.2.Task branches used for fixing issues in a release.

to create a branch of the small subsection of the project necessary for implementing the task
and give permission for that branch to the appropriate developer(s). On a mature project,
you may even have most (or all) of the tasks generated by QA testers who are handling bug
reports from users.

When will task branches be created? There are really only two major options here (with
small variations). Task branches can either be created when the task is scheduled or when
work on it begins. For tasks that are responding to a particular base state of the project
(such as bug fixes), it is usually a good idea to create the tasks when the task is scheduled,
because there is usually a well-known baseline to work from at that point. Later on, when
work on the task actually begins, it’s possible that the changes made to the project in the
interim may have modified the base project to a point where there is no good baseline to
start implementation of the task. On the other hand, for other tasks that are adding new
features to an evolving project, it may be better to create the branch when the developer
starts working on the task. This way, the branch is up-to-date when it is begun, which will
make merging it back into the main trunk a little easier.

What granularity of task requires a branch? This is largely a matter of taste. If you
want very fine-grained project organization, you may want individual task branches for
each atomic feature enhancement or bug fix. Or, if you prefer a more coarsely managed
project, it might make sense to only create branches for major tasks that will require large
code changes or additions.

How will the branches be organized? The way you organize task branches has a lot to
do with who is creating and using them. If, for instance, each developer maintains her own
task branches while working on the project, you might want to give each developer her
own directory for storing them. However, if the task branches are generated by a project
manager or QA tester, it might be better to have a common directory for task branches.
Then, if you want to keep the branches that are being worked on separate, each developer

“svnbook” — 2005/4/14 — 14:55 — page 214 — #235i
i

i
i

i
i

i
i

214 Chapter 12 Development Process Policies

could move the branch from the common directory into her own task branch directory when
she begins work on the task.

Sliding Tags

Sometimes, you have a tag that you want to point to a changing target while retaining the
same name. As an example, say you create a daily build of your project. In addition to
a tag that will always point to that particular build, it might be useful to have a tag called
daily_build that always points to today’s build. That way, anyone who needs access to
the most up-to-date daily build can check out thedaily_build tag and can just update to
get the latest release.

There are a couple of ways you can approach creating these sorts of tags. One way is
to delete the old tag and recreate a new one by the same name whenever you want to move
the tag. This has the advantage of being fairly easy to execute, but it requires two steps to
perform the change (if anyone updates between the two steps, his directory will be deleted
on disk and he’ll have to redownload the whole thing). Using delete/re-add also has the
disadvantage that it makes ansvn log on that directory useless, because it won’t show the
history of the tag.

An alternative to using copy and delete is to make use of thesvn:externals property
to create your sliding tag. With the externals property, you can create a directory that holds
the tag, and then setsvn:externals to point to the correct directory and revision number.
Then, when the path or revision number is changed to move the tag, you will have a log
record of where the tag has pointed to. The downside to usingsvn:externals is that the
syntax for creating and moving the tag is a little more complex than using copy and delete;
but in most cases, I would suggest it as the better alternative.

Merge Tracking with Tags

Subversion doesn’t do a particularly good job of tracking merges—yet. In fact, Subver-
sion’s poor merge tracking is arguably its weakest point as a version control system. The
commonly suggested practice for tracking merges is to use the log files to keep track of
which range of revisions were merged, and where they were merged from, in the log mes-
sage for each committed merge.

Keeping track of merges is important, because subsequent merges need to account for
the past history, in order to avoid applying incorrect changes. If you create a branch of
/trunk at revision 50 and then merge changes on the trunk made between 50 and 100, it’s
important to make sure the next merge applies the changes from 100 to 150, not 50 to 150.
Using the log messages to note that you merged 50 to 100 already is a serviceable solution,
but it’s not the only one. Subversion merges apply the difference between two arbitrary
sections of the repository. Using different revisions for a single path is only one way to get
those two sections for the merge. Another way is to give two entirely different repository
paths. So, if you made a tag of/trunk at the last point where you performed the merge,
you could instead use that in the merge, instead of needing to know the revision number.

Merge tags can either be stored in a common location, such as/tags/merges, or they
can be stored alongside the specific branch where the merge occurred. You could, for

“svnbook” — 2005/4/14 — 14:55 — page 215 — #236i
i

i
i

i
i

i
i

12.1 Effective Branching and Tagging 215

example, create a directory named/branches/proj_branch_1_merges/ where all of
the versions involved in a merge into/branches/proj_branch_1/ would be tagged.

Tagging Project Builds

If you have an automated build system that performs nightly (or hourly, or even more
frequent), it may be useful for it to automatically generate tags that reference those builds.
So, for instance, if it creates a build on June 4th at 3:00 in the morning, it could create a tag
named something like/builds/build-060405-0300. Then, when the build system runs
your test harness to do regression testing, it can include a reference to the specific build
in the Subversion repository as a part of its results output. That way, you have a durable
reference to the exact state of the repository at the time of the test run, and can recreate it
at a later date if you need to in order to fix any issues that arose during the tests.

Milestone and Release Point Tags

One of the most common uses for tags is to mark important milestones in the code. One
example would be tags that mark releases of the project. By creating a tag at every such
milestone, you can create an easily accessible record of your project’s history that is sig-
nificantly more useful than simply knowing what the project looked like on a certain date,
or at a particular revision number.

The first policy to adopt when deciding on milestone tags is to determine which mile-
stones you will tag. Some people may spend a lot of time thinking about this in order to
decide on a detailed policy. Don’t. Tags are cheap. They take up almost no space in the
repository. You could sit and make tags from full copies of your repository all day long and
not make a significant dent in the size of your repository. Therefore, there is no reason to
be stingy with them. Release a beta? Create a tag. If you release a daily build, create a tag
for each release. Even if you create hourly project builds for in-house development, there
is little reason not to keep track of those builds by creating tags.

Milestone tags are best organized by collecting different types of milestones into their
own directories. For example, you might have directories named/tags/releases/,
/tags/betas/, and/tags/builds/. Or, if you don’t want to hide them away in the
/tags directory, you can move those directories up to the top level. If you have multiple
projects, you might want to put all of those directories in a project directory, or you might
want to put just some of them in a project directory. For instance, you could have a top-
level /releases/ directory that stored the releases for every project, and project-specific
directories for holding builds and beta releases.

Saved Working Copies Snapshots

At times, it can be very useful to save the current state of a working copy, without commit-
ting all of the changes to the current trunk or branch. This can be especially useful if you
have a working copy that is made up of several switched directories and you want to save a
snapshot of that layout. Because Subversion allows you to copy from a working copy, this
is easy to do. All you need to do is take a directory in your current working copy and copy

“svnbook” — 2005/4/14 — 14:55 — page 216 — #237i
i

i
i

i
i

i
i

216 Chapter 12 Development Process Policies

it to a repository URL.
The best place to store a working copy snapshot depends on the purpose of the snapshot.

If you make a snapshot for purposes of releasing a project beta, obviously, you would want
to store your snapshot along with other tags of beta releases—similarly for full releases,
builds, or any other sort of tag. Rarely will you find the need to make a mixed revision
snapshot that doesn’t have some sort of other purpose; but if you do, it may be useful to
have a special tags directory (such as/tags/snapshots/) for storing them.

12.1.2 Merging Policies

Merging is currently Subversion’s biggest weak point. It can be difficult to perform merges
correctly, and it is fairly easy to perform an incorrect merge that causes unintended conse-
quences. The best way to avoid problems is to set out clear policies for when to perform
merges, who should perform the merges, and how they should be documented.

When to Merge

The best time to merge depends a lot on what is being merged. Merges can be done on
a timetable. They can be done whenever changes occur (or whenever relevant changes
occur). Generally, you’ll find that you want to use a mix of the two. If, for example, you
have a build engineer who manages performing a daily build of your project, she might
want to standardize on a daily routine of merging from the available development branches
in order to create the day’s build—especially if you have multiple independent development
branches for different developers that need to be merged and tested every day.

Conversely, if your developers use a more rapid XP-style test-edit-build-test cycle, de-
velopers may need to do frequent merges to and from the project’s trunk in order to con-
tinuously make sure that the rest of the project continues to work with the changes they are
making on their branch.

Who Should Merge

In general, it’s good policy to allow the same people who should be performing modifi-
cations to a trunk or branch directory the ability to perform merges from other branches.
Merges should be performed by people who are familiar with the target branch, as well as
the source that is being merged in. Because Subversion doesn’t have any context for the
merges it performs (they’re just dumb textual merges), it’s important that any merges be
thoroughly tested before they are committed. Even if there are no conflicts, merges can
easily break working code, and it’s important for the person performing the merge to be
able to detect and fix any errors that are introduced.

If you have a build engineer or quality assurance tester, it can be useful for him to
maintain a QA or build branch, and may be prudent for him to perform merges from other
branches into the branch that he maintains. That way, he maintains complete control over
what goes into the branch. That also means, though, that he will almost certainly be merg-
ing in source code that he didn’t write himself. Therefore, if conflicts occur, he may not
have the proper background necessary to make a decision on how the conflicted sections

“svnbook” — 2005/4/14 — 14:55 — page 217 — #238i
i

i
i

i
i

i
i

12.2 Checking In Code 217

should be merged. One solution would be to have the person performing the merge make
an educated guess as to the proper resolution, and then test it. This is probably the fastest
way to resolve the conflict, but it’s also the least reliable (and most likely to introduce sub-
tle errors that don’t get caught). Another, possibly better, solution is to have the merger
resolve the conflict, but then send a detailed description of what was done to any develop-
ers who might have more information about the conflict. Then, they can examine what was
done and hopefully catch potential issues. Or, as a third potential solution, the merge could
be blocked when a conflict occurs, until the developers who wrote the merged code in the
first place can resolve it. This is probably the safest solution, but it is also the most time-
consuming. In the end, there really isn’t a universalbestsolution here. Ideally, you should
try to avoid merge conflicts as much as possible by maintaining an organized development
process. If you never have two people working on the same section of code, you never have
to worry about merge conflicts. If you do have two people working on the same section of
code, they should be talking to each other.

Documenting Merges

Some day, Subversion will have built-in merge tracking that allows you to easily sync two
directories without worrying about which revisions have already been merged, or which
direction the merges have happened in. In the meantime, the best way to maintain good
clean merges between branches and the trunk is to keep detailed documentation about ex-
actly what you’ve done. Whenever a developer performs a merge, she should record in the
log message what repository paths were involved in the merge, as well as the revisions of
each path that were involved. Additionally, the log messages that record a merge should
always follow an agreed upon standard format that includes a keyword, such asMerged,
to allow developers to easily usegrep to filter the output ofsvn log for merges that have
previously occurred. If you are using tags to mark the merge history of a trunk or branch di-
rectory, developers should also make those tags whenever they perform a merge (you might
want to use a script to automate this process and ensure that the tags always get created).

12.2 Checking In Code

As soon as code is committed to a repository, it becomes available for other developers to
check out and use (barring permission restrictions). If the code is committed on the trunk,
or a public branch, it not only becomes available, but it enters the HEAD revision and any
developers performing an update will find those changes merged into their own working
copies. This means that if a developer commits changes that break the source on a trunk
or branch in a way that blocks other developers from continuing with their work, there will
be a lot of wasted labor as developers scramble to figure out why their working copies no
longer work and either fix the problems or roll back all or part of their working copy to
previous revisions in order to be able to continue their own work.

“svnbook” — 2005/4/14 — 14:55 — page 218 — #239i
i

i
i

i
i

i
i

218 Chapter 12 Development Process Policies

To avoid time-wasting problems from prematurely committed code, it is important to
have a set of policies that define when developers should be performing commits. There’s
nothing radical here, and most of the policy suggestions I make are commonsense etiquette.
They’re also mostly universal. They may not always be appropriate for every project, but I
would think hard before throwing any of them out.

• Never commit code that hasn’t been compiled. If it doesn’t compile for you, it prob-
ably won’t compile for anyone else either. By committing a revision that doesn’t
even compile, you are costing at least a few wasted minutes for most of the other
developers on the project, and possibly more if the reason for the failed compile
isn’t immediately obvious (for example, if other developers think the problem may
be caused by the interaction of their changes and yours). You will also introduce a
broken revision that can cause confusion (and headaches) in the future.

• Avoid committing untested code. For essentially the same reasons that you should
never commit source code that can’t be compiled, you should also avoid committing
code that hasn’t been thoroughly tested. Unfortunately, it is hard to make this as
hard and fast as the compile rule. Sometimes, it just isn’t possible to test code before
you commit it. For instance, you may not have the environment necessary to test the
application on your development machine, or you might require modifications from
another developer before thorough testing can take place, or in some cases it just
might not be your job to do thorough testing before you commit. If the committed
code is destined for a QA testing team, they may be the ones doing the thorough
testing. You also may sometimes make changes to the source that are so trivial that
there is little reason to actually test. In most cases, you should test anyway, but if
testing is hard and the change is truly trivial, it may be acceptable.

• Always update and test before committing. If you have been working on a modifi-
cation for a while, and are finally ready for a commit, it is possible (probable, even)
that other developers have committed their own modifications in the meantime. So,
even if you have thoroughly tested your modifications in your own working copy, it
is important to do an update of all the project components that may be affected by
your change and test against the updated version.

• Use a diff to check exactly what will be committed. It’s easy to forget to remove
one-off debugging code, or to make a minor change that should be committed as a
separate revision and then forget you made it. By actually looking at the changes you
will be committing before you run the actual commit, you can make a sanity check
to make sure you’re committing what you think you’re committing. To perform the
diff, run svn diff with no options on the working copy directory (or file) that will
be committed.

• Try to commit only one distinct modification per commit. When you commit a mod-
ification to the repository, it should be a single atomic modification. That way, it is
easy to roll back just that modification if you need to at a later point. For instance, if

“svnbook” — 2005/4/14 — 14:55 — page 219 — #240i
i

i
i

i
i

i
i

12.3 Log Data 219

you modify a function that adds up a series of numbers, and at the same time add in a
dialog box for confirming database modifications, you shouldn’t commit both to the
same revision. If at all possible, commit one modification and then the other (which
is easy if they’re in completely different files—just commit one set of files and then
the other). The best way to avoid accidentally committing two modifications, though,
is to commit frequently.

• Don’t commit incomplete changes on a common branch. There is wisdom in com-
mitting atomic modifications, but be careful with committing modifications that are
too small. If you commit incomplete features, you may find that rolling back those
changes is more difficult (because there are more revisions involved). You will also
likely find that commits that are too small will tend to break the branch, because they
are not complete features in and of themselves. If you are going to be making a lot of
changes that would be well-served by multiple commits, but aren’t logically multiple
feature modifications, you may be well-served by creating a branch for making those
changes. That way, you can do a lot of little commits, and then combine them all
into a single merge that puts those changes into the main trunk (or another branch)
in a single step.

12.3 Log Data

It’s easy to write bad log messages. I’ve seen it done countless times (and, I must admit,
have done it a few times myself). After long hours of coding, it’s easy to top it off with
“Added a bunch of stuff,” “Fixed all the compile errors,” or even “Fixed an off-by-one
error.” It is so easy, in fact, that despite all levels of experience or good intentions, you’re
almost certain to get a few similar log messages in your repository at some point. You’ll
rue their entry, though, the day you need to search out the exact point where a feature was
added or a bug was fixed. With poor log messages, you find yourself frantically searching
through diffs and guessing dates in order to pinpoint an exact revision amidst a sea of
commits, instead of being able to do a quick search through the log messages.

In general, the more detailed your log messages, the more useful they’ll be in the future.
As a rule of thumb, every log message should be detailed enough that you would want to
decipher exactly what changed for the project in that revision 10 years from now. By that
point, you will have completely forgotten all context for the commit, and will not likely
remember any information that is left out of the log. One way to help jog your memory
and ensure that you don’t forget to include a description of every modification in the log is
to usesvn diff to review the changes made before performing the commit.

The best way to ensure good log messages from everyone involved in a project is to
develop a clear set of policies for what should (and should not) go into a log message. If
the expectations for log messages are clear, it is much harder for individual developers to
slack off and say, “This revision doesn’t matter. I’ll just dash off a quick message and
move on to something else.” Additionally, if you have a clear format for log messages,
searching through them to find a particular piece of information will be much easier. In
some cases, you may even find that rigid log formats help with scripts that parse the logs
to add automated functionality.

“svnbook” — 2005/4/14 — 14:55 — page 220 — #241i
i

i
i

i
i

i
i

220 Chapter 12 Development Process Policies

12.3.1 Policies for Informative Logs

The most important consideration for log messages is to make them informative. Log mes-
sages that don’t tell you anything are like comments in code that just restate the obvious—
useless. Good log messages inform the reader as to what the revision adds to the project
and why the revision was needed. To help you generate an overall policy that draws useful
log messages from your project’s developers, here are some of the specific policies that you
should consider. If developers have what is essentially a checklist of points to include in
their logs, useful log messages will quickly become second nature.

• State the specific issue solved by this revision. Explain, in as much detail as you
need, exactly what functionality has been added to the project or what bug has been
fixed. If the revision is in response to an issue in an issue-tracking system, you should
reference the issue with an issue number or URL (or other reference, as appropriate).
If there are any other external documents that describe the issue, you should also
make reference to them, with enough information for a later developer to find the
appropriate documentation.

• Briefly explain why the issue needed solving. With the exception of Easter eggs,
features are rarely added to a project for no reason. You should include a brief
description of why a change was made in your log messages. This is especially im-
portant for future reference. Two or three years down the road, some other developer
may be searching through the log messages, trying to fix a bug or add a new feature,
and if he doesn’t know why your revision was put in, he may accidentally remove it
without fully understanding the consequences.

• List any known side effects. If you know of any side effects caused by your revision,
you should make sure they are explicitly enumerated, because they will likely not
be obvious to the next person to work around the revision. As with the description
of why, this helps avoid many long hours of debugging obscure changes far (or not
so far) in the future. Listing known side effects is also important for other develop-
ers currently working on the project, so that they know what they can expect from
updating their working copy to include your revision.

• List any interface changes. Knowing what changed in the interface is important for
other developers working concurrently on the project, by helping to inform them of
potential changes that need to be made to the sections of the project that they are
responsible for. They can also act as an important tool for future developers tracking
the project’s history. By being able to clearly see points where interfaces changed, it
is also easier for developers to identify modifications that need to be made to code
that is reused from older revisions.

• Explain what, if anything, was removed. If the revision removes any functionality
from the project, it is important to explicitly list it. Even if the functionality removed
seems minor and inconsequential to the rest of the project, other parts of the project
may depend on it. If that dependent functionality breaks as a result of the revision, it

“svnbook” — 2005/4/14 — 14:55 — page 221 — #242i
i

i
i

i
i

i
i

12.3 Log Data 221

will be much easier for the developers responsible for fixing it to find the problem if
they are able to clearly see that something was removed when they look at the logs.

• Reference other relevant revisions or tags. For instance, if the revision you are com-
mitting builds on a previous revision, you should mention that revision and how they
are related. This makes it easier for future developers to trace the history of the
project when they are making a modification. It is easy for the many interdependen-
cies in a project to get lost after a relatively short period of time (especially if the
original developers leave), so this little bit of extra information can greatly reduce
the risks of future modifications to the project.

• Include any Subversion commands that are part of the revision. When you perform
an svn merge, Subversion doesn’t explicitly record everything that went into the
merge. Similarly,svn copy andsvn move can be difficult to trace effectively. You
can make these commands much easier to track by explicitly referencing their use in
your log messages. This is especially important for merges, because future merges
can end up working incorrectly if you don’t know the merge history of the directories
involved.

• Don’t be afraid of humor in log messages. As long as humorous log messages are
not offensive, and don’t detract from the information being conveyed, developers
should be encouraged to occasionally have fun with log entries. Not only does this
give developers a good outlet for their creativity, but it helps to encourage developers
to write good log messages (and gives them an incentive to pay attention to the log
messages that others write).

12.3.2 Parseable Log Messages

Creating automated tools that can make use of log messages is very powerful. The prob-
lem is making the tool understand what the log messages are saying. If log messages are
completely free-form, this can be impossible to do with any accuracy. It can also be diffi-
cult to use hook scripts to validate log messages that don’t contain any predefined structure.
Therefore, if you want to use scripts that look at your log messages, you will be well-served
to develop a log message structure that every log message should conform to.

• Use section tags to explicitly partition the log message. If you have specific points
that you want made in your log messages (such as purpose, description, and an issue
tracker reference), it may be useful to begin each point with a well-known tag. For
example, you might format your log messages like the following example.

ISSUE: 1758
PURPOSE: Fixes the bug that was causing a crash when the

program was closed.
DESCRIPTION: Removes an incorrect reference in the Window class

destructor that was accessing m_mybutton after it was
destroyed.

“svnbook” — 2005/4/14 — 14:55 — page 222 — #243i
i

i
i

i
i

i
i

222 Chapter 12 Development Process Policies

This way, you can easily search for the revision where issue #1758 was fixed, or
check the log message on commit to ensure that the purpose and description have
been filled in.

• Define strict formats for external references. Whenever a log message references an
external source, such as an issue-tracking system or design document, you should
have a well-defined format for making that reference. For instance, you could refer-
ence an issue-tracking system with a format such as[ISSUE:##]. In the following
log message, the explicit reference would allow a script to find the issue referenced.

Fully implemented the requirements in [ISSUE:453].

• If a log message references changes to an interface in the project, you should be
able to parse that information in a script to identify exactly which interfaces were
changed. That way, you could write a script that would automatically identify in-
terface changes and send warnings to the appropriate developers, or even perform
an analysis on the project and identify places where modifications need to be made.
The following interface change section from a log file shows how you might structure
those changes.

INTERFACE_CHANGES:
ADDED int Button::on_clicked(int btn) TO button.h
CHANGED void Button::on_mouseover(void) IN button.h TO int Button ¬
::on_mouseover(void)
REMOVED void Button::destroy(void) FROM button.h

• Define a standard set of terms and keywords for your project. Developers should
use explicitly defined common terminology when talking about common project de-
tails. That way, searching becomes a more useful tool for examining the project’s
history. Additionally, scripts can be written that discern meaning from log messages
by looking for certain terms and phrases.

12.3.3 What Not to Include

Log messages should be detailed, but there is such a thing as too much information in the
logs. If each log message is a novel unto itself, no one will be able to glean anything useful
from a quick read-through. Therefore, to help keep things short without sacrificing utility,
there are some things youshouldn’tinclude in your log messages.

• Don’t use source code from the revision in your log messages. If developers need to
see the actual source code changes, they can usesvn diff to obtain that informa-
tion. If you need to reference the actual code that was modified, use references to the
source code itself (don’t use line numbers, as those will quickly end up out of date).

• Don’t list the files that were changed. Subversion already gives you the ability to
see what files have changed by using thesvn log �verbose command, so this
information is redundant.

“svnbook” — 2005/4/14 — 14:55 — page 223 — #244i
i

i
i

i
i

i
i

12.4 Project Builds 223

• Avoid going into too much detail for things described elsewhere. In general, it is
better to give a brief description of what you are referencing, and let the user go to
the referenced material if she needs more detail.

12.4 Project Builds

Integration of work is an important aspect of any software development process. With
multiple developers working on the same project, it is important to frequently integrate
everyone’s work, build the entire project, and test that all of the changes work together.
Linking the version control system into this process is vital, because the VCS is generally
one of the primary tools for performing the integration of work.

With Subversion, there are a couple of different approaches that you can take toward
accommodating project build integration, which I will discuss in a little while. When set-
ting up project builds, though, you also need to take into consideration how you will run
your build process (automated or manual), and how individual bits of the build will be
configured.

12.4.1 Configuration

Project builds generally require some sort of build configuration file, such as a makefile
for a version of the classic UNIX Make program, abuild.xml configuration for that Java-
based Ant build system, or a Visual Studio.dsp file. Often, with these build configurations,
you have a base configuration file that needs to be used by everyone who is working on
the project; however, each developer also often needs to make local modifications that
shouldn’t be fed back to the version stored on the repository.

The naïve approach to local build configurations is often to commit the base config-
uration file to the repository, and then have individual developers modify the file in their
working copy to meet their needs. This works fine until someone accidentally commits
their local changes to the repository (better not runsvn commit with no options). Further-
more, if a developer needs to commit some of his local changes to the base version in the
repository, but not others, it can be a major pain to do.

A better approach to local build configuration files is to commit the base configuration
file as a template, under a different name. Then, add ansvn:ignore property entry to force
Subversion to ignore the real configuration file. When developers check out a working
copy of the project, they can then copy the template to create a new configuration file
that can be edited locally. So, for example, if you have a project that is built using GNU
Make, with a makefile namedMakefile, you would create a makefile template named
Makefile.tmpl, which would be added to the repository. When you check out a working
copy of the repository, you would then copyMakefile.tmpl to Makefile and make any
necessary local changes.

Even better still is to have two configuration files (if your build system supports this).
In one, you place the bulk of your base build configuration and commit it as-is. It then
includes a second build configuration that holds values likely to change from one local
installation to another. For that file, you commit a template instead of the actual file, and

“svnbook” � 2005/4/14 � 14:55 � page 224 � #245i
i

i
i

i
i

i
i

224 Chapter 12 Development Process Policies

usesvn:ignore as I mentioned previously. The advantage of doing things this way is
that it allows changes to be made to the base build configuration, without requiring you to
hand-merge those changes in each working copy to the local build configuration every time
a change is made to the base.

12.4.2 Daily Builds

Traditionally, a big part of most software development processes has been the daily build
of the entire project, which integrates everything and allows the full project to be tested,
either with automated tools or by a QA testing team. Recently, as the popularity of rapid
development techniques grows (as well as the available computing power), daily builds
are more frequently becoming multiple builds per day. If you are going to be performing
frequent full-project builds like this (especially if your project is large), it is important for
you to know how to best accommodate the daily build (I will refer to them as daily builds,
even if you perform them more frequently than once per day) in your Subversion repository.

There are two major overall policies for handling your build process. You can either
have a manual build, with a build engineer (which may be a regular developer doing double-
duty or a full-time job for large projects), or you can have an automated build system that
runs the build, and possibly a test suite, without any regular human interaction.

From a Subversion perspective, manual daily builds are the easiest to accommodate.
The build engineer simply needs to have his own working copy of the project’s main de-
velopment branch, which he can update before every build. For more information on the
process of getting each developer’s work integrated into the development branch in prepa-
ration for the daily build, see Section 12.4.3, “Integration.”

Manual daily builds may be the easiest to prepare your Subversion repository for, but in
the real world, there are a lot of compelling reasons to use automated daily builds instead,
such as reliability, cost, and speed. If the build is going to be run automatically, though, you
need to put a little more thought into how the automated build will interact with Subversion.

A simple approach to automated builds is to have a script that runs at a set interval
(daily, hourly, and so on) to execute the build. When the script runs, it should create a tag
for the build, switch the automated tests working copy to the new tag, and then run the
build system against the newly created tag. Additionally, you might want to have a test
suite run (although that may be built into the build system), and add notification about the
build’s results, which could be e-mailed, added to a Web site, or included in an RSS feed.

Here is a simple example of a script that you might have run your automated build. It
uses thesvn commands to interact with the repository, and usesmake to run a build and a
test suite. To set it up for a daily build, you could configurecron to run it every night and
report the results to a build engineer, or post them to a Web site.

#!/bin/sh
run_daily_build.sh

Get the repository working copy path from the script's arguments
WORKING_COPY=${1}

“svnbook” — 2005/4/14 — 14:55 — page 225 — #246i
i

i
i

i
i

i
i

12.4 Project Builds 225

Get the URL of the main branch, and the URL of the tags directory
TRUNK_BRANCH=${2}
TAGS_DIR=${3}

Check to make sure the working copy exists.
If it doesn't exist, exit with an error message.
if [! -f "${WORKING_COPY}"]; then echo "No working copy\n"; fi

Change directories to the working copy
cd "${WORKING_COPY}"

Update the working copy
Redirect the results into a status file
svn update . > build_results.txt

Get the current revision
REV=̀ svn info . | grep "^Revision: " | cut -c 11-̀

Execute the build and test suite
make && make testsuite

Make a daily build tag of the build
svn copy -m "Tagged daily build" -r ${REV} ${TRUNK_BRANCH} ${TAGS_DIR}/ ¬
build-̀ date "+%m%d%Y"̀

CruiseControl

Rather than rolling your own scripts for doing automatic scheduled builds, you can make
use of a system designed for doing automatic scheduled builds. The CruiseControl system
(cruisecontrol.sourceforge.net) is a framework that checks your Subversion repos-
itory on a configurable schedule to see if any changes have been committed. If they have
been committed, it downloads the changes, builds your system, and runs all of your unit
tests. If you do any sort of rapid development, this can be a huge timesaver. It is a Java-
based system, and uses Ant for its project builds, which makes it specifically suited for
development of Java-based projects, but you should be able to make it build other projects
(possibly with a bit less integration) if you are so inclined.

To set up CruiseControl to build your project, you first need to install CruiseControl
on your build system, by following the instructions for CruiseControl installation that can
be found on the project’s Web site or in the CruiseControl distribution. Then, to set up
CruiseControl to talk to your Subversion repository, there are a few things you need to
configure in theconfig.xml file for CruiseControl.

“svnbook” — 2005/4/14 — 14:55 — page 226 — #247i
i

i
i

i
i

i
i

226 Chapter 12 Development Process Policies

The first elements to add are two<plugin> elements to load the two Subversion plug-
ins.

<plugin name="svnbooststrapper" classname="net.sourceforge. ¬
cruisecontrol.bootstrappers.SVNBootstrapper"/>
<plugin name="svn" classname="net.sourceforge.cruisecontrol. ¬
sourcecontrol.SVN"/>

Then, you need to add the<svn> element to the<modificationset> element.

<modificationset>
<svn localWorkingCopy="svnrepos/trunk"

repositoryLocation="https://myserver.com/svnrepos"
username="bill"
password="mypass"/>

</modificationset>

Also, in your Ant build, you need to add an<exec> element to make Ant update the
Subversion repository.

<exec executable="svn">
<arg line="up">

</exec>

12.4.3 Integration

If you are doing a daily build of your full project, it is important for you to have the
project’s developers integrate their work into a single development branch. The biggest
question, though, is when this should happen. A developer making a single minor change
to the project is unlikely to cause major integration problems, but a developer working on
a more in-depth feature will likely be making numerous intermediate commits, which may
temporarily break the project in relation to other developers. Avoiding broken builds is im-
portant for obvious reasons, which means that you need to put some thought into how you
are arranging your Subversion repository to accommodate both the work flow of individual
developers and the overall integration problem for full-project daily builds.

Continuous Integration

One approach to integration is to have a policy whereby every developer works on the
main development branch, committing their changes as they go. This has the advantage
that there are no worries about merges, and everyone stays very up-to-date with the current
state of the project. It is also the easiest for people to understand, and lends itself to small to
medium-sized projects that are undergoing small incremental development. The downside,
however, is that because all commits go onto the same branch everyone else is working on,
every commit needs to integrate perfectly with the rest of the project or it breaks the build.
Although this encourages careful committing and conservative changes, it also discourages
frequent commits and may lead to larger commits that don’t encapsulate a single change to
the project.

“svnbook” — 2005/4/14 — 14:55 — page 227 — #248i
i

i
i

i
i

i
i

12.5 Testing and Quality Assurance 227

Task Integration

An alternate approach to integration is to use task branches. With this integration policy
approach, each developer does all of her nontrivial project development (more than a couple
of lines of code) on a branch created for that specific task, where she can freely commit
small changes without fear of breaking the project build. Then, as soon as an individual
task is complete, the task branch can be merged into the main development branch for
inclusion in the full project’s daily build.

The biggest downside to this approach is its complexity. Each developer needs to have
a working understanding of Subversion branches and merges, along with the discipline to
use the task branches properly. It also splits the project’s history off into a large number of
branches, which can make finding a specific change more difficult.

On the positive side, task branches encourage frequent small commits, while main-
taining the integrity of the main project build. They also keep the history of the project’s
main branch clean, because small commits get aggregated into a single merge log message
for each task. These advantages make task integration a good choice for large, complex
projects with a large number of developers, as well as for projects that use fewer daily
builds with automatic unit testing. If the integrated build is only built and tested a few times
a day or less, task integration tends to make it easier to find and repair broken builds. On
the other hand, if you are doing very frequent builds with continuous testing, task branches
may get in the way for all but the most complex of tasks.

12.5 Testing and Quality Assurance

Testing is another major component of any software development process, and any success-
ful project has some sort of policy in place for assuring that a sufficient amount of testing
is done. Although most of the actual testing is beyond the purview of Subversion, a good
set of policies for project organization within the repository can lend strong support to your
quality assurance process.

Some of the policies that I discuss in this section were already touched upon in the
previous sections of the chapter, but here they are brought together into a coherent structure.
I note this not to assure you that I didn’t forget that I already mentioned them, but rather
to stress the total interdependency of the various policies that make up a total software
development process. The policies that you ultimately make a part of your strategy for
using Subversion in your software development process are not a set of unrelated policies
tacked together. Instead, your interaction with Subversion should be considered for how it
fits into the whole of your software development process.

12.5.1 The Parts of Testing

There are a number of different types of testing that make up the full gamut of testing that a
project undergoes during its development. Not every project uses all of the testing methods
that I talk about in this section, but I find it unlikely that any successful project has ever
avoided all of these methods (as much as some have tried). For each of these different
areas of testing, I will talk about what they are, and what sort of policies you might adopt
to integrate Subversion into the process.

“svnbook” — 2005/4/14 — 14:55 — page 228 — #249i
i

i
i

i
i

i
i

228 Chapter 12 Development Process Policies

Individual Developer Testing

In most cases, developers do their own personal testing of the code that they write, before
integrating it with the main public development branch of a project. Even in projects where
it is difficult or impossible for an individual developer to personally test her code against
the full project before committing, most developers will do some sort of private testing to
ensure to the best of their ability that the code does what it is supposed to do. Often, this
involves local test harnesses or throwaway unit tests.

For the most part, Subversion doesn’t play a particularly big role in individual developer
testing. Most such testing is done on the developer’s personal workstation, in her working
copy, without anything getting committed to the repository until the testing is finished.
However, there are a few policies that you can use to support individual developer testing.

• Give developers a place to version their personal test code. When developers write
local test code, it often consists of throwaway tests that either get erased or tossed
in a random directory on the developer’s hard drive after they’ve been used, or they
continue to sit in the working copy as unversioned files. If developers have a place in
the Subversion repository dedicated to storing those test programs, they will be more
likely to keep them around and reuse them in the future.

• Use task branches for developer work. By using task branches, the individual devel-
oper’s work is segregated from the rest of the project until it’s tested and ready to be
merged back into the main branch. That makes it much easier for the developer to
perform incremental local testing on the code as it’s written, without interfering with
the rest of the project. This is especially useful if the developer can’t do local testing
against the full project.

• Allow developers to create private branches, for testing multiple potential solutions to
a problem. In the case of most nontrivial development tasks, there are many different
ways that a problem can be solved, and it’s not always clear to the developer what
the best method is. If you allow the developer to make private branches for testing
different potential solutions, it is easy to write two versions of the solution and then
run tests that compare the two to see which is better.

Automated Unit and Regression Testing

Automated tests are a big part of many software development processes. They generally
make up a comprehensive test suite that exercises a project in order to make sure it’s doing
what the specification says it should, and as changes are made to the project, the test suite
also helps to ensure that previously working components of the project continue to work.
How often these tests are run depends on an individual project (and is often dependent
on how long the tests take to run). When integrating your automated testing process into
Subversion, the biggest questions to answer are “Which branches will the automated tests
be run on?” and “What role, if any, will Subversion play in triggering those tests?”

One way to trigger automated tests is to have them run whenever someone commits
something to the repository, or even to a specific branch. The commit can trigger a hook

“svnbook” — 2005/4/14 — 14:55 — page 229 — #250i
i

i
i

i
i

i
i

12.5 Testing and Quality Assurance 229

script that runs the test suite and reports any errors to the author of the commit and any-
one else appropriate. This could work well as a policy if you have a main development
branch and use task branches for feature development. Whenever a feature is deemed com-
plete enough for the main branch, the task branch can be merged in and committed. The
automated test suite could then run regression tests on the full main branch to make sure
everything still works. Or, if you want an extra layer of redundancy, you could have an in-
termediary branch. When a task branch is finished, it can be merged into the testing branch.
If all of the regression tests pass, the testing branch could then be merged (or copied) over
to the main development branch.

The QA Team

Some projects (especially large ones) make use of a dedicated quality assurance team
whose sole job is to rigorously test the work of the project’s developers. As I have touched
on previously at several points, there is a lot that you can do organizationally with your
repository to support the interaction between a development team and a testing team. The
policies that you set in regard to support for testing in your Subversion repository not only
can support your QA process, they can help to shape it.

One of the areas where you will find a wide range of policy choices for supporting
QA is in the use of a branching/merging structure that supports the transfer of data from
developers to testers in an organized manner. I talked previously about what there is to
know on this subject. If you would like to review my thoughts on the subject, you can
reread Section 12.1, “Effective Branching and Tagging.”

Another place where you can use Subversion to support your QA testing process is
through the use of properties. For example, you could set a property,qa:tested, to label
the current testing state of a file or directory. Or, you could use a property to allow the tester
to “sign off” on a section of code. You could even set a property to a digitally signed md5
sum of the repository revision on which the tester is signing off, if there are safety critical
issues for which someone is required to take legal responsibility.1

Beta Testing

Beta testing is the point in a project’s life cycle when it is sent out to real users to allow
them to stress test the product under real (or at least semi-real) working conditions. In
many ways, beta versions are handled just like a final release. Generally, unless it is an
open source project, the release is binary only, and the beta testers have no knowledge of
the inner workings of the application, or even any knowledge of programming. However,
since it is still not a final release of the project, you are usually expecting a large number
of bug reports to come back as a part of the beta test process. How these bug reports are
supplied to you is, of course, outside the purview of Subversion, but it can be helpful for
you to have some policies for what you do to the repository in response to the bug reports.

When you release a beta, you will almost certainly want to create a tag of the revision
of the project that made up the beta release. That tag can then be used as a basis for

1. I am not a lawyer, and make no claim as to how well this would stand up legally. If you are doing something
critical to require that level of liability, I strongly suggest speaking with a real attorney.

“svnbook” — 2005/4/14 — 14:55 — page 230 — #251i
i

i
i

i
i

i
i

230 Chapter 12 Development Process Policies

creating branches dedicated to fixing issues raised in bug reports. You can either create
task branches for each reported bug or you can create a single beta branch for fixing the
bugs and then have each individual developer create branches as he sees fit.

Shipping the Final Product

It may seem a little counterintuitive to have a section on shipping the final product in a
section on testing the project during development, but the fact is that shipping the product
is really nothing more than another step in the product’s development path. Except in very
rare cases, no product ships without flaws, and flaws mean that bug reports will continue
to come in even after the product is in full release. To that extent, a full product release is
really no different from a beta release in the eyes of Subversion, and the policies you set in
place for handling beta tests are likely the same policies that you will want to have in place
for maintaining the full release of the project.

12.6 Communication

It is easy to think that Subversion is an alternative to good communication. Because it
is flexible, and supportive of distributed concurrent development, it can seem at first that
there is little need to discuss a project with your co-developers at the same level of detail
required with no version control in place (or even a less flexible version control system).
After all, you can always move things around, roll back to a previous revision, or create a
new branch.

Now is the part where I’m supposed to tell you that’s all wrong. That communication is
just as vital with Subversion as without, and you should communicate with Subversion at
exactly the same level, and in exactly the same manner, as if it weren’t there. The problem
is that I wouldn’t be telling you the truth if I did that. Subversion doesn’t require you
to communicate at exactly the same level as without. It does provide you with a flexible
versioning tool that allows you to drop much of the communication that was necessary
in a pre-Subversion environment. In fact, a small project could probably be worked on
by a group of reasonably competent developers with no communication outside of the
Subversion repository, except for a brief end-project goal agreed upon prior to starting the
project.

Wait, though. Before the project managers of the world band against me, or my old
software engineering professor hunts me down and takes back my degree, I am not saying
that you don’t need to communicate if you are using Subversion. In fact, I believe that
good, effective communication is vital to any software development project. What is not
needed with Subversion, however, is to ignore the tool and communicate as if it didn’t exist.
Instead, you need to integrate Subversion into your communications policies.

12.6.1 Communicating through Subversion

Subversion is, in essence, a communications tool. At its core, it communicates the history
of a software development project, of course, but it can also be used to communicate other
more immediate bits of information from one developer to another. By setting policies to

“svnbook” — 2005/4/14 — 14:55 — page 231 — #252i
i

i
i

i
i

i
i

12.6 Communication 231

shape Subversion’s use as a communications tool, you allow the developers working on the
project to obtain the greatest possible gain in efficiency from using Subversion.

Log Messages

Good log messages are vital for good intraproject communications. As I talked about in
Section 12.3.1, “Policies for Informative Logs,” it is important to set policies that ensure
informative log messages. Additionally, if you do regular reviews of code that has been
committed to the repository, you should also have a policy of review for the logs that
describe the committed changes. After a week, you will probably still be able to remember
what was placed in a revision, and log messages can be edited if need be. In six months,
though, a mildly uninformative log message can become incomprehensible.

Properties

Make use of properties as a communications tool. So far, I have mostly discussed properties
in terms of how you can use them in automation of tasks, but they can also be an effective
tool for communicating information to other developers. Log messages are good for de-
scribing meta-information about a particular revision. Properties should be used to describe
meta-information about the current state of a file or directory, in order to communicate that
information to other developers (and yourself, six months from now).

Some of the items of information that you might want to store as properties so they can
be efficiently communicated to others include

• Testing status of the file, along with a list of known issues (or references to them in
an issue-tracking system)

• Design document for the file (either the actual document or a reference to allow
others to find the document)

• A TODO list for the file

• The names of the reviewers who have looked at the file, along with the date and time
of the reviews

• Licensing or ownership information (especially if that information varies from file to
file)

Branches and Tags

Branches and tags may not seem like an obvious means for communicating information to
other developers, but if used correctly, they can be useful. Whenever you create a branch or
tag, that branch or tag’s existence can convey information to other developers—if there is a
clear policy in place for defining the circumstances for creating branches/tags, along with
policy that describes their naming and organization. For example, if you use task branches,
you can use the branch’s location to indicate status. The project manager (or QA tester)
can create task branches when scheduling the task, and place it in a/tasks/unassigned/

“svnbook” — 2005/4/14 — 14:55 — page 232 — #253i
i

i
i

i
i

i
i

232 Chapter 12 Development Process Policies

directory. Then, when the task is assigned and a developer begins work, the task can be
moved to/tasks/in_progress/. The task branches could even be cross-referenced to
an issue-tracking system by using a naming scheme that includes the issue number, or by
storing an issue reference in a property.

12.6.2 Communicating about Subversion

Equally important to using Subversion to communicate is making sure that you communi-
cate sufficientlyaboutSubversion. When working on a software development project, it is
extremely important to make sure other developers know what is going on. When you start
work on a long task or create a branch, let everyone working on the project know. That way,
you can avoid wasted and redundant work. You can also gain the benefit of others spotting
problems before they occur. If no one knows until after the fact what you are doing, you
are relying entirely on yourself to recognize potential problems, and multiple sets of eyes
are always better than one.

Communication always works more smoothly if you set out clear policies for what
should be communicated, and how it should be communicated (e.g., e-mail, instant mes-
sage, or weekly meetings). For instance, you should have policies on communication of
the following Subversion-related activities.

• A developer begins work on a particular task, regardless of whether it has been ex-
plicitly scheduled.

• A branch or tag needs to be created for a purpose other than those normally used.

• There is a need to perform a nontrivial merge in a branch used by other developers.

• A revision is (accidentally) committed that breaks previously working areas of the
project.

• A bug is found in a public branch of the project.

• There is any restructuring of the repository, such as the renaming of branches or
creation/deletion of publicly used directories.

12.7 Enforcing Policies

In a perfect world, there is no need to enforce policies, because every developer would
follow every policy as close to the letter as prudent, but no closer. Of course, we don’t live
in a perfect world, and even the best developers fail to follow policy occasionally. There
are, of course, many established methods for enforcing policies, such as banning or firing
(depending on the nature of the project), as well as a number of lesser punishments. I won’t
go into any of those methods in any detail here. Their use is well beyond the scope of this
book. However, there are some ways in which you can use Subversion (along with some
external scripts) to self-enforce some of these policies to varying degrees.

“svnbook” — 2005/4/14 — 14:55 — page 233 — #254i
i

i
i

i
i

i
i

12.8 Summary 233

• Usepre-commit hook scripts to parse log files and ensure that all of the necessary
information has been entered.

• Similarly, usepre-commit hook scripts to check for the existence of properties, and
ensure that they contain valid values.

• Set up read/write permissions to ensure that branches and tags are created by the
right people, and that tags are not modified.

• Use properties to indicate the validity of actions. For instance, if QA testers sign off
on a file or directory by setting a value in a property, you can use apre-commit
hook script to check for the sign-off before allowing tester branches to be merged
into the main development branch.

12.8 Summary

In this chapter, you learned about setting a variety of policies for a software development
project preparing to use Subversion, including policies for branching/tagging, committing
of changes, log messages, project builds, and quality assurance. In addition to learning
about the potential policy areas, you saw a number of examples for different ways to im-
plement policies, depending on the type of project. At the end, you read short discussions
on ensuring that the project is supported by good communication, as well as some ways
that you might enforce policies within Subversion.

“svnbook” — 2005/4/14 — 14:55 — page 234 — #255i
i

i
i

i
i

i
i

“svnbook” — 2005/4/14 — 14:55 — page 235 — #256i
i

i
i

i
i

i
i

Chapter 13

Integrating SVN with the
Development Process

Subversion is only one tool in the software development process, and as such it works best
when integrated with the rest of the software development process. In this chapter, I will
talk about a number of other aspects of software development, and how Subversion can
best help support them.

13.1 SVN in Different Developers’ Workflows

To start, let’s take a look at the developer’s daily workflow, and how Subversion fits into
that process. Of course, every developer’s workflow is different, and depends largely on
a combination of each developer’s work habits and the work environment; however, there
are plenty of commonalities that we can examine, and those commonalities tend to fall into
different developer types. Of course, no individual developer fits a stereotype, but for the
sake of illustration, I’ve broken the discussion down into six archetypal developers. For
each one, I’ve taken a look at how Subversion might fit into that developer’s workflow (of
course, project policies could radically alter each archetype’s workflow).

13.1.1 The Methodical Programmer

The methodical programmer is the diligent developer who sits at his desk quietly and
steadily churns out line after line of clean, well-documented code. In a typical day, he
may come in to the office, get a cup of coffee, then sit down at his desk and do ansvn
update. After checking his e-mail, he will see what was updated in his working copy and
test any changes to make sure they didn’t affect anything he was working on.

After the methodical programmer is up to speed with the changes, and certain that
everything is working properly, he will get a list of tasks for the day and begin working his
way through them. For each task, he will do the following.

1. Make a branch in his own private branches directory, for implementing the task.

2. Usesvn switch to switch the appropriate sections of his working copy of/trunk
over to that branch.

235

“svnbook” — 2005/4/14 — 14:55 — page 236 — #257i
i

i
i

i
i

i
i

236 Chapter 13 Integrating SVN with the Development Process

3. Implement the task, testing and committing after each distinct, testable change.

4. When the task is tested and complete, he will usesvn switch to go back to the
trunk, followed by ansvn merge.

5. With the task merged into the trunk, he will do ansvn update and thoroughly test
the feature with any new changes.

6. The task now complete, he will commit with a detailed log message and move on to
the next task on his list.

The methodical programmer is also very exacting with all of his work, and everything
is done in small chunks with detailed documentation (comments, logs, and so on) at every
step of the way. By using small, distinct changes for each commit, he allows himself to take
maximum advantage of Subversion’s merge system. If a change ever needs to be removed,
he will also find merge useful, because his detailed documentation allows him to pinpoint
exactly which revisions contain the change (and because each revision is a single change,
svn merge can be used).

At the end of the day, the methodical programmer makes sure that all of his work has
been committed to the repository, and usessvn info to make sure that every part of the
working copy has been switched back to the trunk (wouldn’t want to forget and accidentally
commit work to the wrong place, or miss an important update). Then, he makes a list of
the tasks that need to be completed the next day, before logging everything off and packing
up for the day.

13.1.2 The Collaborator

The collaborator works in a team environment and shares her work frequently with others
as she goes along. When she gets into work in the mornings, she first spends a few minutes
chatting with her coworkers while she sips her morning latte, to catch up on what everyone
else is working on. Then, she gets together with her pair-programming partner, and they
discuss the day’s tasks.

With a rough plan for the day put together, the collaborator and her programming part-
ner begin implementing the days tasks. Individual tasks tend to flow together in a much
more fluid manner than the rigid separation of tasks that the methodical programmer used,
and branches are less commonly used. In general, the collaborator’s workflow for tasks
runs something like this:

1. She updates frequently to get the latest changes from the other developers on the
project, discusses those changes with them over e-mail or instant messaging (or oc-
casionally by shouting across the room) if any clarification is necessary, and tests her
changes thoroughly with any new updates when they occur.

2. She and her programming partner implement tasks in their working copy, and commit
frequently, as new bits of features are tested. For experimental changes, she may
create a branch to avoid breaking the project build for other developers.

“svnbook” — 2005/4/14 — 14:55 — page 237 — #258i
i

i
i

i
i

i
i

13.1 SVN in Different Developers’ Workflows 237

3. When one task is complete, she moves on to the next, but this process tends to be
somewhat fluid, with one task flowing into the next. There often are no clear breaks
between broad tasks.

The collaborator also makes heavy use of tools that integrate her work with that of
her coworkers. For instance, she is very “at home” in an environment where a site such
as Trac (Section 13.3.2, “Automating Interaction with Issue Tracking”) has been imple-
mented. When she has access to Trac, she makes heavy use of it to document all of her
work for others. She also keeps running RSS feeds of commits to each project or project
component that she is interested in displayed on her secondary display at all times. Any
new designs or potential changes to the structure of the application under development are
drawn up and described using the Trac wiki, or some other collaborative tool that allows
her ideas to be viewed and commented on by her coworkers.

The best way to accommodate the collaborator is to ensure that she has access to the
best collaborative development tools that you can provide. Getting her to use them isn’t a
problem. Instead, she spends her time proselytizing the tool’s uses to her coworkers. The
collaborator wants to work with others. She wants to communicate what she’s doing to
everyone else, but more importantly, she wants to understand the work that is being done
on the rest of the project. She isn’t productive if she cannot see what is going on with
other aspects of the project. If she doesn’t have that information, she seeks it out, possibly
disturbing the productivity of others if she doesn’t have ready access to the information she
wants. By introducing policies that help ensure that information about the project is avail-
able at all times, you allow the collaborator to get information whenever it is useful, without
interrupting her coworkers unnecessarily and without needing to wait unproductively for
information to be delivered.

13.1.3 The Lone Hacker

The lone hacker is a cowboy who codes rapidly, and without regard for a regimented devel-
opment process. He keeps odd hours, and tends not to communicate with other developers
more than necessary. The results of his work are technically exemplary, but can be lacking
in documentation and adherence to prescribed style. To him, Subversion is a minor part
of the software development process, and exists mostly as a tool for adding changes to the
project in large blocks. He is unlikely to make a lot of use of Subversion’s advanced fea-
tures, and mostly usessvn update andsvn commit, with the occasionalsvn status.

The lone hacker can (and does) often make excellent contributions to the project itself,
but can wreak havoc on carefully designed development processes. He comes in late, and
goes home late—really late. When he sits down at his computer to work, he picks a task
from his to-do list (which is often at least partially in his head) and dives right in. As far as
he is concerned, tasks are easiest to complete in large chunks, so that’s how he does them.
Often, he forgets to commit after individual tasks. Frequently, he only makes a single
commit at the end of the day—with log messages that are cryptic and only marginally
useful to all but himself.

The best way to handle a lone hacker depends a lot on the environment he is working
in. If his contribution is valuable, and the development process allows it, you may be best

“svnbook” — 2005/4/14 — 14:55 — page 238 — #259i
i

i
i

i
i

i
i

238 Chapter 13 Integrating SVN with the Development Process

served by giving him the freedom to be creative and productive. By using task branches
and/orpre-commit hook scripts that validate commits against policies, you may be able
to gently conform his process to a more collaborative effort, without making him feel as
if his creative freedom has been stifled. If the overall development process is more strict,
the strictness of automated checks can be increased accordingly. Automation of mundane
policy tasks can also serve to help constrain a lone hacker. For example, if he has to
create his own task branches, he may be inclined to forget and commit directly to the trunk
or combine multiple tasks into one branch. On the other hand, if the task branches are
automatically created when a task is assigned to a developer, he may be more inclined to
use them properly.

13.1.4 The Guru

The guru has been around the block several times, and has all the tricks up her sleeve. She
draws on her experience to both develop and help others less experienced. Her workflow
often floats between personal implementation of tasks and offering aid to others. As such,
she frequently makes use ofsvn switch, svn cat, andsvn diff to view and test other’s
work, which is usually discussed over e-mail or instant messaging. Additionally, she of-
ten has multiple working copies that have different revisions or sections of the repository
checked out.

The most valuable resource a guru provides is her knowledge. That knowledge, applied
to the project at hand, can be invaluable. However, by imparting that knowledge on others
in the project, the value of her knowledge is increased ten-fold. Therefore, it is important
that the Subversion repository be set up in such a way as to maximize her ability to transfer
knowledge.

• Provide Web-based repository browsing, to make it easy for the guru to check out
other developers’ source in order to comment or answer questions. The repository
browsing features of Apache/WebDAV may be sufficient, but a Web frontend such
as WebSVN, which allows for additional features such as examination of previous
revisions and graphical diffs between files, is a much better choice.

• Define properties that can be used for providing comment on files in the repository. If
a developer seeks the guru’s advice on a problem, the guru may not be in a position
to provide her help at that particular moment in time (she may also not be in the
same geographical location as the developer seeking help). It would, of course, be
possible for her to provide her response via an external route, such as e-mail or instant
messaging; however, if she can attach the comments to a property associated with the
relevant file, it will never be lost, and can be easily retrieved in the proper context.

• Sometimes, it is useful for the guru to make actual modifications to code in the repos-
itory in order to properly illustrate an answer to a question from another developer.
It isn’t usually appropriate for the guru’s changes to be immediately committed to
the main trunk of the repository though, as she isn’t the person responsible for that
section of code and may not always have the opportunity to know all of the conse-
quences of her change. In these cases, it can be useful to provide every developer

“svnbook” — 2005/4/14 — 14:55 — page 239 — #260i
i

i
i

i
i

i
i

13.1 SVN in Different Developers’ Workflows 239

with areas where she can create private branches. Then, the guru can create a branch
and make the changes there, leaving it up to the original developer to merge those
changes back into the main development trunk as appropriate.

13.1.5 The Rookie

The rookie is just starting out as a developer, and hasn’t developed a personal workflow
process yet. He is prone to experimentation and tends to make a lot of mistakes from lack
of experience. In addition to routinely seeking out advice from the guru, he needs to make
frequent use ofsvn help, as well as any policy documentation specific to the project (a
good reason to develop such documentation).

Automation can be a great aid to the rookie programmer. Like the lone hacker, he is
prone to forgetting small details and has a tendency to incorrectly follow policy procedures
(not because of a cavalier attitude, but due to a lack of experience). In addition to safeguards
put in place to automatically check for adherence to policies, custom tools that automate
common tasks can be very useful, as can a good GUI-based Subversion client. It may also
be a good idea to perform frequent peer review sessions that look at his use of Subversion
and other tools in addition to the actual code he is writing. It is much easier to change a
log message a week after the commit than it is six months after the commit, when no one
remembers why the changes were made.

13.1.6 The Hobbyist Programmer

The hobbyist programmer is not developing as a nine-to-five career, but rather as an evening
hobby. That means that she is much more interested in fun than she is in following a com-
plex procedure designed to improve the manageability or efficiency of a project. This
doesn’t mean that she is an amateur, just that her priorities are likely to be different than
those of a professional developer. She is unlikely to be a Subversion guru, nor is she likely
to have much desire to become one. In most cases, many (if not most) of the develop-
ers involved with any given open source project fit this archetype, which means that most
open source projects will needs to accommodate her development efforts. There are several
approaches that can work.

• Keep the process simple. Make sure most development is done on a single branch,
and don’t use complex processes that involve specially formatted log messages or
custom properties. Provide clear documentation for what should be in a commit log,
as well as any other (simple) policies for committing new revisions. Where possible,
use hook scripts to enforce minimum compliance. For example, you might have a
hook script that checks to make sure that there is never an empty log message, or that
the submitted code passes a style check.

• Make use of trusted “core developers” who receive code changes from contributing
developers and then perform the actual Subversion repository commit themselves.
In addition to allowing you to take advantage of more complex policies for using
Subversion (due to a developer base that is presumably more dedicated to the project

“svnbook” — 2005/4/14 — 14:55 — page 240 — #261i
i

i
i

i
i

i
i

240 Chapter 13 Integrating SVN with the Development Process

and thus willing to learn), this also allows your project to readily accept contributions
from a wide range of contributors and test them before applying the contributions to
the repository.

• If you want to readily allow a wide variety of developers to commit code directly to
the repository, but don’t want the hassle of vetting each developer’s ability to properly
apply changes to the project, a third option is to make use of individual developer
branches. Each developer can be given his own branch of the main development
trunk, with permission to commit. It then becomes his responsibility to maintain that
branch and make changes, which can then be merged into the main trunk after being
tested by a smaller core developer group. This has the advantage of allowing more
developers the ability to preserve their work in the repository, while maintaining the
integrity of the primary project.

13.2 Using SVN in Peer Reviews

Peer reviews can be a useful tool for helping to ensure code quality, but no one likes them.
They tend to feel like wastes of time, even when they’re not, and are extremely prone to
devolving into chaos. Many developers feel like their time could be better spent doing
“real work,” and few cherish losing a day, or even an afternoon, to reviewing others’ work.
Subversion doesn’t have some magical key to making peer reviews perfect, of course, but
you can use Subversion to help organize them so that they can at least feel more productive.
In distributed development environments (such as open source projects), you can even use
Subversion to help support distributed peer review.

13.2.1 Tracking Peer Review Status

The most obvious use of Subversion in peer reviews is as a tool to track what has been peer
reviewed already and what has not. By using Subversion properties and other metadata,
you can easily track peer reviews on a per-file basis, per-directory basis, or even per-project
basis. That way, when you’re ready to do a peer review, it’s already obvious what needs to
be reviewed in that session. Developers can prepare ahead of time, and a checker script can
ensure that no code accidently slips through unreviewed.

The exact methods used for tracking peer reviews depends mainly on what code you
want to have reviewed, how often you want reviews, and in what granularity of code. To
give you some ideas for how you might go about tracking reviews, here are a number of
different ways to keep track of them.

• You can track reviews per-revision, recording which revisions have been reviewed
and which have not. When you perform a review, you would then be able to call up
all of the changes made to the repository in a given block of unreviewed revisions.

To track the revisions that have been reviewed, you can use a property set on the root
directory, called something such asreview:last_rev. Whenever you perform a
review, modify that property to hold the revision number of the last reviewed revi-
sion. If you would rather separate your reviews by project (or even “part of project”),

“svnbook” � 2005/4/14 � 14:55 � page 241 � #262i
i

i
i

i
i

i
i

13.2 Using SVN in Peer Reviews 241

you can use the base directories of each project to store the property, instead of the
root directory of the repository.

• Another method of tracking reviews is to do them based on revision dates. For in-
stance, you could hold regular peer reviews twice a month, and always review the
changes that have been committed to the repository since the last peer review.

In this scenario, you may not even need to explicitly store something in the repository
to track the reviews. Instead, you could just use Subversion’s capability to retrieve
revisions by date to always get the correct revisions. Of course, it could still be useful
to store the dates in the repository (just in case), which can easily be done with
properties, the same as when tracking by revision number.

• If reviews aren’t always done sequentially, storing the last reviewed revision or date
doesn’t do you much good. In this case, it might be more useful to use revision prop-
erties to store review status. When an individual revision is reviewed, set a revision
property on that revision that indicates it has been reviewed.

Alternately, you could use a single versioned property to store a list of nonsequen-
tial reviewed revisions. Using the single versioned property has the advantage of
allowing you to easily view (or parse in a script) all of the reviewed revisions for a
particular project. On the other hand, it decouples the indicator of review status from
the revision itself, making it difficult to figure out when a revision was reviewed.

• As an alternative to using properties to signify peer review status, you can also use
tags. For instance, you could keep a sliding tag of the last reviewed revision for each
of your projects. When you have a new review, you can use the tag to see what has
changed since your last review, and then recreate the tag against the HEAD of your
repository.

Finding Unreviewed Revisions

If you are using revision properties to mark which revisions have been reviewed and which
haven’t, finding unreviewed revisions can be a difficult process. The following script, how-
ever, could be used to automate the process. It takes a URL into a repository that points
to the base of the project being checked, as well as a range of revisions to check. It then
searches through the revision properties for that project, and finds any revisions where the
designated project was changed but the revision has never been reviewed (it also outputs
revisions that have not had the property set). Because it has to search linearly through the
revision properties, this can be a slow script to run (especially on large repositories), but
presumably you don’t need to run it frequently. In this version of the script, the revision
range must be given in the form of revision numbers. The script could be expanded to parse
dates or symbolic revision labels though.

#!/bin/bash
review_status.sh
Finds all revisions with the review:status property set to 'false'

“svnbook” — 2005/4/14 — 14:55 — page 242 — #263i
i

i
i

i
i

i
i

242 Chapter 13 Integrating SVN with the Development Process

The URL of the repository
URL=$1

The range of revisions to check
LOW_REV=$2
HIGH_REV=$3

Cycle through the range of revisions
for i in ` seq ${LOW_REV} ${HIGH_REV} `
do

Check the review status of this revision
REVSTAT= ` svn propget reviewstat --revprop -r ${i} ${URL} `

If the revision hasn't been reviewed, output the revision number
if [${REVSTAT} = "false"]
then
echo ${i}

If the reviewstat property hasn't been set,
output the revision number with an asterisk
elif [${REVSTAT} = ""]
then
echo "${i}*"

fi
done

This script can be run from the command line, as in the following example.

$ review_status.sh https://svn.mydomain.com/repos 425 780

13.2.2 Distributing Material for Peer Reviews

When it comes time to do a peer review, it helps greatly to distribute the code to be reviewed
to the reviewers a few days ahead of time. That way, when everyone comes together for
the review, they are prepared for the discussion. The process of getting that code to the
reviewers is where Subversion comes in. There are several ways that you can go about
distributing the code to be reviewed, each with different advantages and disadvantages.

• You can inform each reviewer of the revisions that will be reviewed, and allow her
to examine the revisions as she wants. This has the advantage of putting the least
amount of burden on the organizer of the review, while maximizing the flexibility
of the reviewers to examine the changes as they wish. However, flexibility is not
always the best virtue, as reviewers tend to be less likely to examine the changes to
be reviewed if they have to work at getting at them. Additionally, in some cases, the

“svnbook” � 2005/4/14 � 14:55 � page 243 � #264i
i

i
i

i
i

i
i

13.2 Using SVN in Peer Reviews 243

reviewers may not readily have a working copy of the revision to play around with.
Also, I should note here that none of my other suggestions for distribution in any
way limit the developer from using Subversion to get more information about the
changes, nor is there anything I talk about in the following examples that wouldn’t
normally be available for the reviewer to personally generate.

• You can distribute diffs of all the changes in the revisions under review. These can
be easily obtained using Subversion, and they give you a tangible set of changes
that can be sent to reviewers or posted on a mailing list. The downside is that many
developers find diffs hard to read, and next to useless as part of a code review. On the
other hand, they do put something heftier than a couple of revision numbers into the
reviewer’s hands, which may improve the chances that the code under review will at
least be looked at before the review takes place.

• Distributesvn blame output for the project to be reviewed. This has the advantage
of putting the entire source of the project being reviewed in front of the reviewer.
However, it can make it difficult to pinpoint exactly what changes need to be re-
viewed, because every line is annotated, not just the lines added in the desired revi-
sions. A potential solution to that problem, though, is to process the output ofsvn
blame to generate a reviewer’s version that has all of the annotations for irrelevant
revisions stripped out.

• Instead of distributing the source directly to reviewers, you could generate a Web
page to display the changes to be reviewed. The Web page could then be generated
from the output ofsvn diff or svn blame, wrapped in markup text that could
color-code sections or provide links to other parts of the project that are referenced.
Every developer participating in the review would then be able to view this Web site
to get up to speed on the changes. Or, if a Web site isn’t practical, you could also use
the output to generate an annotated and colored version of the source to be reviewed.

An svn blame Postprocessor

If you would like to use the output ofsvn blame to create a peer review copy of your
source files, it can be useful to filtersvn blame’s output to only annotate the specific range
of revisions that you are reviewing. The following example shows how you can create a
Perl script that will do just that.

#!/usr/bin/perl
blame_filter.pl
Filters the output of svn blame for specific revisions

Get the range of revisions to include in the output
$LOW_REV = $ARGV[0];
$HIGH_REV = $ARGV[1];

“svnbook” — 2005/4/14 — 14:55 — page 244 — #265i
i

i
i

i
i

i
i

244 Chapter 13 Integrating SVN with the Development Process

Iterate through each line of svn blame output and filter the ¬
annotation
while ($LINE = <STDIN>) {

Get the revision number for this line
$CUR_REV = substr $LINE, 0, 6;

Compare the revision number to the revision range
if(($LOW_REV <= $CUR_REV) && ($HIGH_REV >= $CUR_REV)) {

This revision is in our range, include the annotation
print $LINE;

}
else {

This revision is outside the range, strip the annotation
print " " . substr($LINE, 18);

}
}

This script can then be run as a filter for the output ofsvn blame from the command
line or in a script, as in the following example (which includes the annotation for revisions
435 through 502).

$ svn blame test.cpp | blame_filter.pl 435 502 | test-annotated.cpp

13.2.3 Performing Peer Reviews

When it comes time to actually perform peer review, there are a few areas where Subversion
can be a useful tool. How it can best be used as a tool depends on what type of peer
review you are looking to use. There is the traditional (and often dreaded) code review
that consists of several developers sitting around a table and critiquing sections of code, or
a more one-on-one style review, where each developer’s work is sent to directly to one or
more other developers who review and comment directly back to the developer at their own
convenience. Alternately, peer review can be accomplished through a forum style review
(usually hosted on a message board or e-mail mailing list), where sections of a project to
be reviewed are made available for comment by a wide array of interested parties. This sort
of review is especially popular for open source projects, where the project’s developers are
widely scattered and diverse.

Group Reviews

For a group review, developers get together either as a group to critique each other’s work
or as a panel to critique the work of one or more reviewees. The code to be reviewed
is usually either disseminated in paper or electronic form (i.e., to developer’s laptops), or
displayed on some sort of overhead projection for all to see and comment on.

“svnbook” — 2005/4/14 — 14:55 — page 245 — #266i
i

i
i

i
i

i
i

13.2 Using SVN in Peer Reviews 245

The logistics of getting the code to be reviewed to the reviewers has already been dis-
cussed in some detail, so I won’t bore you further. As for getting the code so that it can
be displayed on an overhead projector, that should be trivial to do, and doesn’t require
any special tricks from Subversion. Just check out the code and display it, possibly in an
svn blame format. There is, however, one other component to the review that Subver-
sion can be useful for, which does require more than trivial implementation. During any
review, there is useful commentary provided by the reviewers involved—if there weren’t,
you wouldn’t be having the review in the first place. Obviously, you want to keep a record
of those comments as they are made, and what better place to keep that record than in the
form of Subversion properties that are tied to the individual files and easily accessible after
the review.

Individual Review

With individual reviews, the reviewee’s code is sent to one or more reviewers, who examine
the code and make comments directly back to the developers in their own time. For the most
part, the discussion on group reviews holds true for individual reviews. Distribution of
source for review can usually be handled the same, and the suggestions for using properties
for storage of reviews holds equally useful. There is one catch with using properties in the
context of individual reviews, though. One of the weaknesses of the Subversion property
system is its lack of support for searching through properties. If another developer attaches
reviews to your source files, it can be difficult to figure out exactly which files have had
the reviews attached. One solution is to use log messages to indicate where reviews have
been added, but that is error prone and inelegant. A better solution is to set up a post-
commit script, which watches for changes on the peer review properties. When a change
is made, the modified peer review can be sent via e-mail to the target developer. That way,
you always have a complete record of all peer review, readily accessible along with the file
itself, but each developer is also given a much more immediate indication of peer reviews.

Forum Review

The final sort of review is a forum review, which is the sort of review most likely to be
used in an open source project. In this type of review, changes to a project are made
available through some sort of public forum (although “public” could well be limited to
within a company or project group) where developers are free to view the changes and
comment as they feel necessary. An example of this sort of review would be the Linux
Kernel Mailing List, where potential additions to the kernel are sent to the mailing list in
the form of patches, to be put up for comment and discussion prior to possible inclusion in
the repository.

With Subversion, you can support this sort of review by setting up the repository to
automatically send diffs and log messages to a mailing list whenever commits to certain
project branches are made. For instance, if you have branches for each developer authorized
to commit to an open source project, you could set up apost-commit script that would
usesvnlook diff andsvnlook log to retrieve the changes made for each commit to
one of those branches and send it to a developer mailing list. Then, when the discussion on

“svnbook” — 2005/4/14 — 14:55 — page 246 — #267i
i

i
i

i
i

i
i

246 Chapter 13 Integrating SVN with the Development Process

the commit is concluded, the appropriate developers can merge the changes into the main
project trunk. It is even possible to have a script that receives the mails sent to the developer
list and automatically archives peer review discussions into properties on the appropriate
files (the downside being that thread tracking isn’t always perfect, and you might end up
missing some e-mails, or getting other unrelated ones thrown in).

13.3 Tying Revisions to Issue Tracking

Issue tracking and development go hand-in-hand, so it makes sense to have your issue-
tracking system and Subversion work together. With a little bit of forethought and setup,
you can do just that. For most issue-tracking systems, there are ways that they can control
external systems, and vice versa. So, by hooking Subversion and your issue-tracking sys-
tem up to each other, you can automate a lot of the drudgery that is involved in keeping
both systems in sync.

13.3.1 Issue-tracking Properties

The TortoiseSVN GUI interface for Subversion has an interesting extra feature that adds
integration with bug tracking to Subversion. By setting certain properties on project di-
rectories, you can control how the TortoiseSVN interface is able to automatically query
the user about issue-tracking information, and store it in a manner that allows the GUI to
present bug-tracking data to the user. Also, in addition to being used by TortoiseSVN,
these properties are also gaining traction as a standard for Subversion issue-tracker inte-
gration, and are also used by WebSVN now. The full standard for these properties can be
found in the documentissuetracker.txt, which is located in the TortoiseSVN project’s
Subversion repository (svn.collab.net/repos/tortoisesvn/trunk/doc).

bugtraq:label

This property allows you to specify a label for the text box that the Subversion client dis-
plays to ask you to enter an issue number to associate a revision with. If this property is left
unset, the client displays some sort of default value (something likeIssue ID:). This al-
lows you to personalize the bug-tracking interface, to appropriately match the terminology
used by your issue-tracking system.

bugtraq:message

This property is used to turn issue-tracking integration on or off in a compliant Subversion
client. If the property is unset, no issue-tracking integration is used. If it is set, integration
is turned on, and the client uses the value of this property to set a special line in the log
files of your commits. The line is added to the end of each log message, and%BUGID% is
replaced with the appropriate issue numbers (usually; seebugtraq:append later in this
section).

For instance, if yourbugtraq:message property is equal to this:

Associated issues: %BUGID%

“svnbook” — 2005/4/14 — 14:55 — page 247 — #268i
i

i
i

i
i

i
i

13.3 Tying Revisions to Issue Tracking 247

Then a commit that is given the issue IDs247, 342, and771 will have the following line
added to the end of its log message:

Associated issues: 247, 342, 771

bugtraq:number

This property is used to indicate whether your issue-tracking system identifies issues with
numbers exclusively, or if it allows other characters. If only numbers are allowed, this
property should be set totrue (or left unset). If other characters are allowed, you should
set this property tofalse.

bugtraq:url

This property is used to allow a Subversion client to present you with a link to the is-
sues referenced by the log message. The value of this property is a URL, which contains
%BUGID%. Just like in thebugtraq:message property, this URL replaces%BUGID% with
the appropriate issue ID when the link is displayed.

bugtraq:warnifnoissue

Subversion revisions aren’t always associated with a specific issue in your issue tracker,
but for some projects, unassociated revisions are the exception, not the norm. If this is
the case for your project, you may want to have the Subversion client warn the user if he
doesn’t enter an issue number when he commits. To turn that warning on, you have to set
this property totrue. If you don’t want the warnings, just leave this property unset.

bugtraq:append

The default for adding the issue message to your log messages is to append the message
to the end of the log. If you would rather have the message appear at the top of each log
message, you can set this property tofalse. In either case, the message appears on its own
line.

13.3.2 Automating Interaction with Issue Tracking

If you’re up for a little bit of scripting, much of the Subversion issue-tracking interaction
can be automated, which allows you to keep your issue tracking system more consistently in
sync with your Subversion repository, as well as alleviate some of the drudgery of entering
information into both systems.

• You can use apost-commit hook script to automatically send messages to an issue-
tracking system. Many systems, such as Bugzilla (www.bugzilla.org), have Web-
based interfaces that can be interfaced with through a script that emulates a user
manipulating the system by hand (Python is a good language choice for these scripts).
Other systems, such as the up-and-coming Scarab (scarab.tigris.org) or the

“svnbook” — 2005/4/14 — 14:55 — page 248 — #269i
i

i
i

i
i

i
i

248 Chapter 13 Integrating SVN with the Development Process

e-mail-based RT (bestpractical.com) have interfaces specifically designed for
remote control by external programs.

Messages can be controlled through formatted log messages. Commands placed
in log messages can be used to determine which issue(s) a revision applies to, and
what should be done with that revision. Useful commands for manipulating the issue
tracker include

– Setting the resolution status of an open issue

– Appending a log message to the comments for an issue

– Associating a revision in Subversion to an issue in the tracker

• It may also be possible to make things work in the other direction. Most issue-
tracking systems can send out e-mails notifying people of activity on the issue-
tracking system. If you have messages carbon copied to a Subversion-specific e-mail
address, and write a program to listen for those messages, you can set up automated
tasks to manipulate the Subversion repository in response to changes in the issue
tracker. For instance:

– New bug reports in the issue tracker could automatically trigger the creation of
a task branch in the repository for fixing the bug. If security is a major concern,
this could also set the proper permissions for the developer assigned to fix the
bug.

– When an issue is closed, the task branch for that issue could be moved into a
closed issues directory, or deleted altogether.

Trac

Another option for integrating Subversion with issue tracking is the Trac project manage-
ment system (www.edgewall.com). Trac provides a Web-based environment for manag-
ing projects, including an issue tracker and a wiki that integrate with a Web-based interface
to Subversion. Log messages can directly reference issues (called tickets) and wiki pages
(with links generated by Trac when viewing the log message from the Trac interface), and
ticket/wiki pages can reference specific repository revisions (also with links). Trac even
includes apost-commit hook script that allows you to automatically update the status of
Trac tickets based on information provided in the log message. Figure 13.1 shows the Trac
interface displaying its repository browsing screen.

“svnbook” — 2005/4/14 — 14:55 — page 249 — #270i
i

i
i

i
i

i
i

13.4 Summary 249

Figure 13.1.The Trac repository browser.

13.4 Summary

In this chapter, you’ve seen a variety of information on integrating Subversion into your
overall development process. The developer studies showed some of the quirks you may
have to deal with when it comes to developer personalities and work habits, along with
suggestions for integrating their workflow into Subversion (or vice versa). Additionally,
you saw ways in which you can integrate Subversion with a rigorous peer review process
and issue tracking. In the next chapter, we will look at several case studies of different
project environments (both archetypal and real world) and how Subversion fits into their
process.

“svnbook” — 2005/4/14 — 14:55 — page 250 — #271i
i

i
i

i
i

i
i

“svnbook” — 2005/4/14 — 14:55 — page 251 — #272i
i

i
i

i
i

i
i

Chapter 14

Case Studies in Development
Processes

Understanding is always easier with a few examples. So far, we’ve looked at a lot of small
examples, but haven’t really tied everything together. In this chapter, we’ll do just that, and
look at some case studies of full Subversion repositories.

14.1 Archetypal Studies

In this section, we’ll look at several development project archetypes. For each one, I will
describe the sort of development philosophy that such a project is likely to have, as well as
key points of process and policy that define the archetype. Then, I’ll examine the choices
that such a project will have to make when integrating with Subversion, such as laying out
the repository and using properties, hook scripts, and other Subversion features. I’ll also
look at the limitations of Subversion that you may run into with each archetype, and how
you can work around them.

14.1.1 Managed Chaos

The managed chaos project is one with little managerial oversight over the day-to-day
details of development. Instead, managerial duties are limited to integration and high-level
design. In fact, in many such projects, the project manager is really more of a project
maintainer, and may even be officially titled that way. You are most likely to find this sort
of a project in an academic or open source project setting.

In this case study, we will look at a hypothetical managed chaos project and open
source program called BogeyTalk, which allows text on your computer to be read to you in
the style of Humphrey Bogart. BogeyTalk is a mature project, with dozens of contributors,
as well as a small team of five maintainers, handpicked from the project’s major developers
by the creator of the project, who we’ll call Bob. Significant project releases are frequent (a
couple of times a year), and the project follows the Linux Kernel version numbering scheme
(even minor numbers for releases, and odd minor numbers for development versions).

251

“svnbook” — 2005/4/14 — 14:55 — page 252 — #273i
i

i
i

i
i

i
i

252 Chapter 14 Case Studies in Development Processes

/trunk /stable

/version_1.0

/version_1.2

/development /maint_branches

/

/version_1.1

/version_1.3

/version_1.0.1

Figure 14.1.The BogeyTalk repository layout.

Repository Layout

Because BogeyTalk is the only project hosted in its Subversion repository, the entire project
resides at the top level of the repository. The main development branch of the project
resides in the/trunk directory. Additionally, there are/stable, /development, and
/maint_branches directories, as you can see in Figure 14.1. The/maint_branches
directory is used to store maintenance branches (as I will explain shortly), whereas the
/stable and/development directories are tag directories that store snapshots of various
releases of the project.

Branches and Tags

Because most BogeyTalk developers do not have access to make direct commits to the
repository, task branches make little sense. Therefore, BogeyTalk uses branches and tags
primarily to signify different versions and releases. For each release of the project, a tag
of the project is created in either/stable or /development, depending on whether the
release was a stable release or a development release (the different directories help ensure
a logical separation between the two release categories). Both of these directories are used
as immutable tag directories (i.e., copies are created here from elsewhere and nothing is
changed once created), but the repository is not set up to enforce that policy. Instead, Bob
made the decision to trust the maintainers and make it easy for them to make a correction
if there is an error when creating a release tag. Because there are only a few maintainers,
this works out well.

Most actual development on BogeyTalk occurs in the/trunk directory, but occasion-
ally there needs to be further development on an older version of the program in order to
patch security holes or maintain compatibility with other projects. To support these security
patches, the BogeyTalk project maintains maintenance branches for each stable version of
the project (1.0, 1.2, 1.4, and so on) in the/maint_branches directory. These branches
are created at the time of the stable version’s release, and are identical to that version’s tag
in the/stable directory at the time of the release. When security or compatibility patches
need to be made, they are committed to these branches, which are then tagged to create
subminor version releases (1.0.1, 1.0.2, and so on).

“svnbook” — 2005/4/14 — 14:55 — page 253 — #274i
i

i
i

i
i

i
i

14.1 Archetypal Studies 253

Properties

The BogeyTalk makes use of thesvn:keywords property to embed repository information
in the comment header of each file, using theId tag. Because most BogeyTalk users get
their copy of the project’s source code from a release package, and not directly from the
repository, this makes sure that the information necessary for finding a particular file in the
repository will always be available.

BogeyTalk also uses several custom properties for storing additional meta-information
relevant to the project.

• Each release tag stores packaged tarballs and RPM files inpkg:tgz andpkg:rpm
properties, respectively. This allows a script to automatically maintain the down-
loads directories on the project’s Web site, by scanning the releases directories for
new packages. If it discovers a release that does not have associated packages (or has
out-of-date packages), it sends an e-mail warning to Bob to make sure the problem is
corrected. Bob could have opted to use a directory in the repository to store package
files, but he decided to use the properties to maintain a logical connection between
packages and the source they’re associated with. Because the package files are cre-
ated from the tag itself, and then attached to the tag after it is created, the possibility
that a tag will have an out-of-date package associated with it is minimal.

• Most of the BogeyTalk project is licensed under the GNU General Public License
(GPL), but a few key sections are licensed under the GNU Lesser General Public
License (LGPL) to allow external programs to link to BogeyTalk without requiring
them to follow the GPL’s restrictions. To keep clear which files fall under which
license, each file maintains alicense property that states the license for that file.
For GPL licensed files, it has a value ofGPL, and for LGPL licensed files it has a
value ofLGPL. The project’s documentation is also licensed under the GNU Free
Documentation License (FDL), and those files have alicense property ofFDL.

• Because most of the developers who contribute to the BogeyTalk project do not have
direct write access to the repository, the repository commit logs do not reflect that
actual author of a change. One way around this is to always note the author’s name
in the log files, but for this project Bob wanted to go one step further. He wanted his
Web-based Subversion blame tool to show the actual author of specific bits of code,
rather than just the developer responsible for the commit. So, in addition to noting
who the author of a committed revision is, the BogeyTalk project also makes use of
adeveloper revision property, where the real name of the contributing developer is
stored.

Scripts

BogeyTalk uses a custom script that automatically maintains the project’s download direc-
tories, which contain packaged versions of the project in source and binary form. Each
night, the script is run as acron job on the project server.

“svnbook” — 2005/4/14 — 14:55 — page 254 — #275i
i

i
i

i
i

i
i

254 Chapter 14 Case Studies in Development Processes

1. The script first iterates through each of the immediate subdirectories in/stable, of
which there is one for each release.

2. For each stable release, the script checks thepkg:tgz andpkg:rpm properties to see
if they contain an up-to-date package.

(a) If either property is empty, or contains a package that is older than the latest
revision of that release, the script sends an e-mail to the project maintainer.

(b) Otherwise, the script checks to see if the package already exists on the project’s
Web server. If it does not, the package is copied to the server.

3. The script then repeats steps 1 and 2 for all of the development releases in the direc-
tory /development.

4. Finally, the script creates a tarball (.tgz) of the/trunk directory, names it with the
current date, and places it on the Web server as a nightly snapshot of the development.

BogeyTalk also has a custom script for creating its contributer annotated blame output
for the BogeyTalk developer’s Web site. The BogeyTalk blame script takes the raw output
from svn blame and compares each entry with thedeveloper property for the appropri-
ate revision (to improve performance, it caches values it has already discovered). It then
replaces the author label in the blame output to match the value ofdeveloper. To ensure
that this script is able to run at a reasonable speed, due to the large amount ofsvn propget
commands that it must call, the script is run from the same machine as the repository itself.

14.1.2 Rapid Development

The rapid development project is aimed at getting rapid functional output, without a long
upfront development cycle. The project is often subject to frequent requirements changes,
and developers need to be able to react quickly to shifts. Because development cycles are
short, development needs to perform frequent integration, and Subversion plays a big role
as a supporting framework that helps support changes.

For this case study, we’ll look at a hypothetical Web database application, being de-
veloped by the software development consulting firm, Programmers, LLC. The client on
the project, Internet Sales, Inc., wants to put the application into use on its internation-
ally known online sales Web site, but the exact requirements are fluctuating rapidly due
to changing market needs. Because the application is a custom development job, there is
no intention to market it as a prepackaged product, but Programmers, LLC will likely be
contracted in the future to support the software for Internet Sales, Inc.

Repository Layout

The repository for Programmers, LLC holds all of its ongoing projects, not just the database
application for Internet Sales, Inc. Therefore, the top level of the repository consists of
subdirectories for each project, which in this case is referred to as ISDB (Internet Sales
DataBase). The developers at Programmers, LLC are no fans of extra work, though,

“svnbook” — 2005/4/14 — 14:55 — page 255 — #276i
i

i
i

i
i

i
i

14.1 Archetypal Studies 255

/isdb /webdb

/

/trunk

/dailies

/releases

/trunk

/dailies

/releases

Figure 14.2.The Programmers, LLC repository layout.

and many of their projects tend to have overlapping functionalities. Therefore, they have
also developed a number of in-house projects that contain libraries used by their contract
projects, which they also store in top-level directories. In the case of ISDB, there is one
Web database project, stored in/webdb, that is used.

Inside the/isdb project directory, the project is split into a main/isdb/trunk direc-
tory, an/isdb/dailies directory, and an/isdb/releases directory (see Figure 14.2).
The trunk directory is where the main project development occurs. They store daily
project build tags in thedailies directory, and versions of the project released to the
client inreleases.

Branches and Tags

Because the ISDB project is on a rapid development schedule, the project’s developers are
using continuous integration of their work. That puts all of their development work on the
main trunk, and alleviates the need to use branches for separating work. There is also no
need to use branches for supporting multiple versions of the software, because there will
only be a single client that they need to support. If the project were to be “branched” for
development for a different client, the developers would instead make a copy of the/isdb
top-level project to create a new project for their new client.

The Programmers, LLC developers do make frequent tags of the ISDB project trunk,
though. Each day, they make a snapshot of thetrunk directory in thedailies directory to
store the state of the project at the end of that day’s development. Additionally, they make
tags of thetrunk directory whenever they release a version of the software to the client
(either for testing purposes, or as a version to be used in production), and place them in the
releases directory.

“svnbook” — 2005/4/14 — 14:55 — page 256 — #277i
i

i
i

i
i

i
i

256 Chapter 14 Case Studies in Development Processes

Properties

Programmers, LLC makes use of thesvn:externals property to link their in-house li-
braries to the projects that use them. In the case of ISDB, it makes use of their custom
Web database library, located in/webdb. To link that to the ISDB project,/isdb/trunk
directory has thesvn:externals property set to

libs/webdb https://svn.programmers.com/repos/webdb/trunk

Programmers, LLC also makes heavy use of properties to store project information at
the top level of each project. For each project, the top-level directory for that project stores

• The name of the client for the project, inproj:client

• Client contact information, inproj:contact

• Scheduling information for the project, inproj:schedule

• Project budget information, inproj:budget

As a part of the ISDB project’s rapid development cycle, the project uses automated
regression tests to ensure that no developer’s contribution breaks other parts of the project.
To facilitate these tests being run automatically, the top-level project directory stores two
properties,tests:daily andtests:hourly. These properties contain a list of the tests
that should be run on a daily basis and the tests that should be run on an hourly basis
(respectively). Additionally, each source file has a property namedtests:commit, which
lists tests that should be run whenever changes to that file are committed to the repository.

Scripts

The ISDB project uses a number of scripts to perform automatic testing on the project, in
order to help facilitate Programmers, LLC’s rapid development and integration schedule.

• A script runs each day to generate a snapshot of the daily build in the directory,
/isdb/dailies. This script also builds the daily snapshot and runs the tests spec-
ified in the project’stests:daily property. Any errors are reported to the project
Web server (which shows build statistics) and e-mailed to the appropriate developers.

• Another script performs hourly builds and runs the tests contained in the project’s
tests:hourly property.

• Finally, apost-commit script runs the appropriatetests:commit tests whenever a
commit is made.

14.1.3 Central Planning

A centrally planned project has a high degree of rigidity in design and process. Project
design is likely done up-front (or at least in large iterative cycles), and although individual
developers may not be micromanaged by the project manager, they generally are required

“svnbook” — 2005/4/14 — 14:55 — page 257 — #278i
i

i
i

i
i

i
i

14.1 Archetypal Studies 257

to follow rigid policies. This sort of development project is often necessary for managing
very large projects, or complex projects that require a large amount of high- and low-level
project design.

To examine this project archetype, we’ll look at the hypothetical government contrac-
tor, GovCon. GovCon develops a wide variety of different projects for various government
agencies. Many of the projects are quite large, and all must conform to detailed and ex-
acting government specifications. In order to maintain the level of control necessary to
meet these specs, GovCon maintains a strict project hierarchy of project management, with
clearly defined task descriptions for each member of a project team. Each project team
(there may be more than one per project) is further split into two sides: developers and
quality assurance testers. Communication between the two sides of the team is important,
and Subversion is used as a key tool in facilitating that communication.

Repository Layout

GovCon uses separate Subversion repositories for each project, so individual projects exist
at the top level of their respective repository. The project then consists of four subdirec-
tories: /qa_builds, /dev_builds, /tasks, and/releases (as shown in Figure 14.3).
The/qa_builds and/dev_builds projects are used for compiling and storing integrated
project builds, whereas the/tasks directory is used for individual developer work on spe-
cific tasks. Released versions of the projects are stored in the/releases directory.

Branches and Tags

GovCon makes heavy use of branches in its project development to separate tasks in order
to allow each individual developer’s work to be thoroughly tested by a QA tester before in-
tegration into the rest of the project. For each development task that needs to be completed,
a project manager creates a branch of the project in the/tasks directory, from that day’s
development build (located in thedev_builds directory) or from the daily QA build (in

/dev_builds /tasks

/

/qa_builds /releases

/2004-11-14

/2004-11-15

/2004-11-16

/2004-11-14

/2004-11-15

/2004-11-16

/issue4523

/issue5286

/2004-4-18

Figure 14.3.The GovCon repository layout.

“svnbook” — 2005/4/14 — 14:55 — page 258 — #279i
i

i
i

i
i

i
i

258 Chapter 14 Case Studies in Development Processes

/qa_builds). Then, after the task has been completed, it is marked for QA testing. Com-
pleted and tested tasks are then integrated into a QA build (in the/qa_builds directory)
where the integrated build is tested before using it to create a new development build.

Properties

The GovCon projects use properties as a tool for facilitating communication between QA
testers and developers. The top-level directory for each project branch contains a status
property (qa:status), which indicates whether a branch has been tested yet. When a
task is created, its status is set tountested/inprogress, and theqa:tester property is
unset. As soon as a developer feels that the current task is ready for testing, that developer
changes the value ofqa:status to untested/ready. QA testers can then go through and
test all of the tasks with a status that is marked as ready. If the tester is happy with the
results, theqa:status property is set totested/passed. If the task is not satisfactory,
qa status is set totested/failed. When a task is tested, the QA tester’s username also
is entered into theqa:tester property.

Scripts

All of the GovCon projects usepre-commit hook scripts to ensure that a variety of project
policies are being followed correctly.

• Log messages are checked to ensure that they match the proper log format.

• Committed source code is run through a style checker, to ensure that it matches the
prescribed coding styles for the project.

• QA properties are checked to make sure they have valid values.

Additionally, apost-commit hook script checks the QA property values for changes,
and sends e-mails to the appropriate people to inform them of the current status for tasks.

14.1.4 Small Teams

In small-team projects, there are very few developers working on a project—generally 10
or less. Development process tends to be relaxed, because there are few enough people to
still keep it manageable, and individual development style has a much greater influence on
project policy.

For this case study, we’ll look at an imaginary startup company named SmallCo.
SmallCo was started by five friends who graduated from college together, and has since
added three new developers. Of the five original founders, though, only three are devel-
opers themselves (the fourth is a business guy and the other is in marketing). That leaves
a current full development team of six people for SmallCo, all of whom are working on
developing the company’s ground-breaking new Internet product.

Repository Layout

SmallCo currently has only a single product, which is stored in its own repository. With
so few developers, SmallCo hasn’t seen much of a need to be particularly creative with

“svnbook” — 2005/4/14 — 14:55 — page 259 — #280i
i

i
i

i
i

i
i

14.1 Archetypal Studies 259

its repository layout, either. Following standard convention, the top level of the SmallCo
repository is laid out with/branches, /tags, and/trunk directories, as you can see in
Figure 14.4.

Branches and Tags

SmallCo does all of its project development in the main/trunk directory, with each de-
veloper committing changes as they are made and tested. Tags of the project are made at
both development milestones (i.e., beta or alpha releases) and at releases. Branches are
only used when problems need to be fixed with a previously released version, in which
case the tag for that release is copied into the branches directory, where it can be modi-
fied as necessary. When the fix is finished, the branch is moved back to the tags directory
as the new release. For instance, if a bug is found in version 1.1 of the software, the
developers would copy/tags/version_1.1 to /branches/version_1.1.1 and make
the necessary changes. When the new bug-fix release is ready, it is moved back to/tags
usingsvn mv.

Properties

Because of SmallCo’s size, its developers tend to handle project management and commu-
nication more informally than a larger operation might. As a result, it hasn’t yet found a
large need for custom properties to store or communicate project metadata, and to date has
not instituted any such properties. The only properties that are used in the repository are
the predefined Subversion properties, which the developers use as the situation warrants.

Scripts

As with properties, SmallCo has not found a pressing need to automate any of its practices
or policy enforcement with custom scripts. It is small enough that policy enforcement is
more easily done offline (if someone messes up, the developers fix it), and the development
process is handled too informally to benefit from automation.

/trunk /tags

/

/branches

Figure 14.4.The SmallCo repository layout.

“svnbook” — 2005/4/14 — 14:55 — page 260 — #281i
i

i
i

i
i

i
i

260 Chapter 14 Case Studies in Development Processes

14.2 Real-world Studies

Hypothetical case studies based around common project archetypes have their uses, but
it can also be helpful to take a look at some real-world projects, and how they manage
many of the issues associated with using Subversion. As with the archetypal studies, in this
section I will examine the different choices made by these projects, and how those choices
fit in with the topics discussed in previous chapters.

14.2.1 KeyGhost Ltd.

KeyGhost, Ltd. is a developer of embedded and PC software and hardware that uses Sub-
version for storing not only software source code, but also documentation in the form of
Open Office files, and hardware designs. It chose to use Subversion based on indications
that it is poised to become the next open source version control standard.

Repository

KeyGhost arranges its projects into 29 separate repositories, one for each project, most of
which are legacy projects that see little activity. Its more active projects have around 500
revisions, with a total repository size of 1GB. In total, the repositories are used by less than
10 developers who all have rights to commit changes.

Each repository is organized into a top-level directory, named for the project, with
trunk, branches, andtags directories in each project. Under thetrunk directory, devel-
opers categorize project files into source code, documentation, and hardware designs (using
source, docs, andpcb, respectively). Figure 14.5 shows an example of the standard lay-
out for a KeyGhost repository. KeyGhost makes use of tags for storing project releases, and
uses branches whenever it has an appropriate need for branching a project’s development.

The repositories themselves are hosted on a Microsoft Windows 2000 server, using the
Berkeley DB database backend. To share the repository, KeyGhost uses the Apache server,
largely due to its ease of setup and administration. It also uses secure HTTP over SSL to
secure the repository for remote access. The KeyGhost developers access Subversion from
Windows 2000 client machines, and use TortoiseSVN as a GUI client.

Migrating to Subversion

The KeyGhost migration to Subversion involved a conceptual change, from using a paradigm
where files were locked to limit a single developer to making modifications to a particular
file at a time, to the Subversion merge paradigm without locking. Additionally, they had
to overcome the hurdle of a user base without previous experience in version control. To
overcome this issue, developers were given training in version control, and provided with
the TortoiseSVN GUI client to make the learning curve significantly less steep.

Storing Binary Files

In addition to storing text-based source code files, KeyGhost also uses its Subversion repos-
itory for storing binary files from Open Office and its circuit board design package. Despite

“svnbook” — 2005/4/14 — 14:55 — page 261 — #282i
i

i
i

i
i

i
i

14.2 Real-world Studies 261

Figure 14.5.The standard KeyGhost repository layout.

Subversion’s use of a binary difference algorithm to store only changes to a binary file, de-
velopers found the storage requirements from one version of a file to the next to be hefty.
In order to limit unbounded exponential repository growth, KeyGhost has made a policy of
limiting commits to its binary files.

Repository Migration

Subversion makes a valiant attempt to make restructuring of a repository a simple pro-
cess. However, KeyGhost discovered that simple does not mean trouble free, and it can be
prudent to put some long-term thought into structure. KeyGhost began with a single Sub-
version repository, using a single top-level/trunk directory with individual projects in
subdirectories under that. After using Subversion for a while, however, KeyGhost decided
to migrate to its current structure of multiple repositories, with one project per repository.
Because a number of files had been moved or deleted, KeyGhost found thatsvnadmin
export andsvndumpfilter were unable to properly migrate all of the projects with their
full histories. In the end, KeyGhost was forced to resort to checking out working copies
and reimporting those into a new repository (which still caused a loss of history).

14.2.2 Error Free Software

Error Free Software (EFS) develops a proprietary trading system, which it stores in a Sub-
version repository. EFS chose Subversion after examining a number of different version
control systems, and settled on Subversion due to its snug fit with the EFS environment.
The developers found it to have a full feature set, without any undue complexity.

“svnbook” — 2005/4/14 — 14:55 — page 262 — #283i
i

i
i

i
i

i
i

262 Chapter 14 Case Studies in Development Processes

Repository

The EFS repository is arranged with a number of different top-level directories with a
variety of purposes, as you can see in Figure 14.6.

/branches This directory stores project branches. EFS doesn’t make very much use of
this directory, and as of this writing only had a total of six branches.

/dailyLibraryBuild Daily builds of the repository are stored here. Each daily build is
placed in its own directory. The directories are named for the date of the build, using
two-digit year, month, and day numbers (YYMMDD).

/releases Project releases are stored here.

/doc This directory is used to store documentation for individual projects.

/projects The EFS trading system consists of a large number of application suites and li-
braries. This directory is used to store individual application suites, which are linked
to the various libraries usingsvn:externals properties.

/src The actual source code for the repository (which is linked viasvn:externals in
/projects) is stored in this directory. This acts as EFS’s/trunk directory.

/spd EFS stores its design documents for its software in this directory.

The repository itself is very large, totaling more than 35,000 revisions in a 2GB database.
Much of the repository, however, was preexisting when EFS migrated to Subversion, and
was carried over from SCCS. The repository is hosted on a machine running RedHat Linux,
and uses Berkeley DB as its repository database backend.

The repository is also accessed by about 30 people every day, most of whom perform
regular commits. The developers access the repository from a mix of machines running

/branches

/releases

/

/dailyLibraryBuild

/doc

/projects

/src /spd

Figure 14.6.The Error Free Software repository layout.

“svnbook” — 2005/4/14 — 14:55 — page 263 — #284i
i

i
i

i
i

i
i

14.2 Real-world Studies 263

Sun’s Solaris and machines running Microsoft’s Windows XP. Remote access to the repos-
itory is done through Apache, which was chosen due to its ease of integration into the exist-
ing authentication infrastructure, previous familiarity with Apache, and general all-round
good looks. It also made it easy to make the repository accessible from a Web browser.

14.2.3 Teledata Communications

Teledata Communications, Inc. (TCI) uses Subversion to store all of its source code, docu-
mentation, and build projects, as well as information from data providers, and development
documentation. TCI began testing Subversion fairly early on in its development, at around
version 0.24, and have been using it in a production setting since July of 2003, after giving
it a thorough run through all of its paces.

One of the major reasons for switching to Subversion from TCI’s previous (commer-
cial) version control system was to save costs on per-seat developer licensing. As the
company was growing in size, it came to the conclusion that its previous VCS solution
wasn’t worth the cost. So instead of shelling out more money to license new developers,
TCI decided to make the jump to Subversion instead. Even though their developers had
experience with the previous system, as did most of their new hires, the benefits of moving
to Subversion outweighed the costs of training.

The other reason for TCI’s switch to Subversion is best illustrated by Mark Bohlman,
the Software Development Manager at TCI.

As we were utilizing a commercial version of RCS, all the developers had de-
veloped habits of locking/unlocking and utilizing e-mail or instant messaging
to indicate that they needed a particular code file in order to make changes.
Within two weeks of my arrival at TCI, it became apparent that a fairly large
stumbling block existed within the team when changes were needed. We have
development staff broken up into three distinct groups, backend Java coders,
mid-level JSP coders, and frontend HTML developers. As the boundaries be-
tween these groups are fairly loose at any given time, one developer would
need to access code from another level. At the time, we also were dispersed in
a location where the physical separation between the teams made it difficult to
communicate without the use of e-mail and/or IM. A number of times in the
first weeks of my employ here, it became clear that deadlines would be missed
solely because of the inefficient usage of the tools, and the way that locking
was implemented.

The straw that broke the camel’s back for me was trying to get a build release
for a client only to find that a developer in the Java group had checked code
back in to allow a frontend developer to make a change to a logo, and failed to
complete needed changes. This ended up costing us with the customer, which
we managed to hold onto, but at the expense of nearly a week’s worth of client
testing, QA testing, and development time (saying nothing of the ill-will it
generated).

“svnbook” — 2005/4/14 — 14:55 — page 264 — #285i
i

i
i

i
i

i
i

264 Chapter 14 Case Studies in Development Processes

Repository

Teledata Communications’ data is split into three separate repositories, each of which holds
a different type of data.

• The developer repository holds all of TCI’s source code, as well as its third-party
vendor tools and all associated documentation. It is used by TCI’s developers, and is
laid out according to the standard/trunk, /branches, and/tags scheme. Clock-
ing in at a little over 2GB in size, this repository has over 11,000 revisions and uses
Berkeley DB as its storage backend. All of TCI’s developers, QA testers, and sys-
tems engineers access this repository daily, and have both read and commit access.

• The next repository holds all of the information that TCI’s data providers supply
them with, such as credit bureaus, valuation providers, and criminal background data
sources. This data is continually undergoing modification by the vendors, and the
number of vendors themselves is also increasing regularly. It is important for TCI to
keep track of these changes in order to maintain all of the versions of its software that
is being used by clients. This repository is laid out with top-level directories for each
data provider, and no branching or tagging is used. Read access to this repository is
provided to the entire company, but commit access is limited to just a few developers
and a maintainer.

• The final repository is a client requirements repository that stores customer require-
ments, use cases, scenarios, and design thoughts for each project and client. Docu-
ments are arranged in the repository by application, with each application in a top-
level directory. Below that, documents are arranged by client, with a directory for
each of an application’s clients under the directory for that application. Access to this
repository is also provided to all in the company for checkout purposes, but commits
are limited to systems engineers and managers.

Branches and Tags

The TCI developer repository uses tags in its automated build process. The Java applica-
tions that developers build run under WebLogic and have an Ant-based build process that
involves creating a tag for each build provided to a development test, QA test, or production
environment. To ensure consistency between the three builds, they are all done at the same
time. Custom properties are used to indicate the configuration files that should be used for
determining build environments.

TCI also makes use of branches for a variety of uses. Changes in branches are periodi-
cally merged back into the trunk, as appropriate.

• New development lines for a code base.

• Custom changes for an individual client.

• Experimental development.

“svnbook” — 2005/4/14 — 14:55 — page 265 — #286i
i

i
i

i
i

i
i

14.2 Real-world Studies 265

Branches are also sometimes used for bug fixes. Whether to do bug fixes in a branch
or in the trunk is dependent on the development state of an application (i.e., QA, beta, or
production).

Hook Scripts

Hook scripts are used for

• Repository access control. This allows them to prevent commit access for unautho-
rized persons.

• Sending commit notification e-mails for the client documentation repository. This
ensures that all involved parties (sales, sales engineering, development, QA, MIS,
and support) are informed of any changes to client requirements.

14.2.4 GladeSoft

This case study looks at GladeSoft, Inc. GladeSoft is the smallest company among the var-
ious case studies (it has three developers accessing the repository). GladeSoft migrated to
Subversion under familiar circumstances, after finding CVS too painful to continue using.
Within the company, Subversion repositories are used to store source code, corporate data,
and the GladeSoft Web site.

GladeSoft’s choice to use Subversion came down to a variety of different requirements
it had for a version control system.

• The ease of migrating from an existing CVS repository, while preserving the reposi-
tory history.

• Subversion’s clean and useable design.

• The ability to use HTTP and SSL for authenticated communication with the reposi-
tory, without needing shell accounts.

• The transactional atomic commits, which GladeSoft found to be especially important
in the storm-prone area of Florida where the company is located (frequent power
loss).

Repository

GladeSoft uses three separate repositories for storing information.

• A primary repository holds the source code for the product.

• The second holds GladeSoft’s corporate data.

• The final repository holds the GladeSoft Web site.

“svnbook” — 2005/4/14 — 14:55 — page 266 — #287i
i

i
i

i
i

i
i

266 Chapter 14 Case Studies in Development Processes

The source code repository is arranged with a standard/trunk, /branches, and/tags.
Inside/branches are several subdirectories that allow them to categorize their branches.
Tags are created to mark feature freezes and release points in the source code, and branches
are used mainly for making customer-specific changes. The repository is small, holding
less than 20MB of data, in over 1500 revisions, and is accessed by three developers who
commit changes.

The other two repositories don’t make use of branching or tagging, and simply have
their main file tree at the top level. These repositories are even smaller than the source code
repository, clocking in at around 5MB, with even fewer revisions—Gladesoft doesn’t like
doing paperwork.

All three repositories are served via Apache, from an old 200MHz PowerPC running
Gentoo Linux. HTTP was chosen for its capability to work without local shell accounts
(for individual users), which provides extra security. It is also used for its source browsing
capability, which makes it easy for GladeSoft to quickly check a source file or do an in-
formal code review. Client connections are made from a menagerie of operating systems,
including Windows, Linux, various BSDs, and OS X.

Hook Scripts

GladeSoft also uses two hook scripts for its source repository.

• The first sends out commit notification e-mails.

• The second automatically runs the build server against the latest source using a vari-
ety of compliers and targets.

14.2.5 ExCo

In this case study, we will look at a company that uses Subversion to store its complete
source code base, as well as its build tools. The company declined to have its real name
mentioned, so to protect the innocent I will call it “ExCo” instead.

ExCo began using Subversion after migrating from its CVS repository in 2003, which
it had previously migrated to from Microsoft Visual SourceSafe in 2000. The migration
occurred because CVS was not meeting ExCo’s needs (although it was still better than
VSS). Subversion allowed ExCo to maintain a similar development paradigm (thus less
training) while making almost everything easier to perform.

Some of the other reasons for the migration include

• The branching and tagging paradigms, which were easier to learn, especially for
developers who didn’t want to invest much time in training

• The atomic commits, which eliminated the need for complicated commit processes

• The possibility of allowing individual developers to perform branching and merging,
which allowed for a “task branch” model of development

• Easy migration of existing tools to work with Subversion instead of CVS

“svnbook” — 2005/4/14 — 14:55 — page 267 — #288i
i

i
i

i
i

i
i

14.2 Real-world Studies 267

• The well-known names such as Karl Fogel and Collab.net that were associated with
Subversion

Repository

ExCo’s repositories are set up with a fairly standard arrangement. The top-level direc-
tories are made up of/trunk, /branches, and /tags, as well as a directory named
/devbranches, where individual developers can create their own task branches (see Fig-
ure 14.7).

ExCo has three repositories, which hold 8,000, 9,600, and 2,400 files, respectively,
and are used to store different sets of projects. Access to the repositories are through an
Apache server, due to its stability and security (via SSL). Because ExCo has developers
overseas, the security was an important feature. Commits to the repository are allowed for
all developers who have access, which comprises approximately 20 to 28 developers. The
server is hosted on a Solaris machine, with users connecting from Windows 2000 clients.

Branches and Tags

Branches and tags are heavily used inside the ExCo Subversion repositories.

• Tags are created for each successful build performed by their automated build system.

• Branches are created for each individual task, which is then merged into its final
destination when the task is complete.

• Production ready builds are branched in order to stabilize them before they are de-
ployed.

Because of ExCo’s heavy use of branches, it has found it necessary to deal with merge
tracking (which Subversion lacks in any real form). Instead of having an overall merge
tracking plan, however, ExCo relies on individual developers to track their own changes
and merges. To date, this has worked well and not caused any real problems.

/devbranches

/

/trunk /branches /tags

Figure 14.7.The ExCo repository layout.

“svnbook” — 2005/4/14 — 14:55 — page 268 — #289i
i

i
i

i
i

i
i

268 Chapter 14 Case Studies in Development Processes

The People Problem

One of the issues noted by ExCo as a problem to be dealt with was not technical at all. It
is the problem of getting developers to integrate their work process with a version control
system. Ron Bieber (of “ExCo”) explained this issue.

The biggest problem we’ve had in whole [has] been people problems. Your
average developer doesn’t care about source control and doesn’t see why they
have to learn it. If you look at most companies (at least for people I’ve ei-
ther talked to or interviewed for positions), they use very primitive methods to
keep track of source control (including just storing things on a network drive),
or they know just enough to check out and do not know anything about branch-
ing. You usually have to have a completely full-time employee just to manage
concurrent development. It was a challenge to get people to learn [Subver-
sion], but once they did, the process became self-sufficient without the extra
head count.

14.2.6 Wye Corp

In this case study, we’ll look at a company that does embedded development, and uses
Subversion to store its firmware and hardware specifications, as well as source for device
drivers and testing applications. The company in question declined to be identified by name
for this book, so I’ll refer to it as “Wye Corp.”

Wye Corp switched to Subversion after hitting one too many walls while dealing with
CVS’s limitations. Many of its projects had started out for internal use only, but as time
passed, its customers started using their tools, which inevitably led to requests from the
customers to add features and expand the projects. Attempts to expand the projects, how-
ever, quickly hit a wall with CVS, as developers attempted to restructure file and directory
layouts and found it impossible without breaking CVS’s file history.

Repository

Instead of setting up a single repository, Wye Corp uses a different repository for each
project, 16 in all. The repositories range in size up to 400MB, but have relatively low
revision counts (under 500). Some of the repositories are as old as two years. Overall,
the company has 14 developers accessing its various repositories, and limits access to only
those people who have a need.

Repository layout for Wye Corp is a fairly standard/trunk, /branches, and/tags
setup, with the addition of a dedicated/releases directory. Thereleases directory
allows Wye Corp to separate internal tags used for marking milestones (such as points
where support for a special feature was incorporated) from releases that were delivered to a
customer, which is something Wye Corp needs to keep careful track of. Inside/releases,
there is also a directory calledinfo, which contains a filereleases.txt. Wye Corp uses
thereleases.txt file to keep track of which customer received each released version of
its software. Figure 14.8 shows how this layout is arranged.

“svnbook” — 2005/4/14 — 14:55 — page 269 — #290i
i

i
i

i
i

i
i

14.2 Real-world Studies 269

/releases

/

/trunk /branches /tags

/info

releases.txt

Figure 14.8.The Wye Corp repository layout.

The repository itself is hosted on a Dell server with 400GB of RAID5 storage space
and 1GB of memory, running RedHat Enterprise Linux. Remote access to the repository is
served via Apache. Originally, HTTP was chosen because it was the only network capable
server available (Wye Corp was a very early adopter of Subversion, starting at version
0.17). Later on, however, it began to rely on the convenience of browsing the repository
over the Web, as well as the ability to authenticate against its LDAP servers.

Branches and Tags

Wye Corp has a few different uses for branches and tags.

• Tags are used for the occasional internal milestone that bears remembering.

• Releases to customers are also copied and placed in the/releases directory.

• Branches are used for significant changes to the code base.

• Branches are also used for trying out a potential solution to a problem, without break-
ing the main trunk for everyone else.

For the most part, Wye Corp has found little reason to do many merges from one branch
to another, because most of their development occurs on the main trunk, which it uses to
directly create release tags. Occasionally, however, circumstances have required merges to
a release that used only certain revisions. In those cases, Wye Corp has used a separate file
in the repository to keep track of all merges.

“svnbook” — 2005/4/14 — 14:55 — page 270 — #291i
i

i
i

i
i

i
i

270 Chapter 14 Case Studies in Development Processes

Hook Scripts

Wye Corp has several hook scripts in place to enforce policy and provide automatic
notifications.

• A script is used that updates the internal developer Web site with information when
commits are made.

• Another notification script is used for sending e-mails whenever a commit occurs.

• Wye Corp prevents any changes to/tags or /releases except to create a new tag
or release.

• A script checks to make sure that no developer makes a commit with an empty log
message.

14.2.7 ZedCom

For our final case study, let’s look at one more company that decided not to have its name
used. We’ll call it “ZedCom.” ZedCom uses its Subversion repository to store firmware for
multimedia embedded systems. Like many of the previous case studies, ZedCom migrated
to Subversion from CVS, due to the limitations that I’ve already exhaustively discussed.

Repository

The ZedCom repository is arranged with four top-level directories:/trunk, /users,
/branches, and/tags. The familiar directories have the functions you would normally
expect, although I should note that the/trunk directory contains subdirectories for indi-
vidual projects. Additionally, the/users directory contains subdirectories for each Sub-
version user (named after his username), where individual users can create their own private
branches.

The repository has relatively few users, with 10 who can access the repository and
six who perform commits. It contains about 600MB of data in 1,800 revisions. Access
is performed viasvnserve, due to its ease of setup (ZedCom has no need for secure
authentication).

Branching is limited to user branching, and although ZedCom has a/branches direc-
tory, it has never actually used it. Merge tracking of the branches is done manually via
commit logs, which works, but serves as a source of irritation for the developers.

“svnbook” — 2005/4/14 — 14:55 — page 271 — #292i
i

i
i

i
i

i
i

Part V

Reference

“svnbook” — 2005/4/14 — 14:55 — page 272 — #293i
i

i
i

i
i

i
i

“svnbook” — 2005/4/14 — 14:55 — page 273 — #294i
i

i
i

i
i

i
i

Chapter 15

Command Reference

In this final chapter, I’m going to change the format a bit. Instead of walking you through
how to do things, the remaining portion of the book is a reference manual for the Subversion
command-line utilities. Each command-line utility has its own section, and within that
section, the individual commands are arranged alphabetically.

Much of the information covered in this reference section can also be found by running
help for each individual command. I’ve tried to expound on that information wherever
possible though.

The commands covered are

• svn

• svnadmin

• svnlook

• svnversion

• svndumpfilter

15.1 svn

Thesvn program is the basic command-line client for interacting with Subversion. It con-
tains a full array of commands that can be used for interacting with a Subversion working
copy or repository.

Online help for each ofsvn’s subcommands can be obtained by running the program
as:svn help [COMMAND].

Options

• --version

Outputs version information aboutsvn.

273

“svnbook” — 2005/4/14 — 14:55 — page 274 — #295i
i

i
i

i
i

i
i

274 Chapter 15 Command Reference

Subcommands

Thesvn commands (with alternate names in parenthesis) are

• add

• blame (praise, annotate, ann)

• cat

• checkout (co)

• cleanup

• commit (ci)

• copy (cp)

• delete (del, remove, rm)

• diff (di)

• export

• help (?, h)

• import

• info

• list (ls)

• log

• merge

• mkdir

• move (mv, rename, ren)

• propdel (pdel, pd)

• propedit (pedit, pe)

• propget (pget, pg)

• proplist (plist, pl)

• propset (pset, ps)

• resolved

• revert

“svnbook” — 2005/4/14 — 14:55 — page 275 — #296i
i

i
i

i
i

i
i

15.1 svn 275

• status (stat, st)

• switch (sw)

• update (up)

15.1.1 svn add

This command schedules new files or directories to be placed under Subversion’s control.
This command doesn’t actually send the file to the repository, but merely marks it for
addition in the working copy. The actual addition to the repository occurs on the nextsvn
commit command.

Basic Usage

$ svn add PATH

Options

• --targets arg

Parse the files pointed to byarg, and add them to the list of arguments for the com-
mand.

• -N [--non-recursive]

Don’t recurse into subdirectories and add their contents.

• -q [--quiet]

Supply the minimum output possible.

• --config-dir arg

Load the user configuration files from the directory pointed to byarg, instead of the
default directory.

• --auto-props

Automatically set properties based on the type of file added to the repository. This
overrides any defaults set in your Subversion configuration files.

• --no-auto-props

Don’t automatically set properties on any files added to the repository. This overrides
any defaults set in your Subversion configuration files.

“svnbook” — 2005/4/14 — 14:55 — page 276 — #297i
i

i
i

i
i

i
i

276 Chapter 15 Command Reference

15.1.2 svn blame (praise, annotate, ann)

This command outputs the contents of one or more files, with an author and revision num-
ber listed for each line of the file. The author is the username of the last user to modify that
particular line, and the revision represents the revision where the modification occurred.

Note that it’s thelast user to modify the line who is listed, even if she made a nonfunc-
tional change such as adjusting whitespace. The output of this command is useful, but you
should generally use other commands likesvn log andsvn diff to double-check what
it tells you before relying on the author information it supplies you with.

Basic Usage

$ svn blame PATH...

or

$ svn blame URL...

Takes one or more PATHs or URLs that point to files. Attempting to runsvn blame
on a directory results in an error. You can mix URLs and PATHs on the same command
line.

Options

• -r [--revision] arg

Use the version of files in revisionarg when processing the command. Takes either
a single revision number, or a range of revisions, separated by a colon.

--revision REV
--revision LOW:HIGH

• --username arg

Use the usernamearg when contacting the repository. If a username is not given,
Subversion uses the username that has been cached in the current working copy, or
if a URL is given instead of a PATH, it uses the current login username.

• --password arg

Use the passwordarg when contacting the repository. If a password is needed and
not supplied, Subversion prompts for one.

• --no-auth-cache

Don’t keep the authentication information for use with future repository connections.

• --non-interactive

Don’t ask the user for any additional information. Useful for running the command
in a script.

“svnbook” — 2005/4/14 — 14:55 — page 277 — #298i
i

i
i

i
i

i
i

15.1 svn 277

• --config-dir arg

Load the user configuration files from the directory pointed to byarg, instead of the
default directory.

15.1.3 svn cat

This command dumps the specified file(s) to standard output.

Basic Usage

$ svn cat PATH...

or

$ svn cat URL...

Takes one or more PATHs or URLs that point to files. Attempting to runsvn cat on a
directory results in an error. You can mix URLs and PATHs on the same command line.

Options

• -r [--revision] arg

Use the version of files in revisionarg when processing the command. Takes only a
single revision number. Ranges are not allowed.

• --username arg

Use the usernamearg when contacting the repository. If a username is not given,
Subversion uses the username that has been cached in the current working copy, or
if a URL is given instead of a PATH, it uses the current login username.

• --password arg

Use the passwordarg when contacting the repository. If a password is needed and
not supplied, Subversion prompts for one.

• --no-auth-cache

Don’t keep the authentication information for use with future repository connections.

• --non-interactive

Don’t ask the user for any additional information. Useful for running the command
in a script.

• --config-dir arg

Load the user configuration files from the directory pointed to byarg, instead of the
default directory.

“svnbook” — 2005/4/14 — 14:55 — page 278 — #299i
i

i
i

i
i

i
i

278 Chapter 15 Command Reference

15.1.4 svn checkout (co)

This command retrieves the contents of a repository (or part of a repository) and places
them in a new working copy on the local machine.

Basic Usage

$ svn checkout URL [PATH]

Subversion checks out a working copy from the URL given. If the URL points to a di-
rectory other than the root of a repository, Subversion recursively checks out that directory
and its contents. If the URL points to the root of the repository, the whole repository is
checked out. URLs must point to a directory. Single files cannot be checked out (usesvn
cat).

If a PATH is given, Subversion uses that as the location and name of the working copy
(the basename of the PATH is the root of the working copy). If no PATH is given, the
working copy is created in the current directory, with the same name as the directory being
checked out (or the repository, if the root is being checked out).

Options

• -r --revision] arg

Use the version of files in revisionarg when performing the checkout. Takes only a
single revision number, not ranges.

• -q --quiet]

Supply the minimum output possible.

• -N --non-recursive]

Don’t recurse into subdirectories and process their contents. Only the specified di-
rectory and top-level files that it contains are checked out.

• --username arg

Use the usernamearg when contacting the repository. If a username is not given,
Subversion uses the username that has been cached in the current working copy, or
if a URL is given instead of a PATH, it uses the current login username.

• --password arg

Use the passwordarg when contacting the repository. If a password is needed and
not supplied, Subversion prompts for one.

• --no-auth-cache

Don’t keep the authentication information for use with future repository connections.

“svnbook” — 2005/4/14 — 14:55 — page 279 — #300i
i

i
i

i
i

i
i

15.1 svn 279

• --non-interactive

Don’t ask the user for any additional information. Useful for running the command
in a script.

• --config-dir arg

Load the user configuration files from the directory pointed to byarg, instead of the
default directory.

15.1.5 svn cleanup

This command can be used to clean up a working copy if a command fails and leaves the
working copy unusable. It removes all locks and completes any unfinished operations in
order to get the working copy back into a usable state.

Basic Usage

$ svn cleanup

or

$ svn cleanup PATH...

Options

• --diff3-cmd arg

Use the command pointed to byarg for performing two- and three-way diffs, instead
of the built-in functions.

• --config-dir arg

Load the user configuration files from the directory pointed to byarg, instead of the
default directory.

15.1.6 svn commit (ci)

This command sends local modifications to files or directories to the repository, creating a
new revision.

Basic Usage

$ svn commit

or

$ svn commit PATH...

“svnbook” — 2005/4/14 — 14:55 — page 280 — #301i
i

i
i

i
i

i
i

280 Chapter 15 Command Reference

Options

• -m --message] arg

Usearg as the log message for the commit. If this option isn’t used, an editor is
opened to request the log message (if a default editor has been configured or the-
-editor-cmd option is also used).

• -F --file] arg

Read the log message from the filearg.

• -q --quiet]

Supply the minimum output possible.

• -N --non-recursive]

Don’t recurse into subdirectories and process their contents.

• --targets arg

Parse the files pointed to byarg, and add them to the list of arguments for the com-
mand.

• --force-log

Force the provided log message source to be accepted as valid. This may be needed
if Subversion thinks that a provided log message or file containing a log message is
meant as something else (for instance, if you use a versioned file as the source of
your log message).

• --username arg

Use the usernamearg when contacting the repository. If a username is not given,
Subversion uses the username that has been cached in the current working copy, or
if a URL is given instead of a PATH, it uses the current login username.

• --password arg

Use the passwordarg when contacting the repository. If a password is needed and
not supplied, Subversion prompts for one.

• --no-auth-cache

Don’t keep the authentication information for use with future repository connections.

• --non-interactive

Don’t ask the user for any additional information. Useful for running the command
in a script.

• --editor-cmd arg

Use the command pointed to byarg as the editor to open when asking for a log
message, rather than the system-wide default editor.

“svnbook” — 2005/4/14 — 14:55 — page 281 — #302i
i

i
i

i
i

i
i

15.1 svn 281

• --encoding arg

Use to indicate that the log message is encoded in a different encoding than the
system default. The encoding used is given asarg.

• --config-dir arg

Load the user configuration files from the directory pointed to byarg, instead of the
default directory.

15.1.7 svn copy (cp)

This command copies files or directories within a repository or working copy (or from one
to the other).

Basic Usage

$ svn copy SOURCE_PATH DESTINATION_PATH

Either the source path or destination path (or both) can be URLs that point to a point in
the repository. If the destination is a URL, the copy is committed immediately, instead of
being scheduled for the nextsvn commit.

Options

• -m --message] arg

Usearg as the log message for the commit. On repository-side copies, if this option
isn’t used, an editor is opened to request the log message (if a default editor has been
configured or the--editor-cmd option is also used).

• -F --file] arg

Read the log message from the filearg.

• -r --revision] arg

Use revisionarg as the source for the file being copied. Only takes single revision
numbers, not ranges.

• -q --quiet]

Supply the minimum output possible.

• --username arg

Use the usernamearg when contacting the repository. If a username is not given,
Subversion uses the username that has been cached in the current working copy, or
if a URL is given instead of a PATH, it uses the current login username.

• --password arg

Use the passwordarg when contacting the repository. If a password is needed and
not supplied, Subversion prompts for one.

“svnbook” — 2005/4/14 — 14:55 — page 282 — #303i
i

i
i

i
i

i
i

282 Chapter 15 Command Reference

• --no-auth-cache

Don’t keep the authentication information for use with future repository connections.

• --non-interactive

Don’t ask the user for any additional information. Useful for running the command
in a script.

• --force-log

Force the provided log message source to be accepted as valid. This may be needed
if Subversion thinks that a provided log message or file containing a log message is
meant as something else (for instance, if you use a versioned file as the source of
your log message).

• --editor-cmd arg

Use the command pointed to byarg as the editor to open when asking for a log
message, rather than the system-wide default editor.

• --encoding arg

Use to indicate that the log message is encoded in a different encoding than the
system default. The encoding used is given asarg.

• --config-dir arg

Load the user configuration files from the directory pointed to byarg, instead of the
default directory.

15.1.8 svn delete (del, remove, rm)

This command marks files or directories in a working copy for deletion. The next time a
commit occurs, they are removed in the repository. The command can also operate directly
on a repository, in which case the removal occurs immediately (as if ansvn commit had
been executed immediately following the deletion).

Basic Usage

$ svn delete PATH...

or

$ svn delete URL...

Takes one or more PATHs or URLs. Must use all PATHs or all URLs. You cannot mix
the two.

“svnbook” — 2005/4/14 — 14:55 — page 283 — #304i
i

i
i

i
i

i
i

15.1 svn 283

Options

• --force

Turns off any precautions meant to ensure that you don’t accidentally lose data. This
can be useful in some instances, if you know what you’re doing, but use it with
caution.

• --force-log

Force the provided log message source to be accepted as valid. This may be needed
if Subversion thinks that a provided log message or file containing a log message is
meant as something else (for instance, if you use a versioned file as the source of
your log message).

• -m --message] arg

Usearg as the log message for the commit. On repository-side deletions, if this
option isn’t used, an editor is opened to request the log message (if a default editor
has been configured or the--editor-cmd option is also used).

• -F --file] arg

Read the log message from the filearg.

• -q --quiet]

Supply the minimum output possible.

• --targets arg

Parse the files pointed to byarg, and add them to the list of arguments for the com-
mand.

• --username arg

Use the usernamearg when contacting the repository. If a username is not given,
Subversion uses the username that has been cached in the current working copy, or
if a URL is given instead of a PATH, it uses the current login username.

• --password arg

Use the passwordarg when contacting the repository. If a password is needed and
not supplied, Subversion prompts for one.

• --no-auth-cache

Don’t keep the authentication information for use with future repository connections.

• --non-interactive

Don’t ask the user for any additional information. Useful for running the command
in a script.

“svnbook” — 2005/4/14 — 14:55 — page 284 — #305i
i

i
i

i
i

i
i

284 Chapter 15 Command Reference

• --editor-cmd arg

Use the command pointed to byarg as the editor to open when asking for a log
message, rather than the system-wide default editor.

• --encoding arg

Use to indicate that the log message is encoded in a different encoding than the
system default. The encoding used is given asarg.

• --config-dir arg

Load the user configuration files from the directory pointed to byarg, instead of the
default directory.

15.1.9 svn diff (di)

This command outputs the differences between two files, or two revisions of the same file.
Both files used for the comparison can come from the current working copy, or from a
given revision in the repository.

Basic Usage

$ svn diff -r N:M URL...

Or, if you want to take the difference between two different URLs in a repository

$ svn diff URL1@N URL2@M

or

$ svn diff -r N:M URL1 URL2

Finally, the long form of the command is

$ svn diff -r N:M --old OLD_URL --new NEW_URL [PATH...]

If one or morePATHs are used, Subversion restricts the diff output to those paths, rela-
tive to each URL.

In Subversion 1.1 and later, use of the@ sign indicates peg revisions. If a peg revision
is used, Subversion takes the file of the given URL at that particular revision. If the normal
--revision option is used, Subversion instead looks for the file of the given URL in the
HEAD revision and follows it back to the requested revision. Normally, the distinction is
unimportant, but if a file was moved or deleted and then later replaced by a file of the same
name, using the wrong form might not give you the file that you really want.

“svnbook” — 2005/4/14 — 14:55 — page 285 — #306i
i

i
i

i
i

i
i

15.1 svn 285

Options

• -r --revision] arg

The two revisions to use when performing the diff, in the formN:M, whereN is the
old revision andM is the new revision.

• --old arg

The URL (given asarg for the older revision used in the diff). This option must be
accompanied by--new.

• --new arg

The URL (given asarg for the newer revision used in the diff). This option must be
accompanied by--old.

• -x --extensions] arg

Pass the value ofarg to the GNU diff program, when performing the diff operation.
If you use this option, you must also use the--diff-cmd option.

• -N --non-recursive]

Don’t recurse into subdirectories and process their contents.

• --diff-cmd arg

Tell Subversion to usearg as the diff command for performing the diff.

• --no-diff-deleted

If a file has been deleted, don’t print the differences. This prevents an entire file from
being dumped if it has been deleted in one of the versions compared.

• --notice-ancestry

Look at a file’s ancestry when comparing two files. If two files have similar contents
but different ancestry, they are considered different.

• --username arg

Use the usernamearg when contacting the repository. If a username is not given,
Subversion uses the username that has been cached in the current working copy, or
if a URL is given instead of a PATH, it uses the current login username.

• --password arg

Use the passwordarg when contacting the repository. If a password is needed and
not supplied, Subversion prompts for one.

• --no-auth-cache

Don’t keep the authentication information for use with future repository connections.

“svnbook” — 2005/4/14 — 14:55 — page 286 — #307i
i

i
i

i
i

i
i

286 Chapter 15 Command Reference

• --non-interactive

Don’t ask the user for any additional information. Useful for running the command
in a script.

• --config-dir arg

Load the user configuration files from the directory pointed to byarg, instead of the
default directory.

15.1.10 svn export

This command is used to get a local copy of a repository (or portion of a repository) without
any Subversion-specific information (i.e., without the.svn directories).

Basic Usage

$ svn export URL [DESTINATION_PATH]

or

$ svn export WC_PATH [DESTINATION_PATH]

The URL or WC_PATH must point to a directory. Individual files cannot be exported
(usesvn cat). If no DESTINATION_PATH is given, the exported directory is placed in the
current working directory, using its name from the repository. If aDESTINATION_PATH is
given, the exported directory is created with the path and name supplied as the destination.

Options

• -r --revision] arg

Use the version of files in revisionarg when performing the export. Takes only
single revision numbers, no ranges.

• -q --quiet]

Supply the minimum output possible.

• --force

Turns off any precautions meant to ensure that you don’t accidentally lose data. This
can be useful in some instances, if you know what you’re doing, but use it with
caution.

• --username arg

Use the usernamearg when contacting the repository. If a username is not given,
Subversion uses the username that has been cached in the current working copy, or
if a URL is given instead of a PATH, it uses the current login username.

“svnbook” — 2005/4/14 — 14:55 — page 287 — #308i
i

i
i

i
i

i
i

15.1 svn 287

• --password arg

Use the passwordarg when contacting the repository. If a password is needed and
not supplied, Subversion prompts for one.

• --no-auth-cache

Don’t keep the authentication information for use with future repository connections.

• --non-interactive

Don’t ask the user for any additional information. Useful for running the command
in a script.

• --config-dir arg

Load the user configuration files from the directory pointed to byarg, instead of the
default directory.

• --native-eol arg (1.1 only)

Allows you to specify an end-of-line indicator to use for files that use the default sys-
tem EOL indicator (i.e., havesvn:eol-style unset or set to native). The argument
for this option can beLF, CR, or CRLF.

15.1.11 svn help (?, h)

This command outputs documentation for thesvn command. To get help on a specific
subcommand, run help with the name of the command.

Basic Usage

$ svn help [COMMAND]

Options

None

15.1.12 svn import

This command is used to bring an unversioned file or directory into a repository. Unlike
svn add, this command performs an immediate commit. It also doesn’t need a working
copy to function.

Basic Usage

$ svn import URL

or

$ svn import PATH URL

“svnbook” — 2005/4/14 — 14:55 — page 288 — #309i
i

i
i

i
i

i
i

288 Chapter 15 Command Reference

If just a URL is given, the current working directory is recursively imported into the
repository pointed to by URL. If a PATH is given, the directory pointed to by PATH is
imported.

Options

• -m --message] arg

Usearg as the log message for the commit. If this option isn’t used, an editor is
opened to request the log message (if a default editor has been configured or the-
-editor-cmd option is also used).

• -F --file] arg

Read the log message from the filearg.

• -q --quiet]

Supply the minimum output possible.

• -N --non-recursive]

Don’t recurse into subdirectories and process their contents.

• --username arg

Use the usernamearg when contacting the repository. If a username is not given,
Subversion uses the username that has been cached in the current working copy, or
if a URL is given instead of a PATH, it uses the current login username.

• --password arg

Use the passwordarg when contacting the repository. If a password is needed and
not supplied, Subversion prompts for one.

• --no-auth-cache

Don’t keep the authentication information for use with future repository connections.

• --non-interactive

Don’t ask the user for any additional information. Useful for running the command
in a script.

• --force-log

Force the provided log message source to be accepted as valid. This may be needed
if Subversion thinks that a provided log message or file containing a log message is
meant as something else (for instance, if you use a versioned file as the source of
your log message).

• --editor-cmd arg

Use the command pointed to byarg as the editor to open when asking for a log
message, rather than the system-wide default editor.

“svnbook” � 2005/4/14 � 14:55 � page 289 � #310i
i

i
i

i
i

i
i

15.1 svn 289

• --encoding arg

Use to indicate that the log message is encoded in a different encoding than the
system default. The encoding used is given asarg.

• --config-dir arg

Load the user configuration files from the directory pointed to byarg, instead of the
default directory.

• --auto-props

Automatically set properties based on the type of file imported into the repository.

• --no-auto-props

Don’t automatically set properties on any files added to the repository.

15.1.13 svn info

This command is used to output a variety of information about files and directories in a
working copy.

Basic Usage

$ svn info [PATH...]

If no PATH is given, the info for the current working directory is displayed.

Options

• --targets arg

Parse the files pointed to byarg, and add them to the list of arguments for the com-
mand.

• -R --recursive]

Recursively descend into any directories supplied in the path, and process all of the
files contained therein.

• --config-dir arg

Load the user configuration files from the directory pointed to byarg, instead of the
default directory.

15.1.14 svn list (ls)

This command lists the contents of directories in a repository.

“svnbook” — 2005/4/14 — 14:55 — page 290 — #311i
i

i
i

i
i

i
i

290 Chapter 15 Command Reference

Basic Usage

$ svn list [PATH...]

or

$ svn list [URL...]

Takes one or more PATHs or URLs. You may mix PATHs and URLs in the same
command.

Options

• -r --revision] arg

List the files as of revisionarg. Only accepts single revision numbers, not ranges.

• -v --verbose]

Print extra information about each file and directory. For each item listed,svn list
tells you the last revision where that item was modified, the last user who modified
the item, the size of the item (if it is a file and not a directory), and the date that the
item was modified.

• -R --recursive]

Recursively descend into any directories supplied in the path, and process all of the
files contained therein.

• --username arg

Use the usernamearg when contacting the repository. If a username is not given,
Subversion uses the username that has been cached in the current working copy, or
if a URL is given instead of a PATH, it uses the current login username.

• --password arg

Use the passwordarg when contacting the repository. If a password is needed and
not supplied, Subversion prompts for one.

• --no-auth-cache

Don’t keep the authentication information for use with future repository connections.

• --non-interactive

Don’t ask the user for any additional information. Useful for running the command
in a script.

• --config-dir arg

Load the user configuration files from the directory pointed to byarg, instead of the
default directory.

“svnbook” — 2005/4/14 — 14:55 — page 291 — #312i
i

i
i

i
i

i
i

15.1 svn 291

15.1.15 svn log

This command can be used to output the log message history of a file or directory.

Basic Usage

$ svn log [PATH...]

or

$ svn log URL [PATH...]

If no URL or PATH is given, the log history for the current working directory is dis-
played. If just PATHs are given, the log history for the files or directories pointed to is
displayed. If a URL is given, the log history for the repository file or directory pointed to
by the URL is displayed. If the URL points to a directory, and one or more PATHs are
given after the URL, those PATHs are considered relative to the URL, and the logs for all
file or directories pointed to are displayed.

Options

• -r --revision] arg

Limit the logs messages displayed to a specific revision or range of revisions. To en-
ter a range, use the form-r N:M, whereN andM are the starting and ending revisions
in the range, respectively.

• -q --quiet]

Output the minimum amount of output; usually output consists of the revision num-
bers, the author of the revision, and the date of the revision (see--verbose). The
log messages are not output.

• -v --verbose]

Tell Subversion to output the files that were changed, and what action was performed
on them in addition to the normal output for each log message. File actions include
whether the file was modified (M), added (A), or deleted (D). If used in conjunction
with --quiet, the files that have changed are output in addition to the usual output
when using--quiet.

• --targets arg

Parse the files pointed to byarg, and add them to the list of arguments for the com-
mand.

• --stop-on-copy

Tell Subversion to stop outputting log messages as soon as it reaches a revision where
the file or directory was copied from another location.

“svnbook” — 2005/4/14 — 14:55 — page 292 — #313i
i

i
i

i
i

i
i

292 Chapter 15 Command Reference

• --incremental

Format the output so that it can be concatenated with the output from another run
of svn log. In normal output, this leaves the final separator line off of the output.
When--xml is used, it leaves off an XML header and enclosing<log> element.

• --xml

Format the output in an XML format.

• --username arg

Use the usernamearg when contacting the repository. If a username is not given,
Subversion uses the username that has been cached in the current working copy, or
if a URL is given instead of a PATH, it uses the current login username.

• --password arg

Use the passwordarg when contacting the repository. If a password is needed and
not supplied, Subversion prompts for one.

• --no-auth-cache

Don’t keep the authentication information for use with future repository connections.

• --non-interactive

Don’t ask the user for any additional information. Useful for running the command
in a script.

• --config-dir arg

Load the user configuration files from the directory pointed to byarg, instead of the
default directory.

15.1.16 svn merge

This command takes the differences between two revisions of a repository (or a working
copy and a repository revision) and merges them into a working copy.

Basic Usage

$ svn merge SOURCE_URL1[@N] SOURCE_URL2[@M] [WC_PATH]

or

$ svn merge SOURCE_PATH1@N SOURCE_PATH2@M [WC_PATH]

or

$ svn merge -r N:M SOURCE [WC_PATH]

“svnbook” — 2005/4/14 — 14:55 — page 293 — #314i
i

i
i

i
i

i
i

15.1 svn 293

In the first and second usages, two sources are given for comparison, with the differ-
ences merged into theWC_PATH in the working copy. If the sources are URLs, the revisions
can be omitted (and Subversion uses theHEAD revisions). If the sources are given as paths
in the working copy, a revision must be given, and the comparisons are made against the
corresponding URLs to each working copy path.

In the third form, theSOURCE can be either a URL or a working copy path. The revision
range is required in this case to give two different versions to compare. The differences are
merged intoWC_PATH as in the first two usage forms.

In Subversion 1.1 and later, the use of the@ sign indicates peg revisions. If a peg
revision is used, Subversion takes the file of the given URL at that particular revision. If
the normal--revision option is used, Subversion instead looks for the file of the given
URL in the HEAD revision and follows it back to the requested revision. Normally, the
distinction is unimportant, but if a file was moved or deleted and then later replaced by a
file of the same name, using the wrong form might not give you the file that you really
want.

Options

• -r --revision] arg

Give the two revisions to be merged between, in the form-r N:M, whereN is the
older revision andM is the newer revision. The revision numbers can be reversed to
reverse the merge direction.

• -N --non-recursive]

Don’t recurse into subdirectories and process their contents.

• -q --quiet]

Supply the minimum output possible.

• --force

Turn off any precautions meant to ensure that you don’t accidentally lose data. This
can be useful in some instances, if you know what you’re doing, but use it with
caution.

• --dry-run

Run the command without actually modifying anything. Outputs which files will
change, as well as any expected conflicts.

• --diff3-cmd arg

Use the command pointed to byarg for performing two- and three-way diffs, instead
of the built-in functions.

• --ignore-ancestry

Cause Subversion to ignore the ancestry of the files involved in the merge.

“svnbook” — 2005/4/14 — 14:55 — page 294 — #315i
i

i
i

i
i

i
i

294 Chapter 15 Command Reference

• --username arg

Use the usernamearg when contacting the repository. If a username is not given,
Subversion uses the username that has been cached in the current working copy, or
if a URL is given instead of a PATH, it uses the current login username.

• --password arg

Use the passwordarg when contacting the repository. If a password is needed and
not supplied, Subversion prompts for one.

• --no-auth-cache

Don’t keep the authentication information for use with future repository connections.

• --non-interactive

Don’t ask the user for any additional information. Useful for running the command
in a script.

• --config-dir arg

Load the user configuration files from the directory pointed to byarg, instead of the
default directory.

15.1.17 svn mkdir

This command creates a new versioned directory, either in a working copy or directly on
the repository. If the directory is created in the working copy, it is scheduled for addition to
the repository on the next commit (just as if you’d created a local directory and then done
ansvn add). If the directory is created in the repository, it is committed immediately, with
a new revision created (just as if you’d done ansvn commit).

Basic Usage

$ svn mkdir PATH...

or

$ svn mkdir URL...

Either PATHs or URLs can be given, but PATHs and URLs cannot be mixed on the
same command line.

Options

• -m --message] arg

Usearg as the log message for the commit. On repository-side directory creation
operations, if this option isn’t used, an editor is opened to request the log message (if
a default editor has been configured or the--editor-cmd option is also used).

“svnbook” � 2005/4/14 � 14:55 � page 295 � #316i
i

i
i

i
i

i
i

15.1 svn 295

• -F --file] arg

Read the log message from the filearg.

• -q --quiet]

Supply the minimum output possible.

• --username arg

Use the usernamearg when contacting the repository. If a username is not given,
Subversion uses the username that has been cached in the current working copy, or
if a URL is given instead of a PATH, it uses the current login username.

• --password arg

Use the passwordarg when contacting the repository. If a password is needed and
not supplied, Subversion prompts for one.

• --no-auth-cache

Don’t keep the authentication information for use with future repository connections.

• --non-interactive

Don’t ask the user for any additional information. Useful for running the command
in a script.

• --editor-cmd arg

Use the command pointed to byarg as the editor to open when asking for a log
message, rather than the system-wide default editor.

• --encoding arg

Use to indicate that the log message is encoded in a different encoding than the
system default. The encoding used is given asarg.

• --force-log

Force the provided log message source to be accepted as valid. This may be needed
if Subversion thinks that a provided log message or file containing a log message is
meant as something else (for instance, if you use a versioned file as the source of
your log message).

• --config-dir arg

Load the user configuration files from the directory pointed to byarg, instead of the
default directory.

15.1.18 svn move (mv, rename, ren)

This command moves a file in a repository or working copy from one location to another.
If the move is done in the working copy, the change is scheduled to be applied to the
repository on the next commit. If it is applied directly to a repository, the move takes place
immediately, with a new revision (as ifsvn commit had been run).

“svnbook” — 2005/4/14 — 14:55 — page 296 — #317i
i

i
i

i
i

i
i

296 Chapter 15 Command Reference

Basic Usage

$ svn move SOURCE DESTINATION

TheSOURCE andDESTINATION can either be working copy paths or URLs pointing to
the repository. In either case,SOURCE andDESTINATION must be of the same form (both
paths or both URLs).

Options

• -m --message] arg

Usearg as the log message for the commit. On repository-side moves, if this option
isn’t used, an editor is opened to request the log message (if a default editor has been
configured or the--editor-cmd option is also used).

• -F --file] arg

Read the log message from the filearg.

• -r --revision] arg

For all practical purposes,svn move does not really accept--revision. You can
specify it as an option, but the only valid argument is HEAD.

• -q --quiet]

Supply the minimum output possible.

• --force

Turns off any precautions meant to ensure that you don’t accidentally lose data. This
can be useful in some instances, if you know what you’re doing, but use it with
caution.

• --username arg

Use the usernamearg when contacting the repository. If a username is not given,
Subversion uses the username that has been cached in the current working copy, or
if a URL is given instead of a PATH, it uses the current login username.

• --password arg

Use the passwordarg when contacting the repository. If a password is needed and
not supplied, Subversion prompts for one.

• --no-auth-cache

Don’t keep the authentication information for use with future repository connections.

• --non-interactive

Don’t ask the user for any additional information. Useful for running the command
in a script.

“svnbook” — 2005/4/14 — 14:55 — page 297 — #318i
i

i
i

i
i

i
i

15.1 svn 297

• --editor-cmd arg

Use the command pointed to byarg as the editor to open when asking for a log
message, rather than the system-wide default editor.

• --encoding arg

Use to indicate that the log message is encoded in a different encoding than the
system default. The encoding used is given asarg.

• --force-log

Force the provided log message source to be accepted as valid. This may be needed
if Subversion thinks that a provided log message or file containing a log message is
meant as something else (for instance, if you use a versioned file as the source of
your log message).

• --config-dir arg

Load the user configuration files from the directory pointed to byarg, instead of the
default directory.

15.1.19 svn propdel (pdel, pd)

This command deletes a property from a working copy file, or deletes a revision property.
If the working copy property is deleted, the deletion is committed to the repository on the
nextsvn commit. If the deletion is applied to a revision property, the change takes place
immediately, and is not undoable.

Basic Usage

$ propdel PROP_NAME [PATH...]

or

$ propdel PROP_NAME --revprop -r REVISION [URL]

If no PATHs are given, the property is deleted from the current working directory.
Otherwise, it is deleted from all files or directories pointed to by the PATHs. For revision
properties, the URL of the current working copy is used if a URL is not given.

Options

• -q --quiet]

Supply the minimum output possible.

• -R --recursive]

Recursively descend into any directories supplied in the path, and process all of the
files contained therein.

“svnbook” — 2005/4/14 — 14:55 — page 298 — #319i
i

i
i

i
i

i
i

298 Chapter 15 Command Reference

• -r --revision] arg

Indicate the revision that should be modified when deleting a revision property. Must
be used in conjunction with--revprop.

• --revprop

Indicate that the property referred to is a revision property, not a versioned property.

• --username arg

Use the usernamearg when contacting the repository. If a username is not given,
Subversion uses the username that has been cached in the current working copy, or
if a URL is given instead of a PATH, it uses the current login username.

• --password arg

Use the passwordarg when contacting the repository. If a password is needed and
not supplied, Subversion prompts for one.

• --no-auth-cache

Don’t keep the authentication information for use with future repository connections.

• --non-interactive

Don’t ask the user for any additional information. Useful for running the command
in a script.

• --config-dir arg

Load the user configuration files from the directory pointed to byarg, instead of the
default directory.

15.1.20 svn propedit (pedit, pe)

This command opens a text editor, with the contents of a versioned property in a working
copy, or a revision property in the repository. If the property contents are changed and
saved, the modified property value is applied to the property. For a working copy file, the
property change is applied at the next commit. If the property edited is a revision property,
the changes take effect immediately on saving and exiting from the text editor, and are not
undoable.

Basic Usage

$ propedit PROP_NAME [PATH...]

or

$ propedit PROP_NAME --revprop -r REVISION [URL]

If no PATHs are given, the property is edited on the current working directory. Other-
wise, it is edited for all files or directories pointed to by the PATHs (each file or directory
is opened separately in the editor). For revision properties, the URL of the current working
copy is used if a URL is not given.

“svnbook” � 2005/4/14 � 14:55 � page 299 � #320i
i

i
i

i
i

i
i

15.1 svn 299

Options

• -r --revision] arg

Indicate the revision that should be modified when editing a revision property. Must
be used in conjunction with--revprop.

• --revprop

Indicate that the property referred to is a revision property, not a versioned property.

• --username arg

Use the usernamearg when contacting the repository. If a username is not given,
Subversion uses the username that has been cached in the current working copy, or
if a URL is given instead of a PATH, it uses the current login username.

• --password arg

Use the passwordarg when contacting the repository. If a password is needed and
not supplied, Subversion prompts for one.

• --no-auth-cache

Don’t keep the authentication information for use with future repository connections.

• --non-interactive

Don’t ask the user for any additional information. Useful for running the command
in a script.

• --encoding arg

Use to indicate that the log message is encoded in a different encoding than the
system default. The encoding used is given asarg.

• --editor-cmd arg

Use the command pointed to byarg as the editor to open when asking for a log
message, rather than the system-wide default editor.

• --force

Turns off any precautions meant to ensure that you don’t accidentally lose data. This
can be useful in some instances, if you know what you’re doing, but use it with
caution.

• --config-dir arg

Load the user configuration files from the directory pointed to byarg, instead of the
default directory.

15.1.21 svn propget (pget, pg)

This command outputs the value of a versioned property on a file or directory, or a revision
property.

“svnbook” — 2005/4/14 — 14:55 — page 300 — #321i
i

i
i

i
i

i
i

300 Chapter 15 Command Reference

Basic Usage

$ propget PROP_NAME [PATH...]

or

$ propget PROP_NAME --revprop -r REVISION [URL]

If no PATHs are given, the property is output for the current working directory. Oth-
erwise, it is output from all files or directories pointed to by the PATHs. For revision
properties, the URL of the current working copy is used if a URL is not given.

Options

• -R --recursive]

Recursively descend into any directories supplied in the path, and process all of the
files contained therein.

• -r --revision] arg

Indicate the revision that the property should be retrieved from. May be used in
conjunction with revision properties and versioned properties.

• --revprop

Indicate that the property referred to is a revision property, not a versioned property.

• --strict

Indicate that Subversion should use strict semantics, which prevents the output of an
end-of-line character at the end of the output. This is useful for outputting binary
files stored in properties.

• --username arg

Use the usernamearg when contacting the repository. If a username is not given,
Subversion uses the username that has been cached in the current working copy, or
if a URL is given instead of a PATH, it uses the current login username.

• --password arg

Use the passwordarg when contacting the repository. If a password is needed and
not supplied, Subversion prompts for one.

• --no-auth-cache

Don’t keep the authentication information for use with future repository connections.

• --non-interactive

Don’t ask the user for any additional information. Useful for running the command
in a script.

“svnbook” — 2005/4/14 — 14:55 — page 301 — #322i
i

i
i

i
i

i
i

15.1 svn 301

• --config-dir arg

Load the user configuration files from the directory pointed to byarg, instead of the
default directory.

15.1.22 svn proplist (plist, pl)

This command outputs all of the versioned properties that have been set for a file or direc-
tory, or all of the revision properties that have been set for a given revision.

Basic Usage

$ propdel [PATH...]

or

$ propdel --revprop -r REVISION [URL]

If no PATHs are given, the properties set for the current working directory are listed.
Otherwise, properties are listed for all files or directories pointed to by the PATHs. For
revision properties, the URL of the current working copy is used if a URL is not given.

Options

• -v --verbose]

Cause Subversion to output property values in addition to property names when list-
ing set properties.

• -R --recursive]

Recursively descend into any directories supplied in the path, and process all of the
files contained therein.

• -r --revision] arg

Indicate the revision that the properties should be retrieved from. May be used in
conjunction with revision properties and versioned properties.

• -q --quiet]

Supply the minimum output possible.

• --revprop

Indicate that the property referred to is a revision property, not a versioned property.

• --username arg

Use the usernamearg when contacting the repository. If a username is not given,
Subversion uses the username that has been cached in the current working copy, or
if a URL is given instead of a PATH, it uses the current login username.

“svnbook” — 2005/4/14 — 14:55 — page 302 — #323i
i

i
i

i
i

i
i

302 Chapter 15 Command Reference

• --password arg

Use the passwordarg when contacting the repository. If a password is needed and
not supplied, Subversion prompts for one.

• --no-auth-cache

Don’t keep the authentication information for use with future repository connections.

• --non-interactive

Don’t ask the user for any additional information. Useful for running the command
in a script.

• --config-dir arg

Load the user configuration files from the directory pointed to byarg, instead of the
default directory.

15.1.23 svn propset (pset, ps)

This command sets the value of a versioned property on a working copy file or directory,
or the value of a revision property in the repository (erasing any previous value). The value
to set the property to is supplied on the command line. If a working copy file or directory
is modified, the property change is sent to the repository on the next commit. If the change
is applied to a revision property, the change is applied immediately, and is not undoable.

Basic Usage

$ propset PROP_NAME PROP_VAL [PATH...]

or

$ propset PROP_NAME --revprop -r REVISION PROP_VAL [URL]

If no PATHs are given, the property is set on the current working directory. Otherwise,
it is set on all files or directories pointed to by the PATHs. For revision properties, the URL
of the current working copy is used if a URL is not given.

Options

• -F --file] arg

• -q --quiet]

Supply the minimum output possible.

• -r --revision] arg

Indicate the revision that should be modified when setting a revision property. Must
be used in conjunction with--revprop.

“svnbook” � 2005/4/14 � 14:55 � page 303 � #324i
i

i
i

i
i

i
i

15.1 svn 303

• --targets arg

Parse the files pointed to byarg, and add them to the list of arguments for the com-
mand.

• -R --recursive]

Recursively descend into any directories supplied in the path, and process all of the
files contained therein.

• --revprop

Indicate that the property referred to is a revision property, not a versioned property.

• --username arg

Use the usernamearg when contacting the repository. If a username is not given,
Subversion uses the username that has been cached in the current working copy, or
if a URL is given instead of a PATH, it uses the current login username.

• --password arg

Use the passwordarg when contacting the repository. If a password is needed and
not supplied, Subversion prompts for one.

• --no-auth-cache

Don’t keep the authentication information for use with future repository connections.

• --non-interactive

Don’t ask the user for any additional information. Useful for running the command
in a script.

• --encoding arg

Use to indicate that the log message is encoded in a different encoding than the
system default. The encoding used is given asarg.

• --force

Turn off any precautions meant to ensure that you don’t accidentally lose data. This
can be useful in some instances, if you know what you’re doing, but use it with
caution.

• --config-dir arg

Load the user configuration files from the directory pointed to byarg, instead of the
default directory.

15.1.24 svn resolved

This command tells Subversion that a conflicted file has been fixed to resolve the conflict.
This removes the conflict state from the file, and deletes any additional files generated by
Subversion when the conflict was detected.

“svnbook” — 2005/4/14 — 14:55 — page 304 — #325i
i

i
i

i
i

i
i

304 Chapter 15 Command Reference

Basic Usage

$ svn resolved PATH...

Options

• --targets arg

Parse the files pointed to byarg, and add them to the list of arguments for the com-
mand.

• -R --recursive]

Recursively descend into any directories supplied in the path, and process all of the
files contained therein.

• -q --quiet]

Supply the minimum output possible.

• --config-dir arg

Load the user configuration files from the directory pointed to byarg, instead of the
default directory.

15.1.25 svn revert

This command reverts a file in a working copy to its last unmodified state. This permanently
removes all local changes, and any scheduled actions (addition, deletion, and so on).

Basic Usage

$ svn revert PATH...

Options

• --targets arg

Parse the files pointed to byarg, and add them to the list of arguments for the com-
mand.

• -R --recursive]

Recursively descend into any directories supplied in the path, and process all of the
files contained therein.

• -q --quiet]

Supply the minimum output possible.

• --config-dir arg

Load the user configuration files from the directory pointed to byarg, instead of the
default directory.

“svnbook” — 2005/4/14 — 14:55 — page 305 — #326i
i

i
i

i
i

i
i

15.1 svn 305

15.1.26 svn status (stat, st)

This command outputs the current status of files in a working copy directory.

Basic Usage

$ svn status [PATH...]

Options

• -u --show-updates]

Cause the output to show which files have been updated in the repository, too. This
requires Subversion to contact the repository, which is not normally done when run-
ningsvn status.

• -v --verbose]

Cause Subversion to output all of the files in examined directories, regardless of
whether they have been modified locally. It also outputs the current working copy
revision of the file, the last committed revision of the file, and the file’s last author.

• -N --non-recursive]

Don’t recurse into subdirectories and process their contents.

• -q --quiet]

Supply the minimum output possible.

• --no-ignore

Instruct Subversion to show files that it has been instructed to ignore through the
svn:ignore property or user configuration.

• --username arg

Use the usernamearg when contacting the repository. If a username is not given,
Subversion uses the username that has been cached in the current working copy, or
if a URL is given instead of a PATH, it uses the current login username.

• --password arg

Use the passwordarg when contacting the repository. If a password is needed and
not supplied, Subversion prompts for one.

• --no-auth-cache

Don’t keep the authentication information for use with future repository connections.

• --non-interactive

Don’t ask the user for any additional information. Useful for running the command
in a script.

“svnbook” — 2005/4/14 — 14:55 — page 306 — #327i
i

i
i

i
i

i
i

306 Chapter 15 Command Reference

• --config-dir arg

Load the user configuration files from the directory pointed to byarg, instead of the
default directory.

15.1.27 svn switch (sw)

This command switches the current URL of a file or directory in a working copy. This can
be used to switch a directory to a branch or tag, or to switch an entire working copy to a
new URL, if the repository is moved.

Basic Usage

$ svn switch URL [PATH]

or

$ svn switch --relocate FROM_URL TO_URL [PATH...]

If no PATHs are given, the current working copy directory is switched.

Options

• -r --revision] arg

Give a specific revision to place the working copy at when switching. This is equiv-
alent to runningsvn update -r N immediately after runningsvn switch.

• -N --non-recursive]

Don’t recurse into subdirectories and process their contents.

• -q --quiet]

Supply the minimum output possible.

• --diff3-cmd arg

Use the command pointed to byarg for performing two- and three-way diffs, instead
of the built-in functions.

• --relocate

Instruct Subversion to relocate the working copy from one URL to another. This is
used if the URL of the repository has changed.

• --username arg

Use the usernamearg when contacting the repository. If a username is not given,
Subversion uses the username that has been cached in the current working copy, or
if a URL is given instead of a PATH, it uses the current login username.

“svnbook” — 2005/4/14 — 14:55 — page 307 — #328i
i

i
i

i
i

i
i

15.1 svn 307

• --password arg

Use the passwordarg when contacting the repository. If a password is needed and
not supplied, Subversion prompts for one.

• --no-auth-cache

Don’t keep the authentication information for use with future repository connections.

• --non-interactive

Don’t ask the user for any additional information. Useful for running the command
in a script.

• --config-dir arg

Load the user configuration files from the directory pointed to byarg, instead of the
default directory.

15.1.28 svn update (up)

This command updates files or directories in a working copy to reflect a different revision
(the HEAD revision, by default). Local modifications are kept. If a directory is given,
Subversion recursively updates all of the files contained within that directory, as well as the
directory itself.

Basic Usage

$ svn update [PATH...]

If no PATHs are given, the current working copy directory is used.

Options

• -r --revision] arg

Tell Subversion to update to a revision other than HEAD. Only single revisions may
be given, not ranges.

• -N --non-recursive]

Don’t recurse into subdirectories and process their contents.

• -q --quiet]

Supply the minimum output possible.

• --diff3-cmd arg

Use the command pointed to byarg for performing two- and three-way diffs, instead
of the built-in functions.

“svnbook” — 2005/4/14 — 14:55 — page 308 — #329i
i

i
i

i
i

i
i

308 Chapter 15 Command Reference

• --username arg

Use the usernamearg when contacting the repository. If a username is not given,
Subversion uses the username that has been cached in the current working copy, or
if a URL is given instead of a PATH, it uses the current login username.

• --password arg

Use the passwordarg when contacting the repository. If a password is needed and
not supplied, Subversion prompts for one.

• --no-auth-cache

Don’t keep the authentication information for use with future repository connections.

• --non-interactive

Don’t ask the user for any additional information. Useful for running the command
in a script.

• --config-dir arg

Load the user configuration files from the directory pointed to byarg, instead of the
default directory.

15.2 svnadmin

Thesvnadmin program provides an interface for administrative tasks associated with the
repository itself. It provides command-line tools for creating new repositories, maintaining
repositories, and performing backups/migration of data.

Online help for each ofsvnadmin’s subcommands can be obtained by running the
program as:svnadmin help [COMMAND].

Options

• --version

Outputs version information aboutsvnadmin.

Subcommands

Thesvnadmin commands (with alternate names in parenthesis) are

• create

• dump

• help (?, h)

• hotcopy

• list-dblogs

“svnbook” — 2005/4/14 — 14:55 — page 309 — #330i
i

i
i

i
i

i
i

15.2 svnadmin 309

• list-unused-dblogs

• load

• lstxns

• recover

• rmtxns

• setlog

• verify

15.2.1 svnadmin create

This command creates a new repository.

Basic Usage

$ svnadmin create --fs-type bdb REPOSITORY_NAME

or

$ svnadming create --fs-type fsfs REPOSITORY_NAME

Options

• --bdb-txn-nosync

Cause the newly created repository to disable fsync when a transaction is being com-
mitted. This command is Berkeley DB specific, and does nothing when creating an
FSFS repository.

• --bdb-log-keep

Tell a newly created repository to keep all of its logs, instead of periodically removing
them. This command is Berkeley DB specific, and does nothing when creating an
FSFS repository.

• --config-dir arg

Load the user configuration files from the directory pointed to byarg, instead of the
default directory.

• --fs-type arg (1.1 only)

Tell svnadmin which type of repository backend to use when creating the reposi-
tory. Currently, the valid values arebdb for a Berkeley DB backend andfsfs for a
filesystem backend.

“svnbook” — 2005/4/14 — 14:55 — page 310 — #331i
i

i
i

i
i

i
i

310 Chapter 15 Command Reference

15.2.2 svnadmin dump

This command outputs the contents of a repository (or selected range or revisions), in a
format that is portable across Subversion versions. This can be useful for creating backups
of a repository, or when upgrading across major version changes (the only ones allowed to
change the database format).

Basic Usage

$ svnadmin dump REPOSITORY > REPOSITORY.dump

Options

• -r --revision] arg

List the range of revisions to dump, in the form-r N:M whereN is the lower revision
andM is the upper revision.

• --incremental

Output the repository dump in a form that can be concatenated onto a previous dump-
file.

• --deltas (1.1 only)

Tell Subversion to output deltas for file changes, instead of the full file contents. This
makes dumpfiles much smaller, at the cost of the dump’s speed.

• -q --quiet]

Supply the minimum output possible.

15.2.3 svnadmin help (?, h)

This command outputs documentation for thesvnadmin command. To get help on a spe-
cific subcommand, run help with the name of the command.

Basic Usage

$ svnadmin help [COMMAND]

Options

None

15.2.4 svnadmin hotcopy

This command makes a copy of a repository, without requiring exclusive access.

Basic Usage

$ svnadmin hotcopy REPOSITORY REPOSITORY_BACKUP

“svnbook” — 2005/4/14 — 14:55 — page 311 — #332i
i

i
i

i
i

i
i

15.2 svnadmin 311

Options

• --clean-logs

Tell Subversion to remove any redundant log files from the repository when it is
copied.

15.2.5 svnadmin list-dblogs

This command lists all of the log files associated with a Berkeley DB backend for the given
repository. Be very careful though. You should never delete logfiles that are still in use (see
svnadmin list-unused-dblogs).

This command only applies to Berkeley DB-based repositories.

Basic Usage

$ svnadmin list-dblogs REPOSITORY

Options

None

15.2.6 svnadmin list-unused-dblogs

This command lists all of theunusedlog files associated with a Berkeley DB backend for
the given repository. Deleting these files does not harm your repository.

Basic Usage

$ svnadmin list-unused-dblogs

Options

None

15.2.7 svnadmin load

This command loads the contents of a dumpfile (created withsvnadmin dump) into the
given repository. If the repository already contains data, the data in the dumpfile is added
as new revisions. If the repository is empty, the UUID of the repository is changed to match
the UUID in the dumpfile.

Basic Usage

$ cat OLD_REPOSITORY.dump | svnadmin load REPOSITORY

“svnbook” — 2005/4/14 — 14:55 — page 312 — #333i
i

i
i

i
i

i
i

312 Chapter 15 Command Reference

Options

• -q --quiet]

Supply the minimum output possible.

• --ignore-uuid

Ignore any UUIDs provided by the input, and leave the UUID of the repository intact.

• --force-uuid

Force Subversion to set the repository’s UUID to that found in the input, regardless
of whether there is already data in the repository.

• --parent-dir arg

Use a specific directory in the repository as the base path for all data loaded in. This
allows you to load a dumpfile in relative to somewhere other than the root directory.

15.2.8 svnadmin lstxns

This command lists all of the transactions currently in the repository, which have not yet
been completely committed.

Basic Usage

$ svnadmin lstxns REPOSITORY

Options

None

15.2.9 svnadmin recover

This command runs a Berkeley DB recovery on the supplied repository. It only applies to
a Berkeley DB-based repository, and does nothing on an FSFS repository. Make sure that
you have exclusive access to the repository when this is run, as any other access during
the recovery procedure could result in a corrupted repository. In Subversion 1.1 or later,
if recover detects another process accessing the repository when it is run, it automatically
exits.

Basic Usage

$ svnadmin recover REPOSITORY

Options

• --wait (1.1 only)

Don’t exit if another process is accessing the repository. Instead, wait for it to exit.

“svnbook” — 2005/4/14 — 14:55 — page 313 — #334i
i

i
i

i
i

i
i

15.2 svnadmin 313

15.2.10 svnadmin rmtxns

This command removes the given transaction(s) from the repository.

Basic Usage

$ svnadmin rmtxns REPOSITORY TRANSACTION...

Options

• -q --quiet]

Supply the minimum output possible.

15.2.11 svnadmin setlog

This command sets the log message for a given revision to the contents of the supplied
file. This change is immediate and permanent. Because Subversion doesn’t version re-
vision properties, the old message is lost. This triggers anypre-revprop-change or
post-revprop-change hook scripts.

Basic Usage

$ svnadmin setlog REPOSITORY -r REVISION FILE

Options

• -r --revision] arg

The revision that the log should be set on.

• --bypass-hooks

Tell Subversion not to execute any 9 Tf -101.868 -28 -101.when changing the property.

15.2.12 svnadmin verify

This command runs a verification procedure on the repository to check the integrity of the
data contained therein.

Basic Usage

$ svnadmin verify REPOSITORY

Options

None

“svnbook” � 2005/4/14 � 14:55 � page 314 � #335i
i

i
i

i
i

i
i

314 Chapter 15 Command Reference

15.3 svnlook

The svnlook program provides an interface forserver-sideexamination of a repository.
None of thesvnlook commands modify the repository in any way. Most commands can
look at both committed revisions and transactions. All commands operate directly on the
repository and cannot access the repository remotely.

Online help for each ofsvnlook’s subcommands can be obtained by running the pro-
gram as:svnlook help [COMMAND].

Options

• --version

Outputs version information aboutsvnlook.

Subcommands

Thesvnlook commands (with alternate names in parenthesis) are

• author

• cat

• changed

• date

• diff

• dirs-changed

• help (?, h)

• history

• info

• log

• propget (pget, pg)

• proplist (plist, pl)

• tree

• uuid

• youngest

15.3.1 svnlook author

Prints out the username of the author of the given revision or transaction.

“svnbook” — 2005/4/14 — 14:55 — page 315 — #336i
i

i
i

i
i

i
i

15.3 svnlook 315

Basic Usage

$ svnlook author -r REVISION REPOSITORY

Options

• -r --revision] arg

Indicate the revision that the command should look at. This option and--transaction
are mutually exclusive.

• -t --transaction] arg

Indicate the transaction that the command should look at. This option and--revision
are mutually exclusive.

15.3.2 svnlook cat

Outputs the contents of the given file in the repository.

Basic Usage

$ svnlook cat REPOSITORY FILE

Options

• -r --revision] arg

Indicate the revision that the command should look at. This option and--transaction
are mutually exclusive.

• -t --transaction] arg

Indicate the transaction that the command should look at. This option and--revision
are mutually exclusive.

15.3.3 svnlook changed

Prints out all of the paths that were changed in a given revision or transaction.

Basic Usage

$ svnlook changed -r REVISION REPOSITORY

Options

• -r --revision] arg

Indicate the revision that the command should look at. This option and--transaction
are mutually exclusive.

“svnbook” — 2005/4/14 — 14:55 — page 316 — #337i
i

i
i

i
i

i
i

316 Chapter 15 Command Reference

• -t --transaction] arg

Indicate the transaction that the command should look at. This option and--revision
are mutually exclusive.

15.3.4 svnlook date

Prints out the date when a revision or transaction was created.

Basic Usage

$ svnlook date -r REVISION REPOSITORY

Options

• -r --revision] arg

Indicate the revision that the command should look at. This option and--transaction
are mutually exclusive.

• -t --transaction] arg

Indicate the transaction that the command should look at. This option and--revision
are mutually exclusive.

15.3.5 svnlook diff

Prints out a diff of all the changes that occurred in a given revision or transaction.

Basic Usage

$ svnlook diff -r REVISION REPOSITORY

Options

• -r --revision] arg

Indicate the revision that the command should look at. This option and--transaction
are mutually exclusive.

• -t --transaction] arg

Indicate the transaction that the command should look at. This option and--revision
are mutually exclusive.

• --no-diff-deleted

If a file has been deleted, don’t print the differences. This prevents an entire file from
being dumped if it has been deleted.

“svnbook” — 2005/4/14 — 14:55 — page 317 — #338i
i

i
i

i
i

i
i

15.3 svnlook 317

15.3.6 svnlook dirs-changed

Prints out all of the directories that had their properties modified, or had files contained
therein modified, in the given revision or transaction.

Basic Usage

$ svnlook dirs-changed -r REVISION REPOSITORY

Options

• -r --revision] arg

Indicate the revision that the command should look at. This option and--transaction
are mutually exclusive.

• -t --transaction] arg

Indicate the transaction that the command should look at. This option and--revision
are mutually exclusive.

15.3.7 svnlook help (?, h)

This command outputs documentation for thesvnlook command. To get help on a specific
sub-command, run help with the name of the command.

Basic Usage

$ svnlook help [COMMAND]

Options

None

15.3.8 svnlook history

Shows the revisions where changes were made to the supplied path in the repository.

Basic Usage

$ svnlook history REPOSITORY [PATH]

If no PATH is given, the history for the root of the repository is shown.

Options

• -r --revision] arg

Indicate the revision that the command should look at.

“svnbook” � 2005/4/14 � 14:55 � page 318 � #339i
i

i
i

i
i

i
i

318 Chapter 15 Command Reference

• --show-ids

Tell Subversion to show the node revision IDs for each entry listed in the history
output.

15.3.9 svnlook info

Prints out information about the given revision. Information consists of the author of the
revision, the datestamp, the size of the log message, and the log message.

Basic Usage

$ svnlook info -r REVISION REPOSITORY

Options

• -r --revision] arg

Indicate the revision that the command should look at. This option and--transaction
are mutually exclusive.

• -t --transaction] arg

Indicate the transaction that the command should look at. This option and--revision
are mutually exclusive.

15.3.10 svnlook log

Prints out the log message for a given revision.

Basic Usage

$ svnlook log -r REVISION REPOSITORY

Options

• -r --revision] arg

Indicate the revision that the command should look at. This option and--transaction
are mutually exclusive.

• -t --transaction] arg

Indicate the transaction that the command should look at. This option and--revision
are mutually exclusive.

15.3.11 svnlook propget (pget, pg)

Prints out the value for a given property (prints versioned properties only, not revision
properties).

“svnbook” — 2005/4/14 — 14:55 — page 319 — #340i
i

i
i

i
i

i
i

15.3 svnlook 319

Basic Usage

$ svnlook propget -r REVISION REPOSITORY PROP_NAME PATH

Options

• -r --revision] arg

Indicate the revision that the command should look at. This option and--transaction
are mutually exclusive.

• -t --transaction] arg

Indicate the transaction that the command should look at. This option and--revision
are mutually exclusive.

15.3.12 svnlook proplist (plist, pl)

Lists all of the properties that have been set for a given file or directory in the repository.
This command only works to list versioned properties. It does not have a way to list the
revision properties set on a specific revision.

Basic Usage

$ svnlook proplist -r REVISION REPOSITORY PATH

Options

• -r --revision] arg

Indicate the revision that the command should look at. This option and--transaction
are mutually exclusive.

• -t --transaction] arg

Indicate the transaction that the command should look at. This option and--revision
are mutually exclusive.

• -v --verbose]

Print out the property values, in addition to the property names.

15.3.13 svnlook tree

Prints out the file/directory tree for a repository, at a given revision. If a path is supplied,
the tree relative to that path is shown.

Basic Usage

$ svnlook tree -r REVISION REPOSITORY [PATH]

If no PATH is given, the tree is shown for the root of the repository.

“svnbook” — 2005/4/14 — 14:55 — page 320 — #341i
i

i
i

i
i

i
i

320 Chapter 15 Command Reference

Options

• -r --revision] arg

Indicate the revision that the command should look at. This option and--transaction
are mutually exclusive.

• -t --transaction] arg

Indicate the transaction that the command should look at. This option and--revision
are mutually exclusive.

• --show-ids

Tell Subversion to show the node revision IDs for each entry listed in the tree output.

15.3.14 svnlook uuid

Prints out the universal unique identifier (UUID) for the given repository.
Each repository has a UUID, which is used by the Subversion client to uniquely identify

a given repository. This allows the Subversion client to know if it is accessing the same
repository, even after the URL changes. It also allows the Subversion client to prevent you
from running a Subversion command that crosses repository boundaries (inter-repository
communication is not supported by Subversion).

Basic Usage

$ svnlook uuid REPOSITORY

Options

None

15.3.15 svnlook youngest

Prints out the most recently committed revision in the given repository.

Basic Usage

$ svnlook youngest REPOSITORY

Options

None

15.4 svnversion

Outputs a version number for a file or directory in a working copy. If the working copy
has been modified, the version number has a trailingM. If it has been switched, there is a

“svnbook” � 2005/4/14 � 14:55 � page 321 � #342i
i

i
i

i
i

i
i

15.5 svndumpfilter 321

trailing S. If the working copy contains multiple revisions, the revision number is given as
a range, in the formN:M, whereN is the lowest revision andM is the highest.

Switched directories are detected automatically for all files and directories except the
one specifically given on the command line as the base path. To determine whether the
base path has been switched, you have to provide a URL on the command line that gives
the unswitched URL.

Basic Usage

$ svnversion WC_PATH [URL]

Options

• -n

Tell svnversion not to output a trailing newline at the end of the output.

• -c

Tell svnversion to output the last changed revision numbers, instead of the revision
numbers of the current revision.

• --version

Outputs version information for thesvnversion program.

15.5 svndumpfilter

This program works as a filter for the output ofsvnadmin dump, and allows you to exclude
specific paths, or alternately specify only certain paths in the output.

Online help for each ofsvndumpfilter’s subcommands can be obtained by running
the program as:svndumpfilter help [COMMAND].

Options

• --version

Outputs version information aboutsvndumpfilter.

Subcommands

Thesvndumpfilter commands (with alternate names in parentheses) are

• exclude

• include

• help (?, h)

“svnbook” — 2005/4/14 — 14:55 — page 322 — #343i
i

i
i

i
i

i
i

322 Chapter 15 Command Reference

15.5.1 svndumpfilter exclude

Allows you to specify path prefixes that should be excluded from the dump stream output.

Basic Usage

$ svnadmin dump REPOS | svndumpfilter exclude PREFIX... > REPOS.dump

Options

• --drop-empty-revs

Remove any revisions that end up empty after the filtered paths are removed.

• --renumber-revs

Renumber the revisions that remain after filtering out paths, so that all revisions are
sequential.

• --preserve-revprops

Don’t filter out any revision properties.

• --quiet

Don’t display any statistical information about the filtered output.

15.5.2 svndumpfilter include

Allows you to specify specific path prefixes and exclude all paths that don’t match.

Basic Usage

$ svnadmin dump REPOS | svndumpfilter include PREFIX... > REPOS.dump

Options

• --drop-empty-revs

Remove any revisions that end up empty after the filtered paths are removed.

• --renumber-revs

Renumber the revisions that remain after filtering out paths, so that all revisions are
sequential.

• --preserve-revprops

Don’t filter out any revision properties.

• --quiet

Don’t display any statistical information about the filtered output.

“svnbook” — 2005/4/14 — 14:55 — page 323 — #344i
i

i
i

i
i

i
i

15.5 svndumpfilter 323

15.5.3 svndumpfilter help (?, h)

This command outputs documentation for thesvndumpfilter command. To get help on
a specific subcommand, run help with the name of the command.

Basic Usage

$ svndumpfilter help [COMMAND]

Options

None

“svnbook” — 2005/4/14 — 14:55 — page 324 — #345i
i

i
i

i
i

i
i

“svnbook” — 2005/4/14 — 14:55 — page 325 — #346i
i

i
i

i
i

i
i

Index

A status indicator, 60, 67-68
Access control, 137

Apache configuration for, 32-33
certificates for, 103-104, 142-144
direct, 138
svnserve, 20, 138-140
Windows Domain Controller authen-

tication, 146-148
Accountability, version control for, 5
AcquireLockFile function, 173, 177-

178
add command

reference for, 275
for repository files, 63-64

AnkhSVN project, 111-112
annotate command, 276-277
anon-access option, 139
Apache Portable Runtime (APR) libraries,

26, 201-202
Apache Web server, 26

configuration, 31, 146-147
access setup, 32-33
Apache 1 and Apache 2 together,

33-34
authentication, 140-141
certificates, 144
loading modules, 31-32
parent paths, 33

API in Subversion, 21, 198-206
Appending issue tracking messages, 247
APR (Apache Portable Runtime) libraries,

26, 201-202

apr_psprintf function, 203
Archival e-mails, automating, 168-169
AssembleThePieces function, 175-176,

180, 183-184
Atomic commits, 18
[auth] section in config, 98
AuthDigestDomain entry, 141
AuthDigestFile entry, 141
Authentication

in Apache, 140-141
in Windows Domain Controller, 146-

148
AuthName entry

in Apache configuration, 33
in password protection, 141

Author
printing, 195
property for, 95

author command
reference for, 314-315
for revisions and transactions, 195

Author keyword, 93
Authorization retention setting, 98
AuthType entry

in Apache configuration, 33
in password protection, 141

AuthUserFile entry, 33
AuthzSVNAccessFile option, 144
[auto-props] section in config, 101
Autoexec.bat file, 31
Automation, 159-160

API for, 198-206

325

“svnbook” — 2005/4/14 — 14:55 — page 326 — #347i
i

i
i

i
i

i
i

326 Index

file merges, 12
hooks for.seeScripts
issue tracking interaction, 247-248
metadata, 191-197
property settings, 86-87, 101
repository backup, 151-153
summary, 206
unit testing, 228-229

Autoversioning with WebDAV, 114-115

Backing up repository, 149
automating, 151-153
dumping for, 150-151
hotcopying for, 149-150
in migration, 130

BASE alias, 57
Batons, 202
Baus, Christopher, 110
Berkeley DB (BDB) database, 26-27, 149
Beta versions

quality assurance for, 211-212
testing, 229-230

Bieber, Ron, 268
Binary files, 19

changes to, 77
in KeyGhost Ltd. case study, 260-

261
Mac OS X, 29

Binary properties, 89
blame command

for file history, 74
postprocessor for, 243-244
purpose of, 192
reference for, 276-277

BogeyTalk project, 251-254
Bohlman, Mark, 263
Branches, 18-19

in central planning project, 257-258
communication through, 231-232
creating, 44-46, 78-80, 209-210
cvs2svn for, 132
in ExCo case study, 267
in managed chaos project, 252
merging, 46-48, 80-82

organizing, 122-124, 209-210
quality assurance, 211-212
in rapid development project, 255
in repository, 11, 79
saved working copies snapshots for,

215-216
in small-team projects, 259
software version, 210-211
task, 212-214
in Teledata Communications case study,

264-265
version control for, 6, 10-11
in Wye Corp case study, 269

/branches directory in case study, 262
bugtraq:append property, 247
bugtraq:label property, 246
bugtraq:message property, 246-247
bugtraq:number property, 247
bugtraq:url property, 247
bugtraq:warnifnoissue property, 247
build.xml file, 223
Builds, 223

configuring, 223-224
daily, 224-226
integration in, 226-227
tags for, 215

Built-in properties
file, 90-94
revision, 95-96

bzip2 archive, 27

-c option withhtdigest, 141
C status indicator, 60, 67-68
Carriage return (CR) characters, property

for, 90-91
CAs (certificate authorities)

purpose of, 103
types of, 142

Case studies, 251
central planning, 256-258
Error Free Software, 261-263
ExCo, 266-268
GladeSoft, 265-266
KeyGhost Ltd., 260-261

“svnbook” — 2005/4/14 — 14:55 — page 327 — #348i
i

i
i

i
i

i
i

Index 327

managed chaos, 251-254
rapid development, 254-256
small-team, 258-259
Teledata Communications, 263-265
Wye Corp, 268-270
ZedCom, 270

cat command
svn

reference for, 277
for retrieving files, 75
svnlook

reference for, 315
for retrieving files, 194

Central planning project, 256-257
branches and tags in, 257-258
properties in, 258
repository layout in, 257
scripts in, 258

Certificate authorities (CAs)
purpose of, 103
types of, 142

Certificates, SSL
configuring, 144
creating, 142-144
servers file for, 103-104

changed command
for modified files, 195-196
reference for, 315-316

Changes
to binary files, 77
committing, 42
examining, 71-72
finding files with, 195-196
logs for, 9-10, 188-189, 220
reverting, 81-82

Changesets, 8
Cheap copies, 40, 146, 211
Checking in code, 217-219
Checking out working copies, 57-61
checkout command

reference for, 278-279
for working copies, 40, 57-58

Checksum entry, 70, 193

--clean-logs option, 149
cleanup command

reference for, 279
for working copies, 82-83

Client-server paradigm, 17-18
Clients

commands for, 55-57
communication with, 164
configuring, 97

config file.seeconfig file
finding configuration files, 97
servers file.seeservers file
summary, 104

contexts for, 202-203
GUI, 105

RapidSVN, 105-107
TortoiseSVN, 107-108
ViewCVS, 108-110
WebSVN, 110

Code
checking in, 217-219
committing, 218-219

CollabNet, 16
Collaborators, 236-237
Colons (:) in property names, 86
Command reference, 273
svn, 273-275
svn add, 275
svn blame, 276-277
svn cat, 277
svn checkout, 278-279
svn cleanup, 279
svn commit, 279-281
svn copy, 281-282
svn delete, 282-284
svn diff, 284-286
svn export, 286-287
svn help, 287
svn import, 287-289
svn info, 289
svn list, 289-290
svn log, 291-292
svn merge, 292-294

“svnbook” — 2005/4/14 — 14:55 — page 328 — #349i
i

i
i

i
i

i
i

328 Index

svn mkdir, 294-295
svn move, 295-297
svn propdel, 297-298
svn propedit, 298-299
svn propget, 299-301
svn proplist, 301-302
svn propset, 302-303
svn resolved, 303-304
svn revert, 304
svn status, 305-306
svn switch, 306-307
svn update, 307-308
svnadmin, 308-309
svnadmin create, 309-310
svnadmin dump, 310
svnadmin help, 310
svnadmin hotcopy, 310-311
svnadmin list-dblogs, 311
svnadmin list-unused-dblogs,

311
svnadmin load, 311-312
svnadmin lstxns, 312
svnadmin recover, 312
svnadmin rmtxns, 313
svnadmin setlog, 313
svnadmin verify, 313

svndumpfilter, 321
svndumpfilter exclude, 322
svndumpfilter help, 323
svndumpfilter include, 322
svnlook, 314
svnlook author, 314-315
svnlook cat, 315
svnlook changed, 315-316
svnlook date, 316
svnlook diff, 316
svnlook dirs-changed, 317
svnlook help, 317
svnlook history, 317-318
svnlook info, 318
svnlook log, 318
svnlook propget, 318-319
svnlook proplist, 319

svnlook tree, 319-320
svnlook uuid, 320
svnlook youngest, 320

svnversion, 320-321
Commands

logs for, 221
for metadata, 191-197
for working copies, 55-57

commit-access-control.pl script, 185-
186

commit command
for branches, 47
for copied versions, 45
process, 42, 61-63
for properties, 87
reference for, 279-281

commit-email.pl script, 164, 170-171
Commit logs, 203-204
COMMITTED alias, 57
Committing, 18

changes, 42
code, 218-219
process of, 42, 61-63
properties, 87
scripts for, 160-161

Communication, 230
in issue-tracking system, 170
scripts for, 164
about Subversion, 232
through Subversion, 230-232

Compare With menu in Subclipse, 113-
114

Compiling
Linux installations, 27-29
Mac OS X, 29
svntag program, 205-206

ComputeFirstAndLastItemRevisions
function, 173, 178

Concurrent Versioning System (CVS)
introduction of, 15
migrating repository from, 130-133

config file, 98
for authorization retention, 98

“svnbook” — 2005/4/14 — 14:55 — page 329 — #350i
i

i
i

i
i

i
i

Index 329

for automatically setting properties,
101

for file timestamps, 100-101
for global ignores, 100
for helper programs, 98-99
for log file encoding, 100
for tunnels, 99-100

config.xml file, 225
Configuration files
config, 98-101
editing, 97-98
finding, 97
servers, 101-104

Conflict resolution, 19-20
handling, 48-51
for working copies, 76-78

Continuous integration, 226
Coordinated Universal Time (UTC), 181
Copies, cheap, 40, 146, 211
copy command

for branches, 18, 78-79
reference for, 281-282
for tags, 18, 43, 78-79
for undeleting files, 66-67
for working copies, 58-59, 65-66

copying tags, 198-206
CR (carriage return) characters, property

for, 90-91
create command

reference for, 309-310
for repository, 38, 154

createDumpMessage function, 169
CreateNewItemFilesFromSVN function,

175-176, 180-184
cron program

for backups, 152
setting up, 153

crontab program, 153
CruiseControl system, 225-226
Current state of repository, 67-72
CVS (Concurrent Versioning System)

introduction of, 15
migrating repository from, 130-133

cvs2svn command, 131-133

-d option withsvnserve, 138
D status indicator, 60, 67
--daemon option insvnserve, 34
Daemons, svnserve as, 34-35
Daily project builds, 224-226
/dailyLibraryBuild directory in case

study, 262
Data

in migration from CVS, 131-133
transferring, 21
version control for, 4-5

Database case study, 254-256
Databases

BDB, 26-27, 149
for passwords, 139

date command
for log messages, 181
reference for, 316
for revisions, 196

Date keyword, 93
Dates

of commits, 181
of log messages, 181
property for, 95
of revisions, 196

Defines in svntag, 201
delete command

reference for, 282-284
for working copies, 64-65

Deleted files, recovering, 61
DeleteOldItemFiles function, 173-174,

178-179
Deleting

branches, 123
files

in RSS notifications, 178-179
working copies, 64-65

logs for, 220-221
Developers

branches for, 123
testing by, 228

Development process, 235

“svnbook” — 2005/4/14 — 14:55 — page 330 — #351i
i

i
i

i
i

i
i

330 Index

branching in, 6
case studies.seeCase studies
issue tracking, 246-248
peer reviews.seePeer reviews
rapid, 7, 254-256
summary, 248-249
workflow in, 235-240

Development process policies, 209
branching and tagging, 209

creating and organizing, 209-210
quality assurance, 211-212
saved working copies snapshots

for, 215-216
software version, 210-211
task, 212-214

checking in code, 217-219
communication, 230-232
enforcing, 232-233
log data, 219

for informative logs, 220-221
limiting information in, 222-223
for parseable messages, 221-222

merging, 216-217
project builds, 223-227
summary, 233
testing and quality assurance, 227-

230
diff-cmd option, 99
diff command
svn

for helper programs, 99
reference for, 284-286
for revision changes, 41, 62, 71-

72
svnlook

purpose of, 194
reference for, 316

diff3-cmd option, 99
diff3-has-program-arg option, 99
Digest password protection, 140-141
Direct access control to repository, 138
dirs-changed command

for changed directories, 196

reference for, 317
Distributed repository, 22
Distributing peer reviews material, 242-

244
Distribution of work, version control for,

6-7
Diversity, 16
/doc directory in case study, 262
Documenting merges, 217
Dollar signs ($) for keywords, 93
Downloading Linux source files, 27
--drop-empty-revs option, 129
--dry-run option, 82
dump command

reference for, 310
for repository, 128-129

Dumping repository, 150-151
script for, 152-153
splitting, 128-129

dumpRevision function, 168-169

E-mail, scripts for, 167-172
Eclipse IDE, 112-114
Edge cases with scripts, 166
Editing

configuration files, 97-98
properties, 86
working copies, 40-42

$EDITOR environment variables, 99
EFS (Error Free Software) case study, 261-

263
enable-auto-props option, 101
End-of-line markers in migration, 132
Enforcement, policy, 187-188, 232-233
Error Free Software (EFS) case study, 261-

263
Examining

changes, 71-72
files, 74-75

Exclamation point (!) status indicator,
68

exclude command, 322
ExCo case study, 266-268
<exec> element, 226

“svnbook” — 2005/4/14 — 14:55 — page 331 — #352i
i

i
i

i
i

i
i

Index 331

Executable files, property for, 91
export command, 286-287
External projects

property for, 91-92
scripts for, 163

External references, formats for, 222

Feeds for RSS notifications, 180-184
File-level revision systems, 8
--file option, 63
Files

adding working copies, 63-64
built-in properties for, 90-94
deleting

in RSS notifications, 178-179
working copies, 64-65

editing, 40-42
examining, 71-72, 74-75
locking, 22
moving working copies, 65-67
placing in repositories, 38-39
recovering, 61
timestamps for, 100-101
undeleting, 66-67

Filesystem-based back ends (FSFS), 20
Finding

changed files, 195-196
configuration files, 97
unreviewed revisions, 241-242

Fink package management system, 30
Flexibility, repository, 18
--force option, 65
--force-log option, 63
Formats for external references, 222
Forum peer reviews, 245-246
FSFS (filesystem-based back ends), 20
Full repository migration, 131

G status indicator, 60, 68
[general] section insvnserve.conf,

139
GenerateRssFile function, 176, 184
genrsa program, 143
genRSS script, 177-185

getCommitLog function, 199, 203-204
GladeSoft case study, 265-266
global-ignores option, 100
[global] section insmb.conf, 147-148
Gnome Nautilus file manager, 20
GNU Public License, 16
grep command, 70-71
Group peer reviews, 244-245
Groups, server, 101-102
[groups] section in servers, 102
Grune, Dick, 15
GUI clients, 105

RapidSVN, 105-107
TortoiseSVN, 107-108
ViewCVS, 108-110
WebSVN, 110

Gurus, 238-239

HEAD alias, 57
help command
svn, 287
svnadmin, 310
svndumpfilter, 323
svnlook, 317

Helper programs, 98-99
[helpers] section in config, 98-99
History

examining, 196-197
merging

changes, 23
tags for, 125-126

repository
blame for, 74
cat for, 75
list for, 74-75
log for, 72-74

history command
purpose of, 196-197
reference for, 317-318

Hobbyists, 239-240
Hook scripts.seeScripts
hot-backup.py script, 149
hotcopy command

reference for, 310-311

“svnbook” — 2005/4/14 — 14:55 — page 332 — #353i
i

i
i

i
i

i
i

332 Index

for repository, 149-150, 154
htdigest tool, 141
http-compression option, 103
HTTP/HTTPS access control, 140-141
HTTP proxies, 102
http-proxy-exceptions option, 102
http-timeout option, 103
httpd.conf file, 31-32, 34
Humor in log messages, 221

-i option withsvnserve, 138
I status indicator, 68
Id keyword, 93
IDE access, 111

Eclipse, 112-114
Visual Studio.Net, 111-112
WebDAV, 114-115

--ignore-uuid option, 129
Ignoring unversioned files, property for,

92
Immutable tags, 189-191
import command

for directories, 39
reference for, 287-289

include command, 322
Includes in svntag program, 201
Incremental backups

script for, 152-153
working with, 150-151

--incremental option, 150
Individual developer testing, 228
Individual peer reviews, 245
Inetd server

support for, 20
svnserve running with, 35-36

info command
svn

for current directory, 44
output of, 69-71, 192-193
reference for, 289
svnlook

output of, 194-195
reference for, 318

Informative logs, policies for, 220-221

initializeContext function, 199, 202-
203, 205

Installation
Apache configuration, 31-34
Linux, 25-29
Mac OS X, 29-30
summary, 36
svnserve configuration, 34-36
Windows, 30-31

Integration in project builds, 226-227
Integrity, version control for, 4-5
Interface changes, logs for, 220
ISO-8601 format, 95
Issue-tracking

communicating with, 170
revisions tied to, 246-248

KeyGhost Ltd. case study, 260-261
Keys for certificates, 143
Keywords, property for, 92-93
krb.conf file, 147-148

L status indicator, 68
Labels in issue tracking, 246
Last Changed Author entry, 70, 192
Last Changed Date entry, 70, 192
Last Changed Rev entry, 70, 192
LastChangedBy keyword, 93
LastChangedDate keyword, 93
LastChangedRevision keyword, 93
Layouts for repository, 119-120

branch organization, 122-124
central planning project, 257
Error Free Software case study, 262-

263
ExCo case study, 267
GladeSoft case study, 265-266
KeyGhost Ltd. case study, 260
managed chaos project, 252
monolithic, 120
multiproject, 121
rapid development project, 254-255
small-team projects, 258-259
tag organization, 124-126

“svnbook” — 2005/4/14 — 14:55 — page 333 — #354i
i

i
i

i
i

i
i

Index 333

Teledata Communications case study,
264

truck organization, 121-122
Wye Corp case study, 268-269
ZedCom case study, 270

LF (line feed) characters, property for,
90-91

[libdefaults] section, 148
Libraries

APR, 26, 201-202
Neon, 27

Licensing, 16
Line-ending characters, property for, 90-

91
Linux installations, 25

compiling, 27-29
downloading source files, 27
prerequisites, 25-27

list command
for directories, 74-75
reference for, 289-290
for tags, 43

list-dblogs command, 311
list-unused-dblogs command, 311
--listen-host option, 35
Listing

directories, 74-75
properties, 88-89
tags, 43

load command
for merging, 127-128
reference for, 311-312

Loading Apache modules, 31-32
LoadModule directive, 31-32
Local access schema, 138
Location directive, 33
<Location> section, 144-146
Locking, 22

vs. merging, 11-12
scripts, 177-178

log command
svn

for merges, 47, 81

reference for, 291-292
for viewing logs, 42-43, 72-74, 193

svnlook
reference for, 318
for viewing logs, 181, 195

log-encoding option, 100
Logs and logging

checking, 42-43, 72-74
encoding setting for, 100
messages in

with committing, 62-63
communication through, 231

policies for, 219
informative logs, 220-221
limiting information in, 222-223
parseable log messages, 221-222

property changes, 188-189
property for, 95-96
script actions, 166
in svntag, 203-204
for version control, 9-10

Lone hackers, 237-238
lstxns command, 312

M status indicator, 67-68
Mac OS X

autoversioning on, 115
installation, 29-30

mailer.py script, 172
Maintaining working copies, 57-61
Man in the middle attacks, 142
Managed chaos project, 251

branches and tags in, 252
properties in, 253
repository layout in, 252
scripts in, 253-254

Material for peer reviews, 242-244
MD5 checksums, 70
Memory pools, 201-202
merge command

for branches, 47, 80-82
reference for, 292-294

Merges and merging
branches, 46-48, 80-82

“svnbook” — 2005/4/14 — 14:55 — page 334 — #355i
i

i
i

i
i

i
i

334 Index

documenting, 217
history, 23, 125-126, 214-215
vs. locking, 11-12
permissions for, 216-217
policies, 216-217
repository, 127-128
reverting with, 81-82
tags for, 125-126, 214-215
tracking, 80-81, 214-215

--message option
in import, 39
for logs, 56, 62

Messages in issue tracking, 246-247
Metadata, 85-86

commands for, 191-197
retrieving, 87-90

Methodical programmers, 235-236
Microsoft Visual SourceSafe

locking in, 11
migrating from, 133-134

Migrating repository, 129-130
from CVS, 130-133
in KeyGhost Ltd. case study, 260-

261
process, 130
without tools, 134-136
from Visual SourceSafe, 133-134

Milestone tags, 215
MIME (Multipurpose Internet Mail Ex-

change) types
in migration from CVS, 132-133
property for, 94

[miscellany] section in config, 100-101
mkdir command, 294-295
mod_auth_pam module, 146-147
mod_authz_svn.somodule, 144
mod_dav_svn.somodule, 144
mod_ssl.somodule, 142
Modifications

policies for, 188
scripts for, 164
working copies, 61-67

<modificationset> element, 226

Modules, loading, 31-32
Monolithic repository layouts, 120
move command

reference for, 295-297
for working copies, 65-66

Moving files in working copies, 65-67
Multiple binary properties, 89
Multiple repositories, paths for, 33
Multiproject layouts, 121
Multipurpose Internet Mail Exchange (MIME)

types
in migration from CVS, 132-133
property for, 94

mv command,seemove command

Name entry, 70-71, 192
Names of properties, 86
Neon library, 27
Network protocols, 20
--no-auth-cache option, 56
--no-default-eol option, 132
--no-ignore option, 69
--no-recursion option, 62
Node Kind entry, 70, 192
--non-recursive option, 56, 60
Notifications, RSS

deleting files in, 178-179
feeds for, 180-184
generating, 172-176, 184
for post-commit script, 184-185
revision ranges in, 178
script locking for, 177-178
variable setup for, 176-177

nsswitch.conf file, 148
Numbers in issue tracking, 247

Open source solutions, 16-17
openssl program, 143-144
OS X

autoversioning on, 115
installation, 29-30

Parent paths for multiple repositories, 33
Parseable log messages, 221-222

“svnbook” — 2005/4/14 — 14:55 — page 335 — #356i
i

i
i

i
i

i
i

Index 335

parseCmdLine function, 199-200, 205
Partial migration, 131
password-db option, 139
Passwords

in access control, 140-141
in Apache configuration, 33
database file for, 139

Path entry, 70-71, 192
Paths

for multiple repositories, 33
in svn commands, 57

Peer reviews, 240
forum, 245-246
group, 244-245
individual, 245
material for, 242-244
performing, 244
status tracking, 240-242

People problem in ExCo case study, 268
Per-directory access control, 144-146
Periods (.) in property names, 86
pget command, 318-319
Planning for repository

growth, 126-127
merging in, 127-128
splitting in, 128-129

migration, 130
plist command, 319
<plugin> element, 226
Plus sign (+) status indicator, 68
Policies

development process.seeDevelop-
ment process policies

enforcement of, 187-188, 232-233
post-commit script

purpose of, 161
RSS notifications for, 184-185

post-revprop-change script, 162
Postprocessor forsvn blame, 243-244
praise command, 276-277
pre-commit script

policies in, 187-188, 233
purpose of, 161

for transactions, 163
Pre-made scripts, 167
pre-revprop-change script, 161-162,

188-189
Prerequisites for Linux installations, 25-

27
PREV alias, 57
Private keys, 143
Productivity, version control for, 5
Project builds, 223

configuring, 223-224
daily, 224-226
integration in, 226-227
tags for, 215

propchange-email.pl script, 171
propdel command, 297-298
propedit command

purpose of, 86-87
reference for, 298-299

Properties, 21, 85
in central planning project, 258
committing, 87
communication through, 231
config for, 101
editing, 86
file, 90-94
issue tracking, 246-248
listing, 88-89
logging changes to, 188-189
in managed chaos project, 253
metadata

retrieving, 87-90
storing, 85-87

multiple binary, 89
in rapid development project, 256
revision, 85, 95-96, 151
scripts for, 161-162
setting automatically, 86-87
in small-team projects, 259
storing, 87

Properties Last Updated entry, 70, 193
propget command
svn

“svnbook” — 2005/4/14 — 14:55 — page 336 — #357i
i

i
i

i
i

i
i

336 Index

for metadata, 87-88, 90
purpose of, 193
reference for, 299-301
for revision properties, 189
svnlook

purpose of, 195
reference for, 318-319

proplist command
svn

for metadata, 86, 88-89
purpose of, 193
reference for, 301-302
svnlook

purpose of, 195
reference for, 319

propset command
for files, 92
for metadata, 85-86
reference for, 302-303

Protocols, 20
Proxies, HTTP, 102

Quality assurance branches, 211-212
Quality assurance team, 229
Question mark (?) status indicator, 68

R status indicator, 68
random data for certificate keys, 143
Ranges, revision, in RSS notifications, 178
Rapid development project, 254

branches and tags in, 255
properties in, 256
repository layout in, 254-255
scripts in, 256

RapidSVN GUI client, 105-107
Really Simple Syndication (RSS).seeRSS

(Really Simple Syndication) no-
tifications

[realms] section, 148
Record keeping, version control for, 6
recover command

reference for, 312
for repository, 154-155

Recovering

deleted files, 61
repository, 153-154
working copies, 66-67

--recursive option, 56
with info, 70
with list, 75
with proplist, 88
with propset, 92
with update, 61

Redundant archival e-mails, automating,
168-169

Regression testing, 228-229
ReleaseLockFile function, 173, 177-

178
Releases, tags for, 124-125, 215
/releases directory in case study, 262
--relocate option, 76
Removing files

in RSS notifications, 178-179
working copies, 64-65

rename command, 295-297
-renumber-revs option, 129
Repetitive tasks.seeAutomation
Replace With menu in Subclipse, 113-

114
Replacing keywords, 92-93
Repository, 22

administering
access control for.seeAccess con-

trol
backing up, 149-153
recovering, 153-154
summary, 156
unwedging, 154-155
upgrading for, 156

with branches and tags, 11, 79
creating, 37-38
current state of, 67-72
examining files in, 74-75
flexibility of, 18
history of, 72-75
modifying

policies for, 188

“svnbook” — 2005/4/14 — 14:55 — page 337 — #358i
i

i
i

i
i

i
i

Index 337

scripts for, 164
organizing

layouts for.seeLayouts for repos-
itory

merging, 127-128
migrating. seeMigrating reposi-

tory
planning for growth, 126-127
splitting, 128-129
summary, 136

paths for, 33
putting files into, 38-39
referencing, 57-58
with revision numbers, 8-9
scripts for, 162
for version control, 7-8

Repository UUID entry, 192
Require entry, 141
Resolution, conflict, 19-20

handling, 48-51
for working copies, 76-78

resolved command
for conflicts, 51, 78
reference for, 303-304

Retrieving metadata, 87-90
Reusing scripts, 166-167
Reversions, 61
revert command

reference for, 304
for reversions, 61

Reverting changes, 81-82
Revision entry, 70, 192
Revision keyword, 93
Revision numbers, 8-9, 132
--revision option, 56

with copy, 67
with diff, 71
with log, 73
with propget, 90
with propset andpropedit, 87
with svnlook, 163
with update, 76

Revision properties.seeProperties

Revisions
issue tracking tied to, 246-248
logs for, 220-221
in RSS notifications, 178
unreviewed, finding, 241-242
in version control, 8-9

--revprop option
with propget, 90
with propset and propedit, 87

rmtxns command, 313
Robbins, Jason, 4
Rookies, 239
RSS (Really Simple Syndication) notifi-

cations
deleting files in, 178-179
feeds for, 180-184
generating, 172-176, 184
for post-commit script, 184-185
revision ranges in, 178
script locking for, 177-178
variable setup for, 176-177

S status indicator, 68
Samba configuration, 147-148
Saved working copies snapshots, 215-216
Schedule entry, 70, 192
Scripts, 21, 160

for access control, 185-187
available, 160-162
in central planning project, 258
for client communication, 164
for dumping repository, 152-153
for e-mail, 167-172
edge cases with, 166
for external programs, 163
in GladeSoft case study, 266
for immutable tags, 189-191
limitations of, 163-164
logging actions of, 166
for logging revision property changes,

188-189
in managed chaos project, 253-254
for policy enforcement, 187-188
pre-made, 167

“svnbook” — 2005/4/14 — 14:55 — page 338 — #359i
i

i
i

i
i

i
i

338 Index

in rapid development project, 256
for repository examinations, 162
reusing, 166-167
for RSS notifications.seeRSS (Re-

ally Simple Syndication) noti-
fications

size of, 165
in small-team projects, 259
in Teledata Communications case study,

265
tips for, 164-167
for transaction examinations, 163
in Wye Corp case study, 270

Secure Socket Layer (SSL) certificates
configuring, 144
creating, 142-144
servers file for, 103-104

Security.seeAccess control
Semi-automatic file merges, 12
sendDumpMessage function, 169
Server groups, setting up, 101-102
servers file, 101

for HTTP proxies, 102
for HTTP settings, 103
for server groups, 101-102
for SSL certificates, 103-104

setlog command, 313
Shipping, 230
--show-updates option, 69
Side effects, logs for, 220
Single files, retrieving from repository,

75
Size of scripts, 165
Sleepycat Software, 26
Sliding tags, 214
Small-team projects, 258-259
smb.conf file, 147-148
Snapshots, working copies, 215-216
Software engineering process support, ver-

sion control for, 5-6
Software engineering tool, Subversion as,

15-16
Software version branches, 210-211

Source files for Linux installations, 27
/spd directory in case study, 262
Special file types, property for, 94
Splitting repository, 128-129
/src directory in case study, 262
SSH
svnserv.conf settings for, 139-140
svnserver support for, 20
for tunnels, 36, 99-100

SSL (Secure Socket Layer) certificates
configuring, 144
creating, 142-144
servers file for, 103-104

ssl-authority-files option, 103
ssl-client-cert-file option, 103
ssl-client-cert-password option, 103
ssl-client-cert-type option, 103
ssl-client-key-file option, 103
ssl-ignore-invalid-date option, 104
ssl-ignore-post-mismatch option, 104
ssl-ignore-unknown-ca option, 104
ssl-trust-default-ca option, 103
start-commit script, 160-161
Status

of peer reviews, 240-242
of repository, 67-72

status command
for committing, 62
for local files, 41
output symbols for, 67-69
for properties, 87
purpose of, 193
reference for, 305-306
for troubleshooting, 83

store-auth-creds option, 98
store-password option, 98
Storing, 20

binary files, 260-261
metadata, 85-87
revision properties, 87

--strict option withpropget, 88
Style rules, policies for, 187
Subclipse IDE, 112-114

“svnbook” — 2005/4/14 — 14:55 — page 339 — #360i
i

i
i

i
i

i
i

Index 339

Subversion directory, 97
Subversion overview

API, 21
atomic commits, 18
basic operation, 17-18
binary files, 19
branches and tags, 18-19
communication about, 232
communication through, 230-232
conflict resolution, 19-20
data transfer, 21
distributed repository, 22
installing.seeInstallation
locking in, 22
merging history, 23
network protocols, 20
open source solutions, 16-17
properties, 21
repository flexibility, 18
scripts in, 21
scripts supplied by, 170-172
as software engineering tool, 15-16
storage, 20
summary, 23-24
symbolic links, 19
upgrading, 156
visualization tools, 22

svn command, 191-193
options for, 55-57
reference for, 273-275, 295-297

svn add command
reference for, 275
for repository files, 63-64

svn:author property, 95
svn blame command

for file history, 74
postprocessor for, 243-244
purpose of, 192
reference for, 276-277

svn cat command
reference for, 277
for retrieving files, 75

svn checkout command

reference for, 278-279
for working copies, 40, 57-58

svn cleanup command
reference for, 279
for working copies, 82-83

svn_client_copy function, 205
svn_client_create_context function,

203
svn_client_ctx_t structure, 202-203
svn_cmdline_init function, 205
svn commit command

for branches, 47
for copied versions, 45
process, 42, 61-63
for properties, 87
reference for, 279-281

svn-config program, 205-206
svn_config-get-config function, 203
svn copy command

for branches, 18, 78-79
reference for, 281-282
for tags, 18, 43, 78-79
for undeleting files, 66-67
for working copies, 58-59, 65-66

svn:date property, 95, 134
svn delete command

reference for, 282-284
for working copies, 64-65

svn diff command
for helper programs, 99
reference for, 284-286
for revision changes, 41, 62, 71-72

$SVN_EDITOR environment variables, 99
<svn> element, 226
svn:eol-style property, 90-91, 132-133
svn:executable property, 91
svn export command, 286-287
svn:externals property, 91-92
svn help command, 287
svn:ignore property, 69, 92
svn import command

for directories, 39
reference for, 287-289

“svnbook” — 2005/4/14 — 14:55 — page 340 — #361i
i

i
i

i
i

i
i

340 Index

svn info command
for current directory, 44
output of, 69-71, 192-193
reference for, 289

SVN_INT_ERRmacro, 205
svn:keywords property, 92-93, 133
svn list command

for directories, 74-75
reference for, 289-290
for tags, 43

svn log command
for merges, 47, 81
reference for, 291-292
for viewing logs, 42-43, 72-74, 193

svn:log property, 95-96
svn merge command

for branches, 47, 80-82
reference for, 292-294

svn:mime-type property, 94
svn mkdir command, 294-295
svn move command

reference for, 295-297
for working copies, 65-66

svn_pool_create function, 205
svn propdel command, 297-298
svn propedit command

purpose of, 86-87
reference for, 298-299

svn propget command
for metadata, 87-88, 90
purpose of, 193
reference for, 299-301
for revision properties, 189

svn proplist command
for metadata, 86, 88-89
purpose of, 193
reference for, 301-302

svn propset command
for files, 92
for metadata, 85-86
reference for, 302-303

svn resolved command
for conflicts, 51, 78

reference for, 303-304
svn revert command

reference for, 304
for reversions, 61

svn:special property, 94
svn status command

for committing, 62
for local files, 41
output symbols for, 67-69
for properties, 87
purpose of, 193
reference for, 305-306
for troubleshooting, 83

svn switch command
for branches and tags, 44, 76, 79-80
reference for, 306-307

svn update command
reference for, 307-308
for repository, 59-61, 76

svnadmin command, 308-309
svnadmin create command

reference for, 309-310
for repository, 38, 154

svnadmin dump command
reference for, 310
for repository, 128-129

svnadmin help command, 310
svnadmin hotcopy command

reference for, 310-311
for repository, 149-150, 154

svnadmin list-dblogs command, 311
svnadmin list-unused-dblogs com-

mand, 311
svnadmin load command

for merging, 127-128
reference for, 311-312

svnadmin lstxns command, 312
svnadmin recover command

reference for, 312
for repository, 154-155

svnadmin rmtxns command, 313
svnadmin setlog command, 313
svnadmin verify command, 313

“svnbook” — 2005/4/14 — 14:55 — page 341 — #362i
i

i
i

i
i

i
i

Index 341

SVNAutoversioning directive, 115
svndumpfilter command, 128-129, 321
svndumpfilter exclude command, 322
svndumpfilter help command, 323
svndumpfilter include command, 322
svnlook command, 162-163, 191, 193-

197, 314
svnlook author command

reference for, 314-315
for revisions and transactions, 195

svnlook cat command
reference for, 315
for retrieving files, 194

svnlook changed command
for modified files, 195-196
reference for, 315-316

svnlook date command
for log messages, 181
reference for, 316
for revisions, 196

svnlook diff command
purpose of, 194
reference for, 316

svnlook dirs-changed command
for changed directories, 196
reference for, 317

svnlook help command, 317
svnlook history command

purpose of, 196-197
reference for, 317-318

svnlook info command
output of, 194-195
reference for, 318

svnlook log command, 195
reference for, 318
for viewing logs, 181, 195

svnlook propget command
purpose of, 195
reference for, 318-319

svnlook proplist command
purpose of, 195
reference for, 319

svnlook tree command

for file hierarchy, 197
reference for, 319-320

svnlook uuid command
reference for, 320
for repository IDs, 197

svnlook youngest command
reference for, 320
for revisions, 197

SVNParentPath directive, 145-146
svnperms.conf file, 190
svnperms.py script, 186-187
svnserve.conf file, 138-140
svnserve server, 20

access control to repository, 138-140
running as daemon, 34-35
running with inetd server, 35-36
tunneling over SSH, 36

svntag program, 198-200
client context in, 202-203
commit log in, 203-204
compiling, 205-206
includes and defines in, 201
main function in, 204-205
memory pools in, 201-202

svnversion command, 320-321
switch command

for branches and tags, 44, 76, 79-80
reference for, 306-307

Switching to branches and tags, 79-80
Symbolic links, 19
system-auth file, 148

-t option withsvnserve, 139
Tags, 18-19

in central planning project, 257-258
communication through, 231-232
copying, 198-206
creating, 43-44, 78-80, 209-210
cvs2svn for, 132
in ExCo case study, 267
immutable, 189-191
logs for, 221
in managed chaos project, 252

“svnbook” — 2005/4/14 — 14:55 — page 342 — #363i
i

i
i

i
i

i
i

342 Index

merge tracking with, 125-126, 214-
215

milestone and release point, 215
organizing, 124-126, 209-210
for project builds, 215
in rapid development project, 255
in repository, 11, 79
sliding, 214
in small-team projects, 259
in Teledata Communications case study,

264-265
in version control, 10-11
in Wye Corp case study, 269

Targets for working copies, 76
Task branches, 212-214
Task integration, 226
Team menu in Subclipse, 113-114
Teledata Communications case study, 263

branches and tags in, 264-265
repository layout in, 264
scripts in, 265

Testing
automated unit and regression, 228-

229
beta, 229-230
individual developer, 228
parts of, 227
quality assurance team for, 229
for repository migration, 130

Text files, 19
Text Last Updated entry, 70, 192
Thawte certificate authority, 142
Tigris community, 16
Tilde (̃) status indicator, 68
Time of commits, 181
Timestamps, 100-101
Top-level tag directories, 124
TortoiseSVN GUI client, 107-108
Trac project management, 248-249
Tracking

changes, 9-10
merges, 80-81, 214-215
peer review status, 240-242

--transaction parameter with svnlook,
163

Transactions
for modifications, 18
scripts for, 163

tree command
for file hierarchy, 197
reference for, 319-320

Troubleshooting working copies, 82-83
Trunks

in monolithic layouts, 120
in multiproject layouts, 121
organizing, 121-122

Tunneling
for Inetd access, 20
setting up, 99-100
over SSH, 36
svnserve, 139-140

[Tunnels] section in config, 99-100

U status indicator, 60
Undeleting files, 66-67
Unreviewed revisions, finding, 241-242
Unwedging repository, 154-155
update command

reference for, 307-308
for repository, 59-61, 76

Upgrading, 156
URL entry, 70, 192
URLs

in issue tracking, 247
for repository, 57-58, 138

use-commit-times option, 101
[users] section insvnserve.conf, 139
UTC (Coordinated Universal Time), 181
uuid command

reference for, 320
for repository IDs, 197

Variable setup for RSS, 176-177
--verbose option

with list, 75
with log, 73
with proplist, 88

“svnbook” — 2005/4/14 — 14:55 — page 343 — #364i
i

i
i

i
i

i
i

Index 343

with status, 69
verify command, 313
VeriSign certificate authority, 142
Version control, 4

for accountability, 5
for branching, 6, 10-11, 210-211
for data integrity, 4-5
for distribution of work, 6-7
locking vs. merging in, 11-12
logs for, 9-10
for productivity, 5
for rapid development, 7
for record keeping, 6
repositories and working directories

for, 7-8
revisions in, 8-9
for software engineering process sup-

port, 5-6
summary, 12-13
tagging in, 10-11

ViewCVS GUI client, 108-110
Viewing logs, 42-43, 72-74, 181, 193,

195
<VirtualHost> directive, 144
$VISUAL environment variables, 99
Visual SourceSafe

locking in, 11
migrating from, 133-134

Visual Studio.Net, 111-112
Visualization tools, 22
vss2svn.pl script, 134-136
--vssexclude option, 133
--vsslogin option, 133
--vssproject option, 133

Warnings in issue tracking, 247
WDCs (Windows Domain Controllers) au-

thentication, 146-148
WebDAV (Web-based Distributing Author-

ing and Versioning) protocol, 20,
114-115

WebSVN GUI client, 110
Windows Domain Controllers (WDCs) au-

thentication, 146-148

Windows installations, 30-31
Work distribution, version control for, 6-

7
Workflow, 235

collaborators, 236-237
gurus, 238-239
hobbyists, 239-240
lone hackers, 237-238
methodical programmers, 235-236
rookies, 239

Working copies, 55
adding files, 63-64
branches and tags for, 78-80
checking out and maintaining, 57-

61
client commands for, 55-57
conflict resolution for, 76-78
creating, 40
merging branches in, 80-82
modifying and committing data in,

61-63
moving files, 65-67
removing files, 64-65
repository for.seeRepository
snapshots, 215-216
targets for, 76
troubleshooting, 82-83
undeleting files, 66-67

Working directories, 7-8
Wrapper scripts, 135
Wye Corp case study, 268

branches and tags in, 269
repository layout in, 268-269
scripts in, 270

X status indicator, 68
xinetd implementation, 35

youngest command
reference for, 320
for revisions, 197

ZedCom case study, 270

