

Patterns of Software

Tales from the Software Community

Richard P. Gabriel

New York Oxford

OXFORD UNIVERSITY PRESS
1996

Oxford University Press

Oxford New York

Athens Auckland Bangkok Bogota

Bombay Buenos Aires Calcutta Cape Town

Dar es Salaam Delhi Florence Hong Kong Istanbul

Karachi Kuala Lumpur Madras Madrid

Melbourne Mexico City Nairobi Paris

Singapore Taipei Tokyo Toronto

and associated companies in

Berlin Ibaden

Copyright

 

1996 by Richard P. Gabriel

Published by Oxford University Press, Inc.,
198 Madison Avenue, New York, New York, 10016-4314

Oxford is a registered trademark of Oxford University Press

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,

electronic, mechanical, photocopying, recording, or otherwise,
without the prior permission of Oxford University Press.

Library of Congress Cataloging-in-Publication Data

Gabriel, Richard P.

Patterns of software: tales from the software community.

p. cm. Includes Bibliographical references

ISBN 0-19-5100269-X

1. Computer software—Development. 2. Object-oriented
programming (Computer science) I. Title.

QA76.76.D47G33 1996

005. 1—dc 2095-41883

1 3 4 5 7 9 8 6 4 2

Printed in the United States of America
on acid-free paper

To Jo Lawless, who led me away from the lion

Midway on our life’s journey, I found myself
In dark woods, the right road lost. To tell
About those woods is hard—so tangled and
rough

And savage that thinking of it now, I feel
the old fear stirring: death is hardly more bitter.

�

Foreword

A year or two ago, I was astonished to get several letters from di

ff

erent people in
the computer science field, telling me that my name was a household word in the
software engineering community: specifically in the field of object-oriented tech-
nology. I had never even heard of object-oriented programming, and I had abso-
lutely no idea that computer scientists knew my work, or found it useful or
interesting; all this was a revelation to me. It was a pleasant revelation, but one
that I did not really grasp at first; nor did I think much about it. I assumed the
people who wrote to me were exaggerating anyway, out of politeness.

Then, one of these people, Marc Sewell from IBM in Atlanta, came to see me
and told me much the same, to my face, in a discussion over co

ff

ee. Naturally, I
assumed he too was exaggerating. When I expressed my surprise and doubts
about the depth of this “alexandrian patterns movement,” he told me that in any
given issue of

The Journal of Object-Oriented Programming

, there was almost cer-
tain to be some mention of my name. To prove it the next day he came with the
current issue of The Journal of Object-Oriented Programming. There was in it,
an article by Richard Gabriel, the essay that appears in this book as the chapter
entitled “The Bead Game, Rugs, and Beauty.”

I sat down to read the article; and for the first time, became truly interested in
this connection. What was fascinating to me, indeed quite astonishing, was that in
his essay I found out that a computer scientist, not known to me, and whom I had
never met, seemed to understand more about what I had done and was trying to
do in my own field than my own colleagues who are architects.

Indeed, a cool factual appraisal or summary of my lifelong struggle with the
problems of what to do in the field of architecture, has rarely been written objec-
tively in the architectural literature. Architects, many of them agonizingly tied to a
field which does not work, are mentally and emotionally tied up in the problems
of the discipline, are often shocked by what I have said (either because it makes

vi

/

 F

OREWORD

them angry or because it makes them ecstatic), and have therefore rarely given
large-scale cool appraisals of what I have written. Principally, I think this is
because what I have to say, once taken seriously, has such enormous basement-
shaking results for architecture that it irrevocably changes the field.

Yet here in Richard Gabriel’s essay, far away from the internecine struggles of
architecture, and without the sense of panic that so often accompanies reviews of
my work in the architectural press, was sober stu

ff

, written by a person who
clearly understood it profoundly, and had taken the trouble to make himself
familiar with a great deal of what I have done and written.

I found that the scientific and artistic problems I have described in my work,
are being assessed, reported, without bias or prejudice, just as a matter of fact,
with failures and successes given equal weight, and with the same feelings that I
myself have about the task in hand, the experiments, the attempts, what works,
what doesn’t work—with discussion of what works and what doesn’t written in
rather plain English. It was tremendously refreshing, and stimulating. I was by
now astonished and delighted.

That was about a year ago. Then, out of the blue, Bill Zobrist, an editor at
Oxford University Press, sent me this book and asked me to read it and comment
on it.

Now, I am on di

ff

erent ground. Suddenly the tables are turned, and I have to
struggle to make out what is actually being

said

 in the field of object technology
and software engineering. Can I understand it? Within my limited understanding,
does it make sense? Is the analogy, metaphor, or extension, from architecture to
programming legitimate? Suddenly, from being reviewed, I became the reviewer.

In architecture, the question, the question I have been asking is very simple:
“Can we do better? Does all this talk help to make better buildings?”

Are the questions being raised by Richard Gabriel equally straightforward? I
think they are not. His questions, though in simple words, are not only about this
kind of programming. He seems, to me, to be trying to jolt the software engineer-
ing community into an entirely new state of awareness, trying to create the possi-
bility of a new field, more elevated, more marvelous, without knowing whether
this is possible, because it has never been done before.

In this sense, as he describes himself, he is a Dr. Johnson, a “critick,” not neces-
sarily a practical man, but a goad, a spiritual leader, a man who sees possibilities
and the glimpse of some distant promised land in software engineering.

But still a fundamental question of practicality must lie at the forefront. Does
all this thought, philosophy, help people to write better programs? For the insti-
gators of this approach to programming too, as in architecture, I suppose a criti-
cal question is simply this: Do the people who write these programs, using
alexandrian patterns, or any other methods,

do they do better work?

Are the pro-
grams better? Do they get better results, more e

ffi

ciently, more speedily, more

F

OREWORD

/

 vii

profoundly? Do people actually feel more alive when using them? Is what is
accomplished by these programs, and by the people who run these programs and
by the people who are a

ff

ected by them, better, more elevated, more insightful,
better by ordinary spiritual standards?

Here I am at a grave disadvantage. I am not a programmer, and I do not know
how to judge programs. But, speaking only about what appears in this book, I
must confess to a slight— reluctant—skepticism. I have not yet seen evidence of
this improvement in an actual program. Of course my ignorance is such that I
would not have good instincts, at first anyway, about a given bit of code, not even
enough to be able to say “This is a beautiful program, this one less so.” I do not
therefore ask these probing questions in a negative or hostile spirit at all. I ask
them, because I hope, and believe it may propel readers of this book, program-
mers themselves, into trying to do better. But I cannot tell, as yet, whether the
probing questions asked in this book, will actually lead to better programs, nor
even what a better program

is

.

In my life as an architect, I find that the single thing which inhibits young pro-
fessionals, new students most severely,

is their acceptance of standards that are too
low

. If I ask a student whether her design is as good as Chartres, she often smiles
tolerantly at me as if to say, “Of course not, that isn’t what I am trying to do. . . . I
could never do that.”

Then, I express my disagreement, and tell her: “That standard

must

 be our
standard. If you are going to be a builder, no other standard is worthwhile. That is
what I expect of myself in my own buildings, and it is what I expect of my stu-
dents.” Gradually, I show the students that they have a

right

 to ask this of them-
selves, and

must

 ask this of themselves. Once that level of standard is in their
minds, they will be able to figure out, for themselves, how to do better, how to
make something that is as profound as that.

Two things emanate from this changed standard. First, the work becomes
more fun. It is deeper, it never gets tiresome or boring, because one can never
really attain this standard. One’s work becomes a lifelong work, and one keeps
trying and trying. So it becomes very fulfilling, to live in the light of a goal like
this.

But secondly, it does change what people are trying to do. It takes away from
them the everyday, lower-level aspiration that is purely technical in nature, (and
which we have come to accept) and replaces it with something deep, which will
make a real di

ff

erence to all of us that inhabit the earth.

I would like, in the spirit of Richard Gabriel’s searching questions, to ask the
same of the software people who read this book. But at once I run into a problem.
For a programmer, what is a comparable goal? What is the Chartres of program-
ming? What task is at a high enough level to inspire people writing programs, to
reach for the stars? Can you write a computer program on the same level as Fer-

viii

/

 F

OREWORD

mat’s last theorem? Can you write a program which has the enabling power of Dr.
Johnson’s dictionary? Can you write a program which has the productive power
of Watt’s steam engine? Can you write a program which overcomes the gulf
between the technical culture of our civilization, and which inserts itself into our
human life as deeply as Eliot’s poems of the wasteland or Virginia Woolf ’s

The
Waves

?

I know Richard Gabriel opens these kinds of doors. I feel, blowing through
these pages, a breeze, an inspiration which could begin to make a programmer
ask herself these kinds of questions, ones that reach for the stars.

But so far, I do not yet see the programs themselves to fulfill this promise. So
far, there is still the danger that all this paraphernalia, all this beautiful work,
thought, and inspiration is only marginal comment on an activity which is still
static, still not actually,

as a program

, really better.

In Richard Gabriel’s next book, I would hope to see examples of programs
which make you gasp because of their beauty. And I would hope for a growing
knowledge, in the field of software engineering, of what this means.

Perhaps too, a knowledge more widespread in our culture, so that people out-
side the field, lay people like me, could also begin to grasp the beauty of pro-
grams, could have some idea of what it might mean . . . and would above all, feel
helped in their lives, on the same level that they are helped by horses, and roses,
and a crackling fire.

That—I think—has not happened yet.

Will this book make it happen? This is the critical issue above all, our ability to
make real improvement in the geometry of buildings, in the geometry of code, in
the quality of buildings, and in the quality of programs.

As I reached the end of

Patterns of Software

, I realized that my story as told by
Richard Gabriel—was incomplete in a number of important ways, which may
have direct bearing on the computer scientists struggling with just these ques-
tions.

Richard Gabriel focuses, very much, on

unsolved

 problems, on the struggle
and the path to almost ineluctable di

ffi

culties in architecture. He does not com-
ment, perhaps enough, on the fact that these problems are solvable in practice, in
fact are

being

 solved right now. The geometry of life, in buildings, which I wrote
about for 25 years, in order to attain it, is finally being attained, just now.

That is of crucial importance, because if the analogy, or parallel, between
architecture and software engineering that he has drawn in this book, has validity,
then the fact that it is solvable, must have a parallel too. If the parallel exists, then
the questions are not only inspiring, but there really are programs, code, etc.,
which have these nearly magical qualities that breath life. And programs and code
with these qualities are attainable,

now

, in our lifetime, as a practical matter in the

F

OREWORD

/

 ix

world of programming. This is a stunning conclusion, one which Richard Gabriel

has not su

ffi

ciently emphasized.

In order to better understand how these problems might be solved in software

engineering, we might look at where Richard Gabriel’s examination of my work

stops short and at the remainder of my work, particularly, the progress my col-

leagues and I have made since 1985. It is in this time period that the goal of our

thirty-year program has been achieved for the first time. We have begun to make

buildings which really do have the quality I sought for all those years. It may seem

immodest, to presuppose such success, but I have been accurate, painfully accu-

rate in my criticism of my own work, for thirty years, so I must also be accurate

about our success. This has come about in large part because, since 1983, our

group has worked as architects and general contractors. Combining these two

aspects of construction in a single o

ffi

ce, we have achieved what was impossible

when one accepts the split between design and construction. But it has come

about, too, because theoretical discoveries, considerably more potent than the

pattern language have supplemented the power of the patterns, and the way they

work, and their e

ff

ectiveness.

In 1992 a pair of articles appeared that show, in short summary form, what can

be achieved by these ideas when you bring together the roles of architect and

builder, within the framework of the ideas of

A Pattern Language

 and

The Timeless

Way of Building

.

*

The articles describe a number of my building projects that have indeed suc-

ceeded; they are both large and small, and include both private and public build-

ings. The first article gives concrete glimpses of material beauty, achieved in our

time. Here the life, dreamed about, experienced in ancient buildings, has been

arrived at by powerful new ways of unfolding space. These methods have their

origin in pattern languages, but rely on new ways of creating order, in space, by

methods that are more similar to biological models, than they are to extant theo-

ries of construction. Above all, they reach the life of buildings, by a continuous

unfolding process in which structure evolves almost continuously, under the cri-

terion of emerging life, and does not stop until life is actually achieved. The trick

is, that this is accomplished with finite means, and without back-tracking. The

second article describes the nature of the social process I believe is needed in the

design-construction business to get these results; it is a kind of Hippocratic oath

for the future. The second shows what kind of social and professional program

may be needed to change things e

ff

ectively in the world. If anything similar is

* Ziva Freiman and Thomas Fisher, “The Real Meaning of Architecture,”

Progressive Archi-
tecture

, July 1991, pp. 100–107, and Christopher Alexander, “Manifesto 1991,”

Progressive
Architecture

, July 1991, pp. 108–112.

x

/

 F

OREWORD

needed for computer programmers, it would be fascinating. Both these articles
may have a bearing on the way software people understand this material.

A full description of all these new developments, together with a radical new
theoretical underpinning, will appear shortly in

The Nature of Order

, the book on
geometry and process which has taken more than 20 years to write, and is just
now being published. The book, being published by Oxford, will appear in three
volumes:

Book 1: The Phenomenon of Life

,

Book 2: The Process of Creating Life

, and

Book 3: The Luminous Ground

. These three books show in copious detail, with
illustrations from many recently-built projects all over the world, how, precisely
how, these profound results can be achieved. What is perhaps surprising, is that in
these books I have shown, too, that a radical new cosmology is needed to achieve
the right results. In architecture, at least, the ideas of

A Pattern Language

 cannot
be applied mechanically. Instead, these ideas—patterns—are hardly more than
glimpses of a much deeper level of structure, and is ultimately within this deeper
level of structure, that the origin of life occurs. The quality without a name, first
mentioned in

The Timeless Way of Building

, finally appears explicitly, at this level
of structure.

With the publication of

The Nature of Order

 and with the mature development
of my work in construction and design, the problems that I began to pose 35 years
ago are finally being solved. There are immense di

ffi

culties, naturally, in imple-
menting this program throughout the field of architecture and building. But the
feasibility of the whole matter, and the extent to which it is well-defined, can, I
think, no longer be in doubt. What is most important is that all this can actually
be

done

. Buildings with these qualities, can be made, in our time, within the con-
text of the modern age, using modern and hypermodern techniques. That is the
prototype fact, which must, perhaps, appeal to those in software engineering,
who hope to arrive at similar results within their field.

I am very sorry that Richard Gabriel and I did not meet, and that this material
was not available to him, because I believe that he wants our quest to have suc-
ceeded, at least succeeded better than it seemed to him it had as of 1985 when we
were just beginning to see the last part of the way. Because I get the impression
that road seems harder to software people than maybe it did to me, that the qual-
ity software engineers might want to strive for is more elusive because the arti-
facts—the programs, the code—are more abstract, more intellectual, more
soulless than the places we live in every day.

Once again, for the readers of

this

 book, the question remains, whether this—
the solution of the architectural problem—like anything else in architecture, has a
true parallel in the field of software engineering.

I do find the vision which Gabriel summons up, the possibility of a world of
computer programs which really do meet the Zen-like conditions that I have
brought to light, quite fascinating in their implications for the world.

F

OREWORD

/

 xi

Although, by now, we all experience computer programs—indirectly at the
very least— and benefit from them, the vision of a technical world out of control,
soulless, in which we are merely digits, still looms large, and for some is getting
larger. It has frightened the core of modern man. Thoughtful people wonder, no
doubt, whether humanity can be regained or maintained.

If the heart of human existence, what matters most deeply to man, woman,
child, really can find its way into computer programming, and into the programs,
and into the meanings of those programs, and into the actual code and substance
of those programs, and into their e

ff

ects—then the future world will be changed
immeasurably.

And if that happens, Richard Gabriel must take enormous credit for his cour-
age in writing such a crazy and inspiring book, based on the work of a visionary
drunk in God, outside his field and outside the field of his readers. I should like to
take my leave of him, and you, and salute my friend, whom I have never met, and
hope that his wish is fulfilled, and that looking back from the year 2100 he may be
known, in some new fashion, as a Dr. Johnson of the twenty-first century.

Berkeley, Calif.

Christopher Alexander

May 1996

�

Preface

The essays in this book started out as a series of columns for the

Journal of Object-
Oriented Programming

. I was trying to model myself somewhat after Samuel
Johnson, and the series was aimed at being the digital age’s equivalent of

The
Rambler

. I’m certain I didn’t succeed in matching Johnson’s wit and style, but I
matched at least two of his characteristics—procrastination and laziness. Johnson
was well known for writing his essays right up to the deadline, often keeping the
publisher’s runner waiting for the manuscript as Johnson completed it. In fact,
you can notice the e

ff

ect in many of his essays: An essay starts to make an argu-
ment in one direction (corresponding to the first sheets Johnson handed the run-
ner) and then the argument shifts radically or even to the opposite pole as
Johnson continued writing and thinking—but revision of the earlier parts was
impossible, as it was being typeset for final copy as Johnson pondered.

For my essays I chose the stance of

critic at large

. In this role I attempted to
examine topics of interest to the object-oriented programming community from
the point of view of someone whose experience has always had a sour compo-
nent—this will be the subject of some of the essays. I had been working in the
object-oriented field for seven years when I started writing them.

Object-oriented programming has a very long history, which the newly initi-
ated sometimes finds surprising. First designed primarily as a means of simula-
tion, later as programming languages for children, object-oriented languages have
become nearly mainstream, largely as a means of achieving reuse and productiv-
ity.

You see, the history of computing is replete with attempts at making pro-
gramming easier and, more important, cheaper. Current software makes
machines of a sort previously unknown and with capabilities unheard of, partly
because there can be built into them some small portion of reason and consid-
eration and intelligent—rather than merely mechanical—reaction. Automo-

xiv

/

 P

REFACE

biles can run for dozens of thousands of miles without tuning because their
internal operation is governed by software—it’s almost more likely that your
car can be fixed by a Ph.D. in computer science than by your grandfather’s auto
mechanic.

When we start cataloging the gains in tools sitting on a computer, the benefits
of software are amazing. But, if the benefits of software are so great, why do we
worry about making it easier—don’t the ends pay for the means? We worry
because making such software is extraordinarily hard and almost no one can do
it—the detail is exhausting, the creativity required is extreme, the hours of failure
upon failure requiring patience and persistence would tax anyone claiming to be
sane. Yet we require that people with such characteristics be found and employed
and employed cheaply.

We’ve tried to make programming easier, with abstraction as a tool, with
higher-level programming languages, faster computers, design methodologies,
with rules of thumb and courses and apprenticeships and mentoring, with auto-
matic programming and artificial intelligence. Compilers, debuggers, editors,
programming environments. With structured programming and architectural
innovations.

With object-oriented programming.

But programming still requires people to work both alone and in teams, and
when people are required to think in order to achieve, inherent limitations rule.
Object-oriented programming—which is merely a set of concepts and program-
ming languages to support those concepts—cannot remove the need to think
hard and to plan things, to be creative and to overcome failures and obstacles, to
find a way to work together when the ego says not to, that the failures are too
many and too pervasive.

Reuse, productivity, reliability—these are values prized by managers and
moneymakers.

Software creators are usually called

engineers

, a connotation that usually brings
to mind a person who applies well-known principles and methods to create varia-
tions on known themes. For example, a bridge builder is an engineer who uses a
long list of known techniques to erect a structure to traverse rivers, chasms, and
rough terrain while supporting a certain load while withstanding natural forces
like wind and earthquakes.

Even though the word engineer comes from the same basic root as ingenuity
does, the feeling one gets when hearing the word is of careful, detailed, nearly
plodding predictability of work. This makes sense to a degree because engineering
disciplines frequently have handbooks from which they work that prescribe a
series of rules and principles and ways of solving problems according to a long
tradition and experience. For instance, bridge builders have centuries of experi-
ence bridge building to draw upon.

P

REFACE

/

 xv

Building software—some call it

software engineering

—is only 30 or 40 years
old, and it shares with other engineering disciplines virtually nothing. Engineer-
ing teams for bridge building are composed of well-known roles whereas in soft-
ware we are still experimenting. While building bridges, known solutions are
adapted to the situation at hand whereas in software we frequently need to invent
new techniques and technology. What’s easy and hard is not known, and there are
very few physical principles to guide and constrain us.

To emphasize this, consider that not only is there a large set of principles for
bridge building but there are hundreds of known examples of bridges and even
we, as laypeople, know of some of the best examples and even one of the worst—
the Tacoma Narrows Bridge, which catastrophically collapsed 50 years ago. But in
software, there isn’t even a literature of programs that programmers know and
can talk about.

The Tacoma Narrows Bridge—let’s think about it for a minute. This was a
bridge built in Washington State across a strait in the 1940s. Because of the gorge
it spanned, it was subject to strong winds. The engineers who built it adapted a
design used on the East Coast that was known to be able to withstand strong
wind. However, the designers added a feature for pedestrians, a low windbreak
about the height of a guardrail that would protect people and cars from the wind.
But as soon as this fence was built, the bridge started oscillating from the wind,
which flowed over it like an airfoil.

After a few months on a day when the wind was particularly strong and at a
particular speed, the airfoil started to oscillate wildly, and the bridge collapsed.
The incident was captured on newsreels. The only casualty was a dog who would
not get out of a car when its master tried to coax him out to safety.

Even though it was a disaster, the methodology was to modify an existing solu-
tion, and when it failed its failure was analyzed. How often does that happen in
software? Almost never, because such failures are simply locked away and forgot-
ten—perhaps the folks who participated learn something, but the project is rarely
viewed by people outside the project, and there is little interest in the failure itself
except perhaps because of its e

ff

ects on the organization that sponsored it.

So yes, we are engineers in the sense of using cleverness and inventiveness to
create an artful engine that is itself clever. But we don’t have—perhaps yet—the
inherent predictability of schedules and results to be engineers in the sense most
people, especially businessfolk, expect.

One of my goals in writing these essays was to bring out the reality of commer-
cial software development and to help people realize that right now software
development—except when a project essentially is creating a near variant of an
existing program—is in a state where the artifact desired is brand new and its
construction is unknown, and therefore the means to approach its construction is
unknown and possibly di

ffi

cult to ascertain; and, furthermore, a group of people

xvi

/

 P

REFACE

is trying to work together—maybe for the first time—to accomplish it. An image
I like to use is that every large software project is similar to the first attempt to
build a flying-buttress construction cathedral. Imagine how many of them col-
lapsed before we figured out how to build them.

Software development is done by people with human concerns; although
someday this component will be a smaller part of the total picture, today it is the
high-order bit. The software community approaches these issues with high hopes
and a pride in the term engineer. I approach it as a critic.

Let me turn to what I hoped to accomplish as a critic at large. I start with a
quote from Samuel Johnson’s

The Idler

:

Criticism is a study by which men grow important and formidable at
a very small expence. The power of invention has been conferred by
nature upon few, and the labour of learning those sciences which may
by mere labour be obtained is too great to be willingly endured; but
every man can exert such judgement as he has upon the works of oth-
ers; and he whom nature has made weak, and idleness keeps igno-
rant, may yet support his vanity by the name of a Critick.

 (Number

60, Saturday, June 9, 1759)

A critic, at his best, aims at raising questions that otherwise might remain hid-
den. The role of a critic is to look at things in new ways, to present a perspective
that others with less time on their hands can use as the basis for real progress, to
ask the question that turns the course of inquiry from a backwater whirlpool
toward rapids of exciting new work.

So don’t look to these essays for answers—I planned not to, and yet dare not,
claim new insight or wisdom: You have to find that for yourself or within yourself.
I claim only to be able to expand the playing field to include new considerations
and maybe new perspectives.

However, be warned: Nothing is o

ff

 limits for me. There are no dead ends I
won’t go down, no agreements I’ll honor about what’s on or o

ff

 limits. Every idea
out there is fair game—yours included.

But don’t worry that your pet idea will be abused or harmed—again Johnson:

This profession has one recommendation peculiar to itself, that it
gives vent to malignity without real mischief. No genius was ever
blasted by the breath of criticks. The poison which, if confined, would
have burst the heart, fumes away in empty hisses, and malice is set at
ease with very little danger to merit. The Critick is the only man
whose triumph is without another’s pain, and whose greatness does
not rise upon another’s ruin.

The bias I started with in these essays was this:

P

REFACE

/

 xvii

The promise of object-oriented programming—and of programming lan-
guages themselves—has yet to be fulfilled. That promise is to make plain to com-
puters and to other programmers the communication of the computational
intentions of a programmer or a team of programmers, throughout the long and
change-plagued life of the program. The failure of programming languages to do
this is the result of a variety of failures of some of us as researchers and the rest of
us as practitioners to take seriously the needs of people in programming rather
than the needs of the computer and the compiler writer. To some degree, this fail-
ure can be attributed to a failure of the design methodologies we have used to
guide our design of languages, and to larger degree it is due to our failure to take
seriously the needs of the programmer and maintainer in caretaking the code for
a large system over its life cycle.

� � �

This book is broken into five parts:

•

Patterns of Software

•

Languages

•

What We Do

•

Life of the Critic

•

Into the Ground

“Patterns of Software” explores the work of the architect Christopher Alex-
ander as it relates to the creation of software. Christopher Alexander has spent the
bulk of his professional life—from around 1960 through the mid-1990s—trying
to find the way that those who build buildings, cities, and towns also create
beauty and what Alexander calls the

quality without a name

.

Over the last decade, the computer software community discovered Alexander
and his concept of

pattern languages

 and has tried to incorporate those ideas into
software design. The essays in this part examine Alexander’s quest for the quality
without a name and for beauty and try to see what connections to software, espe-
cially object-oriented software, are appropriate.

“Languages” looks at programming languages and how software developers
use and react to them. The choice of a programming language seems as sacred
and personal as the choice of religion, and that choice often favors languages
whose performance characteristics match computer architecture capabilities
rather than the capabilities of the people who use programming languages.

“What We Do” sketches the activities we as computer scientists and software
developers do and how folks outside our community view us. Here I talk a little
bit about writing—which is dear to me—and how our assumptions about the

xviii

/

 P

REFACE

obviousness of the importance of what we do might not be and is not shared by
the rest of the world.

“Life of the Critic” is an intellectual autobiography in which I hope to show
how I arrived at my views and why I drifted toward the role of critic. I also hope
to show that you don’t have to start out with a silver spoon in your mouth to be
able to make a contribution to humanity—that even someone with as checkered
and failure-ridden past as I have can contribute. Many times in my life I despaired
when I compared my progress with that of my fellows who never seemed to have
had a slip in their careers, and part of my goal, therefore, is to show that someone
of average intelligence and talents can do well, even in our modern world.

“Into the Ground” is the story of the company I founded—from its birth in
1984 until its death in 1994. The lessons to be learned from this experience center
on the fact that the company carried out its technical agenda perfectly yet it failed
miserably, and accompanied by circumstances almost unprecedented in Silicon
Valley startup history.

My overall bias is that technology, science, engineering, and company organi-
zation are all secondary to the people and human concerns in the endeavor. Com-
panies, ideas, processes, and approaches ultimately fail when humanity is
forgotten, ignored, or placed second. Alexander knew this, but his followers in the
software pattern language community do not. Computer scientists and develop-
ers don’t seem to know it, either.

These essays . . . these essays aim to correct that.

� � �

I would like to thank Christopher Alexander for his deep, prophetic work on
architecture, patterns, and beauty; for writing the Foreword; and for providing
original art. Katalin Bende, in Alexander’s office, was most gracious in providing
assistance with the artwork.

Some essays are reprinted with permission from the Journal of Object-Ori-
ented Programming (copyright © 1991–1993 SIGS Publications, 71 West Twenty-
third Street, Third floor, New York, New York 10010). Quotes from

 Christopher
Alexander: The Search for a New Paradigm in Architecture

by Stephen Grabow
were provided by permission from International Thomson Publishing Services
Ltd.

Bill Zobrist, Krysia Bebick, and Irene Pavitt of Oxford University Press pro-
vided tremendous editorial assistance and support during the preparation of this
book.

Mountain View, Calif.

R.P.G.

�

Contents

I.

Patterns of Software

Reuse Versus Compression 3

Habitability and Piecemeal Growth 9

Abstraction Descant 17

The Quality Without a Name 33

Pattern Languages 45

The Failure of Pattern Languages 57

The Bead Game, Rugs, and Beauty 71

II. Languages

Language Size 99

The End of History and the Last Programming Language 111

Productivity: Is There a Silver Bullet? 123

III. What We Do

What We Do 135

Writing Broadside 139

IV. Life of the Critic

A Personal Narrative: Journey to Stanford 147

A Personal Narrative: Stanford 159

xx

/

C

ONTENTS

V. Into the Ground

Into the Ground: Lisp 175

Into the Ground: C++ 195

Money Through Innovation Reconsidered 215

Epilogue 231

References 233

P

ART

 I

�

P

ATTERNS

OF

 S

OFTWARE

3

�
Reuse Versus Compression

Maybe it’s my failing memory, but I recall that the hook that grabbed the main-
stream world and pulled it toward object-oriented programming was reuse. One
of the larger problems that development managers face is how to get big software
projects done fast. Most people agree that maintenance is a big part of the overall
software problem, but to organizations whose survival depends on getting out
new projects or products, the important issue is getting the new software done.

Within each organization writing a lot of software—and among many organi-
zations writing a lot of software—it seems that a lot of that software should be
reusable. If this were true, then it would be possible to take some of the code that
already exists and put it toward the new project, thereby reducing the time to pro-
duce the desired software, Furthermore, if code is reused, it is more likely to be
well tested and possibly bug free, and even if it isn’t, the maintenance of the vari-
ous programs that use the reused code should be easier.

Reuse is not a new idea. For decades languages have supported the notion of
libraries. A library is a set of subroutines, usually in a particular application area.
Old examples are the scientific subroutine libraries for Fortran. A similar idea is
the Collected Algorithms published by ACM years ago in an ALGOL-like publica-
tion language. I remember when I was a kid in 1968 looking up algorithms for
sorting and searching in my first programming job.

However, what every manager learns is that reuse under these circumstances
requires a process of reuse or at least a policy. First, you need to have a central
repository of code. It doesn’t help if developers have to go around to other devel-
opers to locate code you might be able to use. Some organizations are small
enough that the developers can have group meetings to discuss needs and sup-
plies of code.

Second, there has to be a means of locating the right piece of code, which usu-
ally requires a good classification scheme. It does no good to have the right piece

4 / PATTERNS OF SOFTWARE

of code if no one can find it. Classification in the world of books, reports, maga-
zines, and the like is a profession, called cataloging. Librarians help people find
the book . But few software organizations can afford a software cataloger, let alone
a librarian to help find the software for its developers. This is because when a
development manager has the choice of hiring another developer or a software
librarian, the manager will always hire the developer. It’s worth looking at why
this is, and I’ll return to it later.

Third, there must be good documentation of what each piece of code in the
repository does. This includes not only the interface and its purpose but also
enough about the innards of the code—its performance and resource use—to
enable a developer to use it wisely. A developer must know these other things, for
example, in order to meet performance goals. In many cases such documentation
is just the code itself, but this information could be better provided by ordinary
documentation; but again, a development manager would prefer to hire a devel-
oper rather than a documentation person.

For a lot of pieces of code it is just plain simpler to write it yourself than to go
through the process of finding and understanding reusable code. Therefore, what
development managers have discovered is that the process-oriented world of
reuse has too many barriers for eff ective use.

Looking at the nature of this approach to reuse we can see that it is focused on
reusing code from one project to another rather than within a project; the mecha-
nism for reuse is an organization-wide process.

Enter object-oriented programming. The primary point of object-oriented
programming is to move the focus of program design from algorithms to data
structures. In particular, a data structure is elevated to the point that it can con-
tain its own operations.

But such data structures—called objects—often are related to one another in a
particular way: One is just like another except for some additions or slight modi-
fications. In this situation, there will be too much duplication if such objects are
completely separate, so a means of inheriting code—methods—was developed.

Hence we see the claim of reuse in object-oriented languages: When writing a
single program, a programmer reuses code already developed by inheriting that
code from more general objects or classes. There is a beauty to this sort of reuse: It
requires no particular process because it is part of the nature of the language.

In short, subclassing is the means of reuse.

Despite this simplified view of reuse, the idea that object-oriented languages
have reuse as part of their very essence proved to be a large attraction to the main-
stream community. To be sure, there were other attractions as well; here are some:

• Objects and classes of objects are a natural way for programmers to organize
programs.

REUSE VERSUS COMPRESSION / 5

• Systems written with objects and classes are simpler to extend and customize
than traditionally constructed ones.

� � �

However, the form of reuse in object-oriented languages hardly satisfies the broad
goals of software development. What I want to suggest is a better word than reuse
and maybe a better concept for the reuse-like property of object-oriented lan-
guages.

The word (and concept) is compression. Compression is the characteristic of a
piece of text that the meaning of any part of it is “larger” than that piece has by
itself. This is accomplished by the context being rich and each part of the text
drawing on that context—each word draws part of its meaning from its sur-
roundings. A familiar example outside programming is poetry whose heavily lay-
ered meanings can seem dense because of the multiple images it generates and the
way each new image or phrase draws from several of the others. Poetry uses com-
pressed language.

Here is a simple single-sentence example: My horse was hungry, so I filled a
morat with oats and put it on him to eat.

This sentence is compressed enough that the meaning of the strange word
morat is clear—it’s a feed bag. Pronouns work because of compression.

Compression in object-oriented languages is created when the definition of a
subclass bases a great deal of its meaning on the definitions of its superclasses. If
you make a subclass of a class which adds one instance variable and two methods
for it, the expression of that new class will be simply the new variable, two meth-
ods, and a reference to the existing class. To some, the programmer writing this
subclass is reusing the code in the superclass, but a better way to look at it is that
the programmer is writing a compressed definition, the bulk of whose details are
taken from the context in which the superclass already exists.

To see this, note that the subclass definition is frequently some distance from
the superclass definition, and so the programmer is relying on knowledge of the
superclass to write the shorthand definition.

Compressed code has an interesting property: The more of it you write—the
further down the class hierarchy you go—the more compressed the new code
becomes. This is good in at least one way: Adding new code is very compactly
done. For a development manager this can mean that the new code can be written
more quickly.

Here is where the change of perspective can help us: Compression has clear
disadvantages, and these disadvantages can help explain why object-oriented lan-
guages have not solved the software problem (of course, there are many reasons,
but this is just the first essay, after all).

6 / PATTERNS OF SOFTWARE

Compression is a little dangerous because it requires the programmer to
understand a fair amount about the context from which compressed code will
take its meaning. Not only does this require available source code or excellent
documentation, but the nature of inherited language also forces the programmer
to understand the source or documentation. If a programmer needs a lot of con-
text to understand a program he needs to extend, he may make mistake because
of misunderstandings.

Furthermore, even if the new code—the compressed code—is compact, it will
take at least as much time and effort to write as it would to write the uncom-
pressed code, unless the overall complexity and size of the total code is small or
unless the person writing the code has the existing code firmly in mind.

Maintaining compressed code requires understanding its context, which can
be difficult. The primary feature for easy maintenance is locality: Locality is that
characteristic of source code that enables a programmer to understand that
source by looking at only a small portion of it. Compressed code doesn’t have this
property, unless you are using a very fancy programming environment.

Compression has another obvious problem. If you build derived code that
tightly depends on some base code, then changing the base code can be expensive
and dangerous. If the developer of the base code is not the same person as the
developer of derived code, the derived code can be in jeopardy. This is just the
problem of all by-reference relationships. Compression in poetry is fine because
the ultimate definitions of the words and phrases are outside the poet’s mind. Not
so for compression in programs: The meanings of the words—the classes—are
determined by the programmer. This problem is not unique to class-based com-
pression but applies to any abstraction-based compression.

I don’t want to imply that compression is bad—in fact, it is an important
resource for incremental definition—but abstractional problems like the risk of
changing base code can get in the way.

Compression doesn’t help interproject reuse, because to do so requires export-
ing classes that can be reused. This simply lands us in the classic reuse situation
we had earlier, in which the primary barrier to reuse is one of process rather than
of technology.

� � �

Remember I stated that a development manager will always hire a developer over
someone whose job is to eff ect reuse. Why is this?

Some of the reasons should now be apparent. First, reuse is easiest within a
project instead of between them. A manager’s success depends on performance
on a given project and not on performance over several projects. And preparing
code for reuse requires additional work, not only by the reuse expert but also by
developers. Therefore, preparing for reuse has a cost for any given project.

REUSE VERSUS COMPRESSION / 7

Finally, a project’s success often depends at least partly on the performance of
the code that is developed. The development manager knows that plenty of code
to be developed really is diff erent from existing code if for no other reason than
the new code has to be specialized to the particular situation to be fast enough.
Therefore, in this situation reuse doesn’t help very much.

What we’ve seen is that reuse is properly a process issue, and individual orga-
nizations need to decide whether they believe in its long-term benefits. Object-
oriented languages provide compression, which can substitute for reuse within a
program, but at a cost in maintenance.

Compression is not reuse, and both reuse and compression have their costs
and savings.

9

�
Habitability and Piecemeal Growth

The sun paints the scattered clouds red, paints the hills across the Bay
a deeper red. Moment by moment the sun’s light flares windows in
the hills, moving upward as twilight approaches. The programmer
looks up from his screen to watch. He sees headlights moving one way
and taillights the other along either side of the highway spine. Home-
lights click on, and the Bay is a silhouette. His daughter: Will she be
too petrified to dance? Will she miss the cue? If only he could help her
pass by her fear. Reaching to the right of the mouse, he lifts his Coke
and drains it, saves his buff ers, drifts his eyes to the sensual move-
ment of the highway, pausing his mind as it passes over a detail in the
code he’s just typed. The thought passes before crystallizing, so he puts
the CDs in his blue Kelty pack—and heads for the recital.

Code is written by people. And people have a lot on their minds, they have lives to
lead, and those lives intrude on their thinking. You might pay a developer for a
full eight-hour day, but how much of that day is truly yours? Of course, not all of
us are software development managers, but the concerns of these managers
should rightfully be concerns of ours—concerns of language designers. The
astute software manager knows that just about every programmer except the
pathological workaholic trades his hours of overtime for hours of undertime. The
manager goes all out to ensure that the needs of the developer are met—home
terminals, sunny offices, minimal meetings, meals during the big push, and a
healthy ego boost from time to time.

If the software manager knows that people and their habits are the determin-
ing factor in software development, why don’t language and system designers?
Here is what Stroustrup says about the design of C++:

C++ is a general purpose programming language designed to make
programming more enjoyable for the serious programmer. (Strous-

trup 1987)

10 / PATTERNS OF SOFTWARE

This is an interesting idea—no doubt it would be a surprise to most C++ pro-
grammers. But, Stroustrup goes on a little more honestly to say:

C++ retains C’s ability to deal efficiently with the fundamental
objects of the hardware (bits, bytes, words, addresses, etc.). This
allows the user-defined types to be implemented with a pleasing
degree of efficiency. . . . Features that would incur run-time or mem-
ory overheads even when not used were avoided. . . . C++ types and
data-hiding features rely on compile-time analysis of programs to
prevent accidental corruption of data. . . . They can, however, be used
freely without incurring run-time or space overheads.
(Stroustrup 1987)

I suppose that the enjoyable part of programming that Stroustrup refers to is the
pleasing degree of efficiency that a program acquires when it has no run-time or
space overhead.

Like Stroustrup, R. D. Tennent starts out with an admirable goal for program-
ming languages:

A programming language is a system of notation for describing com-
putations. A useful programming language must therefore be suited
for both describing (i.e., for human writers and readers of programs)
and for computation (i.e., for efficient implementation on comput-
ers). But human beings and computers are so diff erent that it is diffi-

cult to find notational devices that are well suited to the capabilities
of both. Languages that favor humans are termed high-level, and
those oriented to machines low-level. (Tennent 1981)

He goes on to describe machine language as the most “powerful” low-level
language, but he tellingly remarks:

It might be thought that “natural” languages (such as English and
French) would be at the other extreme. But, in most fields of science
and technology, the formalized notations of mathematics and logic
have proved to be indispensable for precise formulation of concepts
and principles and for eff ective reasoning. (Tennent 1981)

Precise formulation and eff ective reasoning—again, not exactly what I had in
mind. Finally, let’s look at Modula-3, a modern, enlightened language:

Modula-3 is a modern, general-purpose programming language. It
provides excellent support for large, reliable, and maintainable appli-
cations. . . . The nature of programming has changed. For many years
we were puzzle-solvers, focused on turning algorithms into sets of
instructions to be followed by a computer. We enjoyed solving these

HABITABILITY AND PIECEMEAL GROWTH / 11

puzzles, and we often viewed both the complexity of the puzzle and
the obscurity of the solution as evidence of our skill. . . . Aware of our
human limitations, we have come to view complexity and obscurity
as faults, not challenges. Now we write programs to be read by people,
not computers. (Harbison 1992)

This is the best start, and its finish is not bad either:

There is a pleasure in creating well-written, understandable pro-
grams. There is a satisfaction in finding a program structure that
tames the complexity of an application. We enjoy seeing our algo-
rithms expressed clearly and persuasively. We also profit from our
clearly written programs, for they are much more likely to be correct
and maintainable than obscure ones. (Harbison 1992)

Although I think the goal of Modula-3 is not ideal, it is better than the precise
formulation goal that Tennent advocates, and it is in a diff erent league from
Stroustrup’s pleasure of efficiency.

There is, I think, a better goal, to which I want to draw your attention. It’s a
characteristic of software that you’ve perhaps not thought of and which perhaps
should have some influence over the design of programming languages and cer-
tainly of software methodology. It is habitability.

Habitability is the characteristic of source code that enables programmers,
coders, bug-fixers, and people coming to the code later in its life to understand its
construction and intentions and to change it comfortably and confidently. Either
there is more to habitability than clarity or the two characteristics are diff erent.
Let me talk a little bit more about habitability before I tackle what the diff erence
may be.

Habitability makes a place livable, like home. And this is what we want in soft-
ware—that developers feel at home, can place their hands on any item without
having to think deeply about where it is. It’s something like clarity, but clarity is
too hard to come by.

Habitability is related to a concept called organic order that Christopher Alex-
ander, the architect, uses in his work:

Organic Order: . . . the kind of order that is achieved when there is a
perfect balance between the needs of the parts and the needs of the
whole. (Alexander 1975)

How are architecture and software related?
I’ve heard Gregor Kiczales—one of the CLOS designers—say that he wishes

that computer science practice could reach the level of engineering excellence that
creates buildings like the Superdome in New Orleans. He points out that the
design of the Superdome puts together pieces made from a variety of materials

12 / PATTERNS OF SOFTWARE

and from a range of engineering and building disciplines. The result is a monu-
ment to that engineering skill. This is a tempting picture, but I think it’s off base.

Buildings like the Superdome lack habitability. In this instance people inhabit
the building, but only for very short periods of time, and for very special occa-
sions—and such buildings are not easily grown or altered. The Superdome is a
static building, and therefore it can stand as a monument, being little else.

A modern skyscraper, to take another example, has a fixed inflexible interior,
which is secondary to the designed beauty of the exterior. Little attention is paid
to the natural light, and often the interiors are constructed as “flexible office
space,” which means cubicles. The flexibility is for management to set up offices
for the company, not for the inhabitants—the employees—to tailor their own
space. When you run out of space in the skyscraper, you build another; you don’t
modify the existing one or add to it.

Contrast this with the New England farmhouse. It starts as a small home with
a barn out back. As the family grows and the needs of the farm grow, a back room
is added to the house, then a canning room, then a room for grandma; stables are
added to the barn, then a wing for milking more cows. Finally the house and barn
are connected because it is too difficult to get from the house to the barn in a bliz-
zard. The result is rambling, but each part is well-suited to its needs, each part fits
well with the others, and the result is beautiful because it is a living structure with
living people inside. The inhabitants are able to modify their environment
because each part is built according to familiar patterns of design, use, and con-
struction and because those patterns contain the seeds for piecemeal growth.

I think this should be the goal for computer science practice. Most program-
ming languages are excellent for building the program that is a monument to
design ingenuity—pleasingly efficient, precise, and clear—but people don’t build
programs like that. Programs live and grow, and their inhabitants—the program-
mers—need to work with that program the way the farmer works with the home-
stead.

This, I think, is the challenge of programming language design in the next gen-
eration: to recognize, finally, what programming really is and to address those
issues, not issues of elegance and monumental programs.

What are some of the things that contribute to uninhabitable programs? Over-
use of abstraction and inappropriate compression come to mind. But that’s a
topic for another day; today is just to explore the concepts of habitability and
piecemeal growth.

In Alexander’s definition of organic order applied to software, the concept of
“needs of the whole” refers to the grand design or architecture of the piece of soft-
ware under development, and “needs of the parts” refers to the inevitable changes
the various parts of the software undergo. It’s difficult to change the grand design
of software: You cannot expect to evolve a window system into a spreadsheet.

HABITABILITY AND PIECEMEAL GROWTH / 13

Although the primary need of the whole is to remain true to its essence, the parts
often must change. For instance, one sort of window system could evolve into
another.

Software needs to be habitable because it always has to change. Software is sub-
ject to unpredictable events: Requirements change because the marketplace
changes, competitors change, parts of the design are shown wrong by experience,
people learn to use the software in ways not anticipated. Notice that frequently
the unpredictable event is about people and society rather than about technical
issues. Such unpredictable events lead to the needs of the parts which must be
comfortably understood so they can be comfortably changed.

Consider bugs. Many a bug is the result of not anticipating a particular event
or use and is not the result of a mistake—bugs are not always errors. Bugs tell us
that we are not capable of producing a master plan. A master plan is a detailed
design, and many projects consider critical their detailed designs. But a master
plan is usually not possible, especially for extensive, long-lived software. Alex-
ander writes:

It is simply not possible to fix today what the environment should be
like [in the future], and then to steer the piecemeal process of devel-
opment toward that fixed, imaginary world. (Alexander 1975)

This simply acknowledges that it is impossible to predict the circumstances of
a long-lived program. But there is a more important point:

Master plans have two additional unhealthy characteristics. To begin
with, the existence of a master plan alienates the users. . . . After all,
the very existence of a master plan means, by definition, that the
members of the community can have little impact on the future shape
of their community, because most of the important decisions have
already been made. In a sense, under a master plan people are living
with a frozen future, able to aff ect only relatively trivial details.
When people lose the sense of responsibility for the environment they
live in, and realize that there are merely cogs in someone else’s
machine, how can they feel any sense of identification with the com-
munity, or any sense of purpose there?

Second, neither the users nor the key decision makers can visualize
the actual implications of the master plan. (Alexander 1975)

It should be clear that, in our context, a “user” is a programmer who is called
upon to maintain or modify software; a user is not (necessarily) the person who
uses the software. In Alexander’s terminology, a user is an inhabitant. A client or
software user certainly does not inhabit the code but instead uses its external

14 / PATTERNS OF SOFTWARE

interface; such a software user would be more like the city sewer, which hooks up
to a building but doesn’t live in it.

Several points come to mind. First, when you design software, let the imple-
menters complete those parts of the design for which they are responsible.

Second, have you ever heard a good manager ask the group he or she manages
“who owns this?” It’s because the manager knows that the excellent employee
needs to feel he or she has some authority over what they are responsible for. Fur-
ther, a well-knit group has this same sense of ownership over what they work on
plus a bond of “elitism” that holds them together and makes each member of the
team feel responsible for the others’ success.

Third, how do you enable a programmer to feel responsible for software devel-
oped earlier? Here is where habitability comes in. Just as with a house, you don’t
have to have built or designed something to feel at home in it. Most people buy
houses that have been built and designed by someone else. These homes are hab-
itable because they are designed for habitation by people, and peoples’ needs are
relatively similar. As I said earlier, a New England farmhouse is habitable, and the
new owner feels just as comfortable changing or adapting that farmhouse as the
first farmer was. But a home designed by Frank Lloyd Wright—though more hab-
itable than most “overdesigned” homes—cannot be altered because all its parts
are too rigidly designed and built. The needs of the whole have overshadowed the
needs of the parts and the needs of the inhabitants.

Finally, if Alexander’s lesson applies to software, it implies that a development
project ought to have less of a plan in place than current thinking allows. This
provides a mechanism for motivation and a sense of responsibility to those devel-
opers who later must work with the code.

Alexander goes on:

The principle of organic order: Planning and construction [imple-
mentation, in our context] will be guided by a process which allows
the whole to emerge gradually from local acts. (Alexander 1975)

This just piecemeal growth. Here is how Alexander puts it:

[E]ach new building is not a “finished” thing. . . . They are never torn
down, never erased; instead they are always embellished, modified,
reduced, enlarged, improved. This attitude to the repair of the envi-
ronment has been commonplace for thousands of years in traditional
cultures. We may summarize the point of view behind this attitude in
one phrase: piecemeal growth. (Alexander 1975)

Piecemeal growth is a reality. What gets in its way and prevents software habit-
ability is overdesign, overabstraction, and the beautiful, taut monument of soft-
ware. Alexander calls this large lump development:

HABITABILITY AND PIECEMEAL GROWTH / 15

Large lump development hinges on a view of the environment which
is static and discontinuous; piecemeal growth hinges on a view of the
environment which is dynamic and continuous. . . . According to the
large lump point of view, each act of design or construction is an iso-
lated event which creates an isolated building—“perfect” at the time
of its construction, and then abandoned by its builders and designers
forever. According to the piecemeal point of view, every environment
is changing and growing all the time, in order to keep its use in bal-
ance; and the quality of the environment is a kind of semi-stable
equilibrium in the flux of time. . . . Large lump development is based
on the idea of replacement. Piecemeal growth is based on the idea of
repair. (Alexander 1975)

Recall that one of the tenets of encapsulation is that the interface be separate

from the implementation because this permits the implementation to be replaced

when needed.

The problem with traditional approaches to abstraction and encapsulation is

that they aim at complete information hiding. This characteristic anticipates

being able to eliminate programming from parts of the software development

process, those parts contained within module boundaries. As we've seen, though,

the need to program is never eliminated because customization, modification,

and maintenance are always required—that is, piecemeal growth.

A better goal is to minimize or reduce the extent of programming, which

implies providing mechanisms that allow small changes to largely already correct

code.

One of the primary reasons that abstraction is overloved is that a completed

program full of the right abstractions is perfectly beautiful. But there are very few

completed programs, because programs are written, maintained, bugs are fixed,

features are added, performance is tuned, and a whole variety of changes are

made both by the original and new programming team members. Thus, the way a

program looks in the end is not important because there is rarely an end, and if

there is one it isn’t planned.

What is important is that it be easy for programmers to come up to speed with

the code, to be able to navigate through it eff ectively, to be able to understand

what changes to make, and to be able to make them safely and correctly. If the

beauty of the code gets in the way, the program is not well written, just as an office

building designed to win design awards is not well designed when the building

later must undergo changes but those changes are too hard to make. A language

(and an accompanying environment) is poorly designed that doesn’t recognize

this fact, and worse-still are those languages that aim for the beauty and elegance

of the (never) finished program.

16 / PATTERNS OF SOFTWARE

Habitability is not clarity, I think. If it were, then Modula-3 would hit the nail
on the head. Clarity is just too rare, and it’s dangerous, too, in a funny way.

Books on writing tell you to be clear and simple, to use plain language. What
can this mean? It is no advice at all because no one would ever try to be muddy
and complex, to use obscure language as part of an honest attempt to be under-
stood. But clarity is a quality that is rarely achieved—rare because it is difficult to
achieve. However, even though only the rare writer or poet throws off an occa-
sional clear sentence or paragraph, many of us are able to be understood with lit-
tle problem, because our writing is habitable—not great, but easy enough to read,
easy enough to change.

The danger of clarity is that it is uncompromised beauty; and it’s real tough to
to improve uncompromised beauty. Many second- and third-rate sculptors can
fix a decent sculpture—I saw a group of them one summer making replacement
gargoyles for Notre Dame Cathedral in Paris—but which of them would dare
repair Michelangelo’s David? Who would add a skyscraper to the background of
Mona Lisa? Who would edit Eliot’s poems? Clarity is dangerous.

If a programming language is optimized for the wrong thing—like pleasing
efficiency, mathematical precision, or clarity—people might not be able to live
with in or in it: It isn’t habitable, piecemeal growth isn’t possible, and the pro-
grammers who must live in the software feel no responsibility or ownership.

17

�
Abstraction Descant

The room fills with cold, conditioned air; outside the heat hazes, fil-
tered through greened glass windows: a new building hardly first-
populated. The speaker is wild-eyed, explaining new ideas like a
Bible thumper. His hair is a flat-top; his mouth frowns in near gri-
mace. He strides to my seat, looks down and says in a Texas drawl,
“and the key is simply this: Abstractions. New and better abstrac-
tions. With them we can solve all our programming problems.”
 (Gabriel and Steele 1990)

This scene, which occurred in the late 1980s, began my off-and-on inquiry into

the good and bad points of abstraction. All through my computer science educa-

tion, abstraction was held up as the bright, shining monument of computer sci-

ence. Yet when discussed in essays on the philosophy of science, abstraction is

routinely questioned. Here is what Paul Feyerabend says about Ernst Mach, scien-

tist and philosopher:

We have seen that abstraction, according to Mach, “plays an impor-
tant role in the discovery of knowledge.” Abstraction seems to be a
negative procedure: real physical properties . . . are omitted. Abstrac-
tion, as interpreted by Mach, is therefore “a bold intellectual move.”
It can misfire, it “is justified by success.” (Feyerabend 1987)

Throughout the book abstraction is discussed in terms of its relation to reality

and to the “interests” of those who develop them. Here is what Bas Van Fraassen

says:

But in certain cases, no abstraction is possible without losing the very
thing we wish to study. . . .Thus [study at a certain level] can only go

18 / PATTERNS OF SOFTWARE

so far—then it must give way to less thorough abstraction (that is, a
less shallow level of analysis). (Van Fraassen 1980)

Both Van Fraassen and Feyerabend seem to subscribe to the notion that abstrac-

tion in the realm of science—I doubt they would include computer science—is

about ignorance. Abstraction ignores or omits certain things and operates at a

shallow level of analysis.

The following is the definition of abstraction in computer science that I’ve

used for years:

Abstraction in programming is the process of identifying common
patterns that have systematic variations; an abstraction represents
the common pattern and provides a means for specifying which vari-
ation to use.

An abstraction facilitates separation of concerns: The implemen-
tor of an abstraction can ignore the exact uses or instances of the
abstraction, and the user of the abstraction can forget the details of
the implementation of the abstraction, so long as the implementation
fulfills its intention or specification. (Balzer et al. 1989)

This definition does not directly mention ignorance or omission, though it

does imply them. The common pattern is omitted—in most types of abstraction

the common pattern is replaced by a name, such as function name, a macro

name, or a class name. The structure and behavior of the common pattern is lost

except that the name of the abstraction denotes it and the definition of the

abstraction (its implementation) contains it. And the foregoing definition does

mention the interests of particular people—abstraction implementers and

abstraction users.

Although I will return to the themes brought out by Feyerabend and Van

Fraassen later, first I will set the scene. In the first two essays in this book I looked

at three new concepts for programming: compression, habitability, and piecemeal

growth, defined as follows:

Compression is the characteristic of a piece of text that the meaning
of any part of it is “larger” than that particular piece has by itself.
This characteristic is created by a rich context, with each part of the
text drawing on that context—each word draws part of its meaning
from its surroundings.

Habitability is the characteristic of source code that enables pro-
grammers, coders, bug-fixers, and people coming to the code later in
its life to understand its construction and intentions, and to change it
comfortably and confidently.

ABSTRACTION DESCANT / 19

Piecemeal growth is the process of design and implementation in
which software is embellished, modified, reduced, enlarged, and
improved through a process of repair rather than of replacement.

Habitability can be limited by various things; abstraction being one of them.
Many of my comments about abstraction also apply to encapsulation, which is a
strong variety of abstraction. But don’t panic: Abstraction and encapsulation are
good things; my point is that they should be used only in moderation.

One bad eff ect of abstraction on programs occurs when it is taken too far. This
results in code that is structured like a big pyramid, in which one level of abstrac-
tions is built tightly on another with minimal interfacial glue. Wait, that’s not
right—abstractionists would have you believe that abstraction guarantees you’ll
build geometrically precise programs, but that’s garbage. Even in single inherit-
ance object systems (in which hierarchies look like pyramids), there are other use
relationships besides inheritance. Let’s try this paragraph again.

One bad eff ect of abstraction on programs occurs when abstraction is taken
too far. This results in code that is structured like a big web, in which groups of
abstractions are tightly interwoven with others by means of interfacial glue.

In such large tangles lies one of the problems. If one abstraction is used in
many places and that abstraction’s interface is wrong, then repairing it forces
repair of all its uses. The more the abstraction is shared, the more repair will be
needed. But such repair is dangerous because it is usually made with less delibera-
tion than the original design and in the context of unexpected requirements. If
the repairs are being made by people other than the original designers and much
later than the design and original implementation, the likelihood of mistake or
ugliness will be increased.

Such webs are examples of compression: The meaning of an expression written
in the context of the web is determined by the contents of the entire web. If you
need to change another part of the web, your compressed expression might
change its meaning, what it does, or even whether it works at all. So when we
build our tight inheritance hierarchy in object-oriented fashion—weblike or pyr-
amid style—we might be falling into this trap.

The reason for this failure is the insistence on using abstractions throughout,
at all levels. If, instead, there were a level at which the code became direct rather
than indirect, this might be less likely to happen. The problem is that people are
taught to value abstraction above all else, and object-oriented languages and their
philosophy of use emphasizes reuse (compression), which is generally good.
However, sometimes the passion for abstraction is so strong that it is used inap-
propriately—it is forced in the same way as it is with larger, more complex, and
typically ad hoc abstractions.

Abstractions must be carefully and expertly designed, especially when reuse or
compression is intended. However, because abstractions are designed in a partic-

20 / PATTERNS OF SOFTWARE

ular context and for a particular purpose, it is hard to design them while antici-
pating all purposes and forgetting all purposes, which is the hallmark of the well-
designed abstractions.

This implies that abstractions are best designed by experts. Worse, average
programmers are not well-equipped to design abstractions that have universal
usage, even though the programming languages used by average programmers
and the programming language texts and courses average programmers read and
attend to learn their trade emphasize the importance of doing exactly that.
Although the designers of the programming language and the authors of texts
and course instructors can probably design abstractions well, the intended audi-
ence of the language—average programmers—cannot and are therefore left out.
That is, languages that encourage abstraction lead to less habitable software,
because its expected inhabitants—average programmers working on code years
after the original designers have disappeared—are not easily able to grasp, mod-
ify, and grow the abstraction-laden code they must work on.

Not everyone is a poet, but most anybody can write usable documentation for
small programs—we don’t expect poets to do this work. Yet we seem to expect
that the equivalent of poets will use high-level programming languages, because
only program-poets are able to use them. In light of this observation, is it any
wonder that abstraction-poor languages like C are by far the most popular and
that abstraction-rich ones like Lisp and Smalltalk are niche languages?

Recall that one of the virtues of abstraction is that “the user of the abstraction
can forget the details of the implementation of the abstraction.” Nonetheless, the
interface of a complex abstraction is likely to expose the implementation because
portions of the abstraction’s interface are likely to be dedicated to accessing par-
ticular behavior. Inexpertly designed and ad hoc abstractions frequently suff er
from this shortcoming. Once the implementation is even partially revealed, it
becomes more difficult to change the abstraction’s implementation without caus-
ing problems. If abstraction were limited to simple cases, especially those with a
fairly universal meaning—like the well-loved and ubiquitous stack, a favorite of
almost every paper on abstract types—this problem would be reduced.

Another problem with complex abstraction arises from the observation that
abstractions are about ignorance. The prime idea of encapsulation is that the
implementation is hidden, thereby preventing assumptions about the implemen-
tation. Some complex abstractions, however, contain information about the
implementation that is legitimately required, such as its performance, the algo-
rithm, coding tricks, and resource usage—keep in mind that almost all interac-
tion issues are about resource conflicts. When the implementation is truly
hidden, its user is forced to use real scientific methods to infer or discover the
needed information. Rather than preventing assumptions, hard encapsulation
tends to guarantee incorrect assumptions.

ABSTRACTION DESCANT / 21

Furthermore, when the implementation is truly hidden and there is a need to
make a change or add behavior, the user is reduced to reinventing; if the imple-
mentation is not only hidden but also protected, the user will need to copy and
maintain a parallel version. This implies that later changes to the code will be less
efficiently made because similar code must be implemented in several places. In
fact, the programmer—especially a programmer new to the project—may be
unable to find all the occurrences of the similar code.

Notice the dilemma: Complex abstractions sometimes reveal implementation,
which limits the opportunity to change their implementations, and they also are
intended to hide implementation, which forces programmers (inhabitants) into
ignorance and its resulting frustration, ineff ectiveness, and feelings of denied
responsibility. Strict abstractionists would argue that it is far better to hide the
implementation, but consider what Christopher Alexander said:

When people lose the sense of responsibility for the environment they
live in, and realize that they are merely cogs in someone else’s
machine, how can they feel any sense of identification with the com-
munity, or any sense of purpose there? (Alexander 1975)

Why put your programmers through this?

Most of these problems can be eliminated or reduced if the user is encouraged
to build small abstractions only. This is easier if the language provides other
mechanisms that help the programmer build the larger structures needed in a
program, structures that would normally be constructed from abstractions.

When we couple this advice with that of building hierarchies slowly, keeping
them shallow as long as possible, we might find that we have paved the way for
habitability, piecemeal growth, and healthy, usable compression. In fact, if we put
in place an explicit process of piecemeal growth, hierarchies will naturally grow
slowly, and they are more likely to be correct, because their use evolves over time.
The resulting compression also is natural, not forced, and it is less likely that the
compression will backfire.

This same advice is more cynically arrived at by Martin D. Carroll and John F.
Isner when discussing the design of the C++ Standard Components developed by
UNIX Systems Laboratories:

[W]e take the minimalist approach to inheritance. We use it only
when it makes our components more efficient, or when it solves cer-
tain problems in the type system.

We do not intend for our components to serve as a collection of
base classes that users extend via derivation. It is exceedingly difficult
to make a class extensible in abstracto (it is tenfold harder when one
is trying to provide classes that are as efficient as possible). Contrary
to a common misconception, it is rarely possible for a programmer to

22 / PATTERNS OF SOFTWARE

take an arbitrary class and derive a new, useful, and correct subtype
from it, unless that subtype is of a very specific kind anticipated by
the designer of the base class. Classes can only be made extensible in
certain directions, where each of these directions is consciously
chosen (and programmed in) by the designer of the class. Class
libraries which claim to be “fully extensible” are making an extrava-
gant claim which frequently does not hold up in practice. . . . There is
absolutely no reason to sacrifice efficiency for an elusive kind of
“extensibility.” (Carroll and Isner 1992, emphasis added)

Their argument comes more from efficiency than from the needs of habitabil-
ity and piecemeal growth; in fact, their whole essay is about how to achieve what
they consider the most important characteristic of a library—its efficiency. But
notice that they make a very strong claim that being able to extend a class hierar-
chy is nearly impossible, though they don’t say why precisely. One can try to puz-
zle out the reason; the best I can come up with is that many possible extensions
require access to the internal implementation of a class, and the author of the
class either does not know what parts are needed or wishes to retain the opportu-
nity to change the implementation and therefore hides the implementation. In
C++ there are other reasons, like the need for speed encourages class authors to
make virtual as little as possible.

Regardless of the reasons behind it, if we accept Carroll and Isner’s statement
that unanticipated extension is difficult, their statement supports my claim that
during the growth of an abstraction web, one must frequently go back to existing
abstractions to repair them, such repair being a sort of delayed anticipation of the
extensions.

Because abstracting a common pattern and using the abstraction is a process
of replacing something directly expressed by a shorthand, adding an abstraction
is like adding a new word to a real language: It requires learning a new vocabulary.
Real languages rarely permit us to add new words, and such words are reserved
for concepts, objects, actions, and qualifications that are basic or newly basic. We
don’t invent new words for dogs that can jump through hoops or automobiles
modified to carry 300 gallons of fuel. First, there is no need for these words except
within a small familylike circle, and even there the need soon dissipates when the
name of the dog or a phrase like “Joe’s big fueler” prove worthy and eff ective.

Second, these words would be meaningless outside the small circle that might
need them, and encountering an enclave of odd-language users would negate the
advantages of natural language. Similarly, we want to limit the use of abstraction
to either common items—common to every programmer—or items inextricably
linked to the application domain. Otherwise, unnecessarily abstracted code
would be unintelligible to programmers fresh to a project, and hence it would not
be habitable.

ABSTRACTION DESCANT / 23

Van Fraassen hints at this idea: “But in certain cases, no abstraction is possible
without losing the very thing we wish to study.” He means that the object of inter-
est is captured only by the name of the abstraction rather than by the thing itself.
For example, when we speak of redness and go no deeper, redness disappears and
all we have left is the name red.

Recall that one of the primary reasons that abstraction is overloved is that a
completed program full of the right abstractions is perfectly beautiful—it is “jus-
tified by success” as Mach said. Of course, Christopher Alexander would probably
not think such a program was beautiful—assuming he would even know how to
read a program. Note what he said about completed, planned urban develop-
ment:

[P]lanned development is also generally not coherent . . . not in a
deep-felt sense. It is supposed to be. But if we ask ourselves whether
the final product of current urban design projects actually is coherent
in the real, deep sense that we know from traditional towns, then we
must say no. The order is superficial, skin deep, only in the plan or in
some contrived orderliness of the arrangements. There is no deep
inner coherence, which can be felt in every doorway, every step, and
every street.

And . . . this modern planned development which we think of as
normal, certainly has NO power to evoke deep feeling. It can, at best,
ask for some kind of admiration for “design.” But of deep feeling there
is no word, not a tremor, not a possibility. (Alexander 1987)

Alexander’s area of study—architecture and urban development—has the
advantage of having had a long history and, hence, examples of the sort of habit-
able, deeply felt homes and towns and cities with which he can contrast the prod-
ucts of the modern design approach. In software there are no large examples that
I can point to with which we are all familiar. And so we can ask whether Alex-
ander’s words—which sound so nice when apply them to the field of software—
pertain in any real sense to computer science. But that is a question for another
essay.

Remember, piecemeal growth is the norm, and programs grow, change, and
are repaired. Therefore, the perfectly beautiful program is possible only for very
small programs, like the ones in books on programming or in programming
courses.

Now let’s return to my definition of abstraction. One thing that strikes me
about this definition, now that I have used it for years and years, is the degree to
which the fact is ignored or forgotten that there are two conditions for abstrac-
tion. There is not only a common pattern but also systematic variations. Sub–
routines and functions are perfect examples: The common pattern is the code

24 / PATTERNS OF SOFTWARE

that ends up in the subroutine, and the systematic variations are the arguments
that are passed—the mechanism for specifying the variation is the parameter.

What about common patterns without systematic variations? I will turn to this
topic in the second part of this essay.

To some extent, object-oriented programming is about piecemeal growth. But
in some languages, it is achieved by catching the excess-abstraction disease. This
essay is not intended to convince you that abstraction is bad (or that I’m nuts),
but to show that maybe some of the other concerns of software development—
creating habitable software that can be eff ectively maintained, recognizing that
the reality of software development is piecemeal growth and to plan accordingly,
and to understand that the power of object-oriented programming is compres-
sion, which carries a terrific requirement for careful use of inheritance—relate to
how we use abstraction and how much we use it.

� � �

In order for the building to be alive, its construction details must be
unique and fitted to their individual circumstances as carefully as the
larger parts. . . . The details of a building cannot be made alive when
they are made from modular parts. (Alexander 1979)

Let’s look again at the definition of abstraction I’ve been using:

Abstraction in programming is the process of identifying common
patterns that have systematic variations; an abstraction represents
the common pattern and provides a means for specifying which vari-
ation to use.

An abstraction facilitates separation of concerns: The implemen-
tor of an abstraction can ignore the exact uses or instances of the
abstraction, and the user of the abstraction can forget the details of
the implementation of the abstraction, so long as the implementation
fulfills its intention or specification. (Balzer et al. 1989)

Unfortunately, such patterns are usually turned into abstractions, with the
unsystematic variations being lumped in with the systematic ones, the result
being an ad hoc interface. Using such ad hoc abstractions, client code—code
using an abstraction—can end up being composed of glue code surrounding
“invocations” of the ad hoc abstractions. The glue code, however, may only to
contort the natural structure of the client code. Notice how this eff ect compounds
another problem with abstractions: If an abstraction is composed of what
amounts to a conglomeration of somewhat related operations, programmers are
more likely to want to modify or add to the abstraction—it’s ugly enough to
begin with, so what’s the harm?

ABSTRACTION DESCANT / 25

Examples of this sort of abuse of abstraction abound in Common Lisp—

though I like the language and don’t intend to criticize it. A typical example is

mismatch, which searches two sequences (a sequence is a Common Lisp data

type) for the first index where the two sequences diff er according to a test predi-

cate. Common Lisp supports keyword arguments, which provide a means to sup-

ply a variable number of optional arguments by naming them. This mechanism

helps clarify the meaning of (the possibly many) arguments to a complex func-

tion.The function mismatch takes a variety of optional arguments that specify the

direction to search, a function to test whether two items are the same, and

whether the predicate should be negated (even though there are mechanisms to

negate predicates in the language and the negated predicate can be easily passed

to mismatch). Clearly, Common Lisp, though a well-designed language, contains

a number of common patterns without systematic variations.

Christopher Alexander’s comment on modular parts, which began this essay,

bears on this point. Contrast it with what Greg Nelson said about Modula-3:

The better we understand our programs, the bigger the building
blocks we use to structure them. After the instruction came the state-
ment, after the statement came the procedure, after the procedure
came the interface. The next step seems to be the abstract type.
(Nelson 1991)

What Alexander seems to be saying is that if we try to use modular parts (solid

building blocks not easily molded to the current circumstances), then the overall

structure of the thing built with them may become overly constrained by their

shape. In programming, if a set of large abstractions does nearly the right thing, it

is tempting to use them and to bend the structure of the surrounding program to

fit them. This can lead to uninhabitable programs.

Worse: You can fight this temptation and choose not to use them. This choice

also can lead to uninhabitable programs because you will be using parts similar

but subtly diff erent from possibly familiar ones. The only way to avoid this is to

use small blocks rather than large ones, or to use blocks well-designed and tested

by experts.

Large abstractions are large common patterns, and what is missing in pro-

gramming languages is a treatment of common patterns. Such a treatment would

need to support separating their use from their definition. Now, what would such

a separation mean in ordinary abstractions? The key benefit is that there would be

just one place the programmer has to look in order to repair or study it. There is

no reason a language or—far better—a programming environment couldn’t show

the underlying common parts of a pattern. Later I’ll cite an example of what this

could be like.

26 / PATTERNS OF SOFTWARE

What is an example of such a pattern? The idea of accumulating a result is one:

(let ((result ...)

 ...)

 ...

 (<loop> ... (setq result ...) ...)

 ...result...)

This isn’t such an interesting example because the pattern is so familiar, but it
is easy to see it as a pattern people learn and which cannot be easily captured by a
traditional abstraction. There isn’t too much one can do to systematically modify
this pattern—it has so few common parts and so many potential variations—but
there is a lot that programmers gain from knowing this pattern and later coming
upon a piece of code that contained it: It would help them know why the obscure-
looking variable is popping up from place to place; it would help them see in their
mind’s eye the whole pattern with the intervening portions elided.

One way to lay a foundation of common patterns is the same way we do with
natural language: Teach people the most common patterns. We never think to
teach people how to create words—poets do this frequently, and sometimes
ordinary people become word-inventors—yet we teach budding programmers
to create their own vocabulary but we don’t provide a catalog of common pat-
terns of usage.

I think this means that we need to spend more time teaching programming,
and the increased time should be devoted to teaching patterns and reading “great”
programs. How much time do we spend reading in our ordinary education? And
from our reading we gain a foundation for writing. In turn, this foundation is
sometimes expanded by careful instruction and tutoring in writing. Certainly
many people who write for a living go through this process. But in programming
we just learn the language and solve a bunch of short puzzles. Sort of like writing
50 limericks and then off to write books.

Let’s look at a simple example of how abstractions and patterns interact. Con-
sider the following code fragment:

(let ((result (mapcar f list))) ...)

This takes a function f, applies it to each element of the list list, and binds the
list of the results of those applications to the variable result. Now, an ordinary
programmer knows that mapcar traverses the list, so there should be some tricky
way to make the mapcar do double duty, computing the length of the list as well.
But try as you might, you won’t find an easy way to modify f so that the length
can be transparently obtained and abstraction boundaries heartily enforced—
remember I said an easy way.

ABSTRACTION DESCANT / 27

There will always be some object somewhere that is accumulating the length;
we can bury the side-eff ecting code in a modified f, but there still is the access of
that accumulator, whether it be a variable or some object. If you really wanted to
have abstraction reign, you’d try to write something like this:

Here the shaded area indicates a place where a “sufficiently smart” compiler
could try to fold the two computations into one. Actually, there are lots of ways to
imagine an environment helping promote such transparent patterns. One is that
this could be the environment’s surface manifestation of an optimized section of
code. In this case, the programmer might have made the optimization by hand,
and the environment would be simply showing the unoptimized code; this envi-
ronmental feature might also aid with piecemeal growth by maintaining a history
of the software evolution.

This formulation also correctly respects the abstraction of both operations—
the mapcar and the length computation—but it incorrectly overemphasizes
abstraction because the unabstracted but common-pattern code is just fine:

(let ((length 0))
 (let ((result
 (mapcar
 #’(lambda (x)
 (incf length)
 (f x))
 list)))
 ...))

This code is obvious to even a novice (modern) Lisp programmer, and it requires
a lot less mechanics than does the environmental approach just before it. Further,
note that the length computation winds like a vine from the outside of the map-
car abstraction to its inside.

Let’s look at another problem with abstractions: Data and control abstractions
are generally best when they are codesigned and this is rarely done anymore.
Consider, for example, the Fortran abstractions of arrays and iteration. Arrays
are abstractions designed to represent vectors and matrices. Iteration is a control
abstraction useful for traversing vectors and arrays. Think, for example, of how
easy it is to implement summation over the elements of a vector. This is because
arrays and DO loops were codesigned.

The codesign of mathematical data and control abstractions is not an accident.
One could hardly ignore the need to refer to individual elements in a matrix or a
sequence while performing nested sums and products in a numeric computation.

(let ((result
 (length list)

(mapcar f list))
)) ...)(len

28 / PATTERNS OF SOFTWARE

Partly the codesign was made by mathematicians before Fortran was created,
and partly because when Fortran was developed there were no alternatives other
than conditional and GO statements. The success of Fortran is due at least some-
what to the close match between the data abstractions (scalars, vectors, and
arrays) and control abstractions that manipulate them (DO loops).

Even though there was a recognized need to be able to define data abstractions
after Fortran was developed, there was never a recognized need to be able to
define control abstractions. Some languages, like Lisp, adopted a powerful macro
facility which enables programmers to define their own control abstractions. Of
course, macros also enable programmers to define their own data structures by
providing a means to define a protocol that is syntactically the same as ordinary
function invocation.

But an interesting thing happened to Lisp in the early 1980s: the use of macros
to define control structures became forbidden style. Not only did some organiza-
tions outlaw such use of macros, but the cognoscenti began sneering at program-
mers who used them that way. Procedural abstractions are acceptable, but not
control abstractions. The only acceptable control abstractions in Lisp today are
function invocation, do loops, while loops, go statements (sort of), non-local
exits, and a few mapping operations (such as mapcar in Lisp).

The mismatch example shows how one sort of abstraction (a function) can be
used to implement control abstractions. Some of the arguments specify the func-
tion’s control behavior (which direction to search, how to extract the data of
interest, how to test whether the item was found, and whether to negate the value
of that test function). The common pattern—generalized search, generalized
extraction, generalized test, and gratuitous negation—has been completely elimi-
nated, and all hope of understanding a code fragment invoking this abstraction
rests with being able to understand the name of the function and the meanings of
its arguments. Common Lisp, at least, provides keyword arguments to name the
role of the arguments. Does the following code fragment:

seem easier to understand than this pattern of use:

(mismatch sequence list :from-end t
:start1 20 :start2 40
:end1 120 :end2 140 :test #’baz)

(let ((subseq1 (reverse (subseq sequence 20 120)))
(subseq2 (reverse (subseq list 40 140))))

(flet ((the-same (x y) (baz x y)))
(loop for index upfrom 0

as item1 in subseq1
as item2 in subseq2
finally (return t) do

(unless (the-same item1 item2)
(return index)))))

ABSTRACTION DESCANT / 29

This latter code fragment is an example of a common pattern. If you have been

taught to see such patterns, they are as easily understood as the shorthand mis-

match call. Furthermore, if you have not been trained to understand either the

mismatch or the common pattern, you can still understand the common pattern

just by reading it. The mismatch expression has two advantages over the common

pattern one:

• System implementers can more easily guarantee that the implementation of

mismatch is maximally efficient, coding it in assembler if need be (I’m sure

you’ll rest better tonight knowing that).

• It is harder to type the longhand common pattern than the mismatch expres-

sion, and it is just plain longer.

The first problem goes away when computers are fast enough (more on this

later). The second goes away with a well-designed programming environment or

doesn’t matter at all when you consider the habitability gains from using an easily

understood program. In fact, there is no reason that the shorthand mismatch

expression could not be simply an abbreviation for the longhand common pat-

tern. The programmer could decide which to see and could change either one.

Then if the common pattern version strays too far, it will no longer be abbreviated

(because it can’t be).

Let’s consider the scenario in which the interface to a data abstraction is being

extended—we’ve added to the interface and we need to modify our program to

invoke the new parts. For example, additional state must be initialized and main-

tained. The problem of adding invocations of the new part of the protocol is exac-

erbated by the fact that only mathematical, Fortran-like control structures are

available. Over the years programmers have gotten into the habit of optimizing

the use of these control structures for either efficiency or style. Typically the most

compact control structure for the specific job at hand is often preferred to a more

general formulation. Modifying such optimized control structures sometimes

requires large a structural modification of a program when only small modifica-

tions seem necessary. For instance, the initialization information might not be

available at the point we need it and must be reconstructed or saved somewhere,

or only part of the initialization information might have been computed because,

earlier, not all of it was needed.

This problem with abstractions stems from mixing a fixed set of (inappro-

priate) control abstractions with custom-designed data abstractions. If natural

control abstractions were matched, they must be implemented nonabstractly

using existing low-level primitives—that is, through other control structures.

Even though there is a pattern of control, there is no way to abbreviate it except

through procedural or functional abstractions.

30 / PATTERNS OF SOFTWARE

Such lopsided use of data abstraction forces programs to be written at varying
levels of abstraction. The result is that the programmer is reduced to switching
mentally between these levels. Right next to a protocol invocation that represents
the opening of a floodgate will be the assignment of 1 to a flag that tells a later
part of the program that a certain initialization already took place. Furthermore
and worse, the flag might be part of an otherwise completely application domain-
level data abstraction.

The use of procedural or functional abstractions (combined with the fact that
argument evaluation rules might thwart a need to pass expressions and not val-
ues) only pushes the problem down one level: Within the procedure or function
the implementation of the control abstraction is fully exposed, even though
objects being manipulated are high-level data abstractions.

Regardless of what you make of this view of data versus control abstraction, it
is certainly true that because almost every programming language does not allow
any sort of meaningful user-defined control abstractions, there is always a mis-
match in abstraction levels between control and data. If there is a good reason for
allowing data abstractions, why isn’t that a good reason for allowing control
abstractions; and if there is a good reason to disallow control abstractions, why
isn’t that a good reason to disallow data abstractions? Nevertheless, it is accepted
practice to use existing control abstractions to implement others using common
patterns. My argument is that perhaps we should be more willing to use common
patterns for other things as well.

The real reason that common patterns are not used rather than tight abstrac-
tions is efficiency. It is more efficient to write abstracted, compressed code than
uncompressed common patterns, and it is more efficient to execute abstracted
code in some cases. For example, if we were to write the two lines that do mapcar
and length, they would run about twice as slow as some complex compressed
version. This wouldn’t matter if computers were big enough and fast enough for
the programs we need, but right now they aren’t. So we continue to pay with the
sweat of people so that computers can take it easy and users don’t have to be
inconvenienced. Perhaps someday the economics of this situation will change.
Maybe not.

Common patterns are similar in nature though not detail to the patterns that
Christopher Alexander uses in his so-called pattern languages. A pattern language
is a language for generating buildings and towns with organic order. Patterns gen-
erally specify the components of a portion of a building or a place and how those
components are related to other patterns. Here is an example of a pattern that
every planner of developers’ offices should know:

Locate each room so that it has outdoor space on at least two sides,
and then place windows in these outdoor walls so that natural light
falls into every room from more than one direction. (Alexander 1977a)

ABSTRACTION DESCANT / 31

The bulk of Alexander’s written work over the last 15 years—and from which I
have been freely quoting—describes the theory behind pattern languages and the
patterns for building and urban development that he and his students and col-
leagues have devised. These patterns and the social process for applying them are
designed to produce organic order through piecemeal growth. Clearly there is a
connection between patterns as Alexander defines them and the common pat-
terns that form half the definition of abstraction. But there is no room in this
essay to explore it; perhaps in another.

Here are the lessons that I think the last two essays plus this one teach:

• Object-oriented languages gain their power from compression, which can
lead to compact, efficiently expressed programs. Compression, though, can
present problems if it is prematurely used.

• Software development is always through piecemeal growth and rarely through
thorough design. Such planned development can lead both to technical prob-
lems because the future of a piece of software cannot be known and also to
social problems because completely planned development alienates those
developers who are not also the planners.

• Habitability is one of the most important characteristics of software. It enables
developers to live comfortably in and repair or modify code and design.

• When taken to extremes, abstraction can diminish habitability and can result
in premature compression. Beware of overabstracting or of abstracting when a
common pattern will do.

• There is much to learn about software development, and we are just starting
to do that.

33

�
The Quality Without a Name

In 1992 I started reading the more recent work of Christopher Alexander, the Ber-
keley architect who studies design. The work I’m referring to is captured in the
books, The Timeless Way of Building (1979), A Pattern Language (1977b), The Ore-
gon Experiment (1975), and A New Theory of Urban Design (1987). Computer sci-
entists over the years have picked up on his writing, and now a small group of
them are into “writing patterns.” Patterns certainly have an appeal to people who
wish to design and construct systems because they are a means to capture com-
mon sense and are a way to capture abstractions that are not easily captured oth-
erwise.

My own trek into the space of Alexander’s thought began slowly—I read the
work, but I tried not to jump to conclusions about its relation to software design.
I wanted to figure out what the corresponding points were between architecture
and software. The first place where I think I diff ered with others’ interpretation of
Alexander’s work was in defining the users or inhabitants of a piece of software as
its coders and maintainers. At least one computer scientist identified the “user” of
a piece of software as the end user. This appears to make sense at first, but when
you read Alexander, it is clear that a “user” is an inhabitant—someone who lives
in the thing constructed. The thing constructed is under constant repair by its
inhabitants, and end users of software do not constantly repair the software,
though some might want to.

In earlier essays I’ve hinted that my trek might also head in the direction of
patterns, which are not quite abstractions, modules, or classes. Alexander himself
proposes pattern languages as a way to approach design at all levels, from cities
and towns to houses and rooms and even to construction techniques.

Now I am at the point of trying to figure out what corresponds to Alex-
ander’s patterns. To do this, though, requires figuring out as precisely as I can
what the quality without a name is in the realm of software. This quality is at

34 / PATTERNS OF SOFTWARE

the heart of everything Alexander has done since the mid-1960s, and it figures
heavily in his conception of pattern languages. Pattern languages are designed
to generate towns, communities, neighborhoods, buildings, homes, and gar-
dens with this quality. Alexander’s search, culminating in pattern languages,
was to find an objective (rather than a subjective) meaning for beauty, for the
aliveness that certain buildings, places, and human activities have. The objec-
tive meaning is the quality without a name, and I believe we cannot come to
grips with Alexander in the software community unless we come to grips with
this concept.

In an interview with Stephen Grabow, Alexander stated:

I was no longer willing to start looking at any pattern unless it pre-
sented itself to me as having the capacity to connect up with some
part of this quality [the quality without a name]. Unless a particular
pattern actually was capable of generating the kind of life and spirit
that we are now discussing, and that [sic] it had this quality itself, my
tendency was to dismiss it, even though we explored many, many
patterns. (Grabow 1983)

Computer scientists who try to write patterns without understanding this
quality are quite likely not following Alexander’s program, and perhaps they are
not helping themselves and others as much as they believe. Or perhaps they are
doing harm. So what is this quality without a name?

The quality is an objective quality that things like buildings and places can
possess that makes them good places or beautiful places. Buildings and towns
with this quality are habitable and alive. The key point to this—and the point that
really sets Alexander apart from his contemporaries and stirs philosophical
debate—is that the quality is objective. First I’ll try to explain the quality, then I’ll
explain what is so radical about the concept of such a quality. Here is what Alex-
ander says:

The first place I think of when I try to tell someone about this quality
is a corner of an English country garden where a peach tree grows
against a wall.

The wall runs east to west; the peach tree grows flat against the
southern side. The sun shines on the tree and, as it warms the bricks
behind the tree, the warm bricks themselves warm the peaches on the
tree. It has a slightly dozy quality. The tree, carefully tied to grow flat
against the wall; warming the bricks; the peaches growing in the sun;
the wild grass growing around the roots of the tree, in the angle where
the earth and roots and wall all meet.

This quality is the most fundamental quality there is in anything.
(Alexander 1979)

THE QUALITY WITHOUT A NAME / 35

At first the quality sounds like one reserved for art or architecture. But Alex-
ander asserts that the patterns themselves in his pattern languages must have the
quality, and it’s fairly clear from what he says about the quality that almost any-
thing can have it or not.

Let’s try to figure it out. Alexander says:

It is a subtle kind of freedom from inner contradictions.
(Alexander 1979)

This statement reflects the origins of his inquiry into the quality. It started in
1964 when he was doing a study for the Bay Area Rapid Transit (BART) system
based on the work reported in Notes on the Synthesis of Form (Alexander 1964),
which in turn was based on his Ph.D. dissertation. One of the key ideas in this
book was that in a good design there must be an underlying correspondence
between the structure of the problem and the structure of the solution— good
design proceeds by writing down the requirements, analyzing their interactions
on the basis of potential misfits, producing a hierarchical decomposition of the
parts, and piecing together a structure whose

structural hierarchy is the exact counterpart of the functional hierar-
chy established during the analysis of the program. (Alexander 1964)

Alexander was studying the system of forces surrounding a ticket booth, and
he and his group had written down 390 requirements for what ought to be hap-
pening near it. Some of them pertained to such things as being there to get tickets,
being able to get change, being able to move past people waiting in line to get
tickets, and not having to wait too long for tickets. What he noticed, though, was
that certain parts of the system were not subject to these requirements and that
the system itself could become bogged down because these other forces—forces
not subject to control by requirements—acted to come to their own balance
within the system. For example, if one person stopped and another also stopped
to talk with the first, congestion could build up that would defeat the mechanisms
designed to keep traffic flow smooth. Of course there was a requirement that
there not be congestion, but there was nothing the designers could do to prevent
this by means of a designed mechanism.

Alexander said this:

So it became clear that the free functioning of the system did not
purely depend on meeting a set of requirements. It had to do, rather,
with the system coming to terms with itself and being in balance with
the forces that were generated internal to the system, not in accor-
dance with some arbitrary set of requirements we stated. I was very
puzzled by this because the general prevailing idea at the time [in

36 / PATTERNS OF SOFTWARE

1964] was that essentially everything was based on goals. My whole
analysis of requirements was certainly quite congruent with the oper-
ations research point of view that goals had to be stated and so on.
What bothered me was that the correct analysis of the ticket booth
could not be based purely on one’s goals, that there were realities
emerging from the center of the system itself and that whether you
succeeded or not had to do with whether you created a configuration
that was stable with respect to these realities. (Grabow 1983)

A system has this quality when it is at peace with itself, when it has no inter-
nal contradictions, when it is not divided against itself, when it is true to its own
inner forces. And these forces are separate from the requirements of the system
as a whole. In software we hear about gathering requirements, through talking
to users or customers or by examining the problem space. In the world of com-
puter-aided software engineering (CASE) we hear about traceability, which
means that every procedure or object can be traced back to the requirement that
spawned it. But if Alexander is right, then many of the key characteristics of a
system come from internal forces and not external requirements. So to what will
such parts of system trace? Perhaps to the requirement that a system have the
quality without a name.

Alexander proposes some words to describe the quality without a name, but
even though he feels they point the reader in a direction that helps comprehen-
sion, these words ultimately confuse. The words are alive, whole, comfortable,
free, exact, egoless, and eternal. I’ll go through all of them to try to explain the
quality without a name.

The word alive captures some of the meaning when you think about a fire that
is alive. Such a fire is not just a pile of burning logs, but a structure of logs in
which there are sufficient and well-placed air chimneys within that structure.
When someone has built such a fire, you don’t see them push the logs about with
a poker but you do see them lift a particular log and move it an inch or maybe a
half inch, so that the air flows more smoothly or the flame curls around the log in
a specific way to catch a higher-up log. Such a fire burns down to a small quantity
of ash. This fire has the quality without a name.

The problem with the word alive is that it is a metaphor—it is hard to know
whether something literally not alive, like a fire, is, in fact, alive, and when we try
to think of what makes a fire alive, we’re not really sure.

Whole captures part of the meaning, because for Alexander a thing that is
whole is free from internal contradictions or inner forces that can tear it apart.
The analogy he uses is a ring of trees around the edge of a windblown lake: The
trees bend in a strong wind, and the roots of the trees keep the bank from erod-
ing, and the water in the lake helps nourish the trees. Every part of the system is in
harmony with every other part. On the other hand, a steep bank with no trees is

THE QUALITY WITHOUT A NAME / 37

easily eroded—the system is not whole, and the system can destroy itself: the
grasses and trees are destroyed by the erosion, the bank is torn down, and the lake
is filled with mud and disappears. The first system of trees, bank, and lake has the
quality without a name.

The problem with this word is that whole implies, to some, being enclosed or
separate. A lung is whole but it is not whole while still completely contained
within a person—a lung requires air to breathe, which requires plants to absorb
carbon dioxide and to produce oxygen. The system is much larger than the one
that contains the lungs.

The word comfortable involves more that meets the eye. Alexander explains it
this way:

Imagine yourself on a winter afternoon with a pot of tea, a book, a
reading light, and two or three huge pillows to lean back against.
Now, make yourself comfortable. Not in some way you can show to
other people and say how much you like it. I mean so that you really
like it for yourself.

You put the tea where you can reach it; but in a place where you
can’t possibly knock it over. You pull the light down to shine on the
book, but not too brightly, and so that you can’t see the naked bulb.
You put the cushions behind you and place them, carefully, one by
one, just where you want them, to support your back, your neck, your
arm: so that you are supported just comfortably, just as you want to
sip your tea, and read, and dream.

When you take the trouble to do all that, and you do it carefully,
with much attention, then it may begin to have the quality with no
name. (Alexander 1979)

The problem with comfortable is that it has too many other meanings. For
example, a family with too much money and a house that is too warm also is
comfortable.

The word free helps define the quality by implying that things that are not
completely perfect or overplanned or precise can have the quality too. It also frees
us from the confines and limitations of whole and comfortable.

Free, of course, is not correct because it can imply reckless abandon or not hav-
ing roots in its own nature.

The word exact counterbalances comfortable and free, which can give the
impression of fuzziness or overlooseness. The quality is loose and fluid, but it
involves precise, exact forces acting in balance. For example, if you try to build a
small table on which to put birdseed in the winter for blackbirds, you must know
the exact forces that determine the blackbirds’ behavior so that they will be able to
use the table as you planned. The table cannot be too low because blackbirds
don’t like to swoop down near the ground, and it cannot be too high because the

38 / PATTERNS OF SOFTWARE

wind might blow them off course, it cannot be too near to things that could
frighten the birds like clotheslines, and it cannot be too exposed to predators.
Almost every size for the table and every place to put it you can think of won’t
work. When it does work, the birdseed table has the quality with no name.

Exact fails because it means the wrong sort of thing to many people. Alexander
says:

Usually when we say something is exact, we mean that it fits some
abstract image exactly. If I cut a square of cardboard and make it per-
fectly exact, it means that I have made the cardboard perfectly
square: its sides are exactly equal: and its angles are exactly ninety
degrees. I have matched the image perfectly.

The meaning of the work “exact” which I use here is almost the
opposite. A thing which has the quality without a name never fits any
image exactly. What is exact is its adaptation to the forces which are
in it. (Alexander 1979)

Egoless conveys an important and surprising aspect of the quality. I’ll let Alex-
ander say it:

When a place is lifeless or unreal, there is almost always a master-
mind behind it. It is so filled with the will of the maker that there is
no room for its own nature.

Think, by contrast, of the decoration on an old bench—small
hearts carved in it; simple holes cut out while it was being put
together—these can be egoless.

They are not carved according to some plan. They are carefree,
carved into it wherever there seems to be a gap. (Alexander 1979)

The word egoless is wrong because it is possible to build something with the qual-
ity without a name while retaining some of the personality of its builder.

Finally is the word eternal. By this word Alexander means that something with
the quality is so strong, so balanced, so clearly self-maintaining that it reaches
into the realm of eternal truth, even if it lasts for only an instant.

But eternal hints at the mysterious, and there is nothing mysterious about the
quality. Alexander concludes his discussion of this quality with the following:

The quality which has no name includes these simpler sweeter quali-
ties. But it is so ordinary as well that it somehow reminds us of the
passing of our life.

It is a slightly bitter quality. (Alexander 1979)

This slightly bitter quality is at the center of Alexander’s pattern languages. I
believe that if we are to embrace pattern languages, we must also embrace this

THE QUALITY WITHOUT A NAME / 39

quality. But what is this quality in software? Certainly I am bitter when I think
about some software I know of, but this isn’t what Alexander is after. I’ll return to
this after explaining why this quality is regarded as revolutionary.

What is revolutionary about Alexander is that he is resuming the quest for an
understanding of objective quality that science and philosophy abandoned in the
modern era. In the seventeenth and eighteenth centuries, a tension developed in
which mind and matter were separated by science and philosophy. From this
came the separation of fact and value. After the separation, a fact had no value
associated with it, a fact could not be good or bad, it just was. Science, then, tried
to find theories that explained things as they were and no longer sought what was
good or beautiful about things. That is, we no longer sought the objective charac-
teristics of beauty, which is where Alexander started his quest.

Today it is hard for us to understand that fact and value once were tied to-
gether, and it is hard for us as software designers to think of what there could be
about a software system that would exhibit Alexander’s quality without a name.
And, even if we could, it would be difficult to not dismiss it as something only in
the eye of the beholder.

The study of beauty stopped because beauty became a mere contingency—
whether something was beautiful didn’t depend much or at all on the thing, only
on the thing as perceived by an unnecessary observer. A thing was beautiful to
someone: It was not simply beautiful.

Alexander stepped forward and tried to reverse the separation of fact from
value. His program was not only to find patterns that explain the existence of the
quality without a name but also to find patterns that generate objects with that
quality. Furthermore, the patterns themselves must demonstrate the same quality.

Here is how Alexander puts it:

Myself, as some of you know, originally a mathematician, I spent sev-
eral years, in the early sixties, trying to define a view of design, allied
with science, in which values were also let in by the back door. I too
played with operations research, linear programming, all the fasci-
nating toys, which mathematics and science have to off er us, and
tried to see how these things can give us a new view of design, what to
design, and how to design.

Finally, however, I recognized that this view is essentially not pro-
ductive, and that for mathematical and scientific reasons, if you like,
it was essential to find a theory in which value and fact are one, in
which we recognize that here is a central value, approachable through
feeling, and approachable by loss of self, which is deeply connected to
facts, and forms a single indivisible world picture, within which pro-
ductive results can be obtained. (Alexander 1977a, emphasis in origi-

nal)

40 / PATTERNS OF SOFTWARE

For many, Alexander is merely pining for the days when quaint villages and
eccentric buildings were the norm. But face it, the buildings he hates, you hate
too; and buildings he loves, you love. If this is true, then maybe there is an objec-
tive value that we all can recognize.

Alexander is lucky that architecture has a very long history and that the arti-
facts of architecture from a lot of that history are visible today. This means that he
can examine things built before science and philosophy relegated beauty to con-
tingency. We in software are not so lucky—all of our artifacts were conceived and
constructed firmly in the system of fact separated from value. But there are pro-
grams we can look at and about which we say, “no way I’m maintaining that
kluge.” And there are other programs about which we can say, “Wow, who wrote
this!” So the quality without a name for software must exist.

One of the aspects of the quality with no name that Alexander seems clear on
is that buildings with the quality are not made of large modular units. Some of his
examples of buildings or things with the quality are built with bricks and other
such small modular units, but not large ones. If you were thinking that Alexander
is just talking about plain old highly abstract and modular code, perhaps you
should think again. His pattern languages provide a well-thought-out abstract
language for talking about buildings, and he encourages new pattern languages,
but only when they embody the quality with no name—he does not endorse willy
nilly pattern languages. Here is what he says:

Suppose, for example, that an architect makes the statement that
buildings have to be made of modular units. This statement is
already useless to me because I know that quite a few things are not
made of modular units, namely people, trees, and stars, and so there-
fore the statement is completely uninteresting—aside from the tre-
mendous inadequacies revealed by a critical analysis on its own
terms. But even before you get to those inadequacies, my hackles are
already up because this statement cannot possibly apply to everything
there is in the universe and therefore we are in the wrong ball-
game. . . . In other words, I actually do not accept buildings as a spe-
cial class of things unto themselves, although of course I take them
very seriously as a special species of forms. But beyond that is my
desire to see them belong with people, trees, and stars as part of the
universe. (Grabow 1983)

If we look carefully at the buildings, towns, and cities that Alexander admires,
we will see that they are European or perhaps even Third World. This suggests a
couple of lines of inquiry into what the quality might be.

European building has an interesting constraint: There isn’t much space.
People and their buildings need to take up as little space as possible, and build-
ings, town layout, and common areas are cleverly put together to conserve what

THE QUALITY WITHOUT A NAME / 41

is precious. The same is true in many older cultures. Working under space con-
straints has a few interesting eff ects.

One eff ect is that things are on a smaller scale, where perfection is not as easily
achieved and where regularity from irregular small parts is possible. Errors are
seen as errors only in a context in which those errors are relatively large. When
they are small, they form part of the attractiveness of approximate placement.
One way to think about this is that nature has a regularity that is not captured
well by precise prefractal geometry—such geometry is too precise, too exact to
capture nature well. With fractals, though, we can simulate natural surroundings,
and the approximate nature of small irregularities is mimicked by irregular place-
ment and small errors.

Another eff ect is that of the creativity spawned by constraint, which is most
easily explained by analogy to poetry. There are many reasons why poetry uses
forms—specific meter, rhyme, and stanzaic structure. One reason is that such
devices aid memory, and poetry was originally an oral art form. Another impor-
tant reason is that by placing constraints on the form of a written statement, it
becomes less easy to use a phrase or word that easily comes to mind, because it
probably won’t fit. And if it comes to mind easily, it is most likely a hackneyed
phrase or at least one that the poet uses or hears frequently enough that it has lost
its edge. By forcing the poet to write in a form, the easy, automatic phrase is elim-
inated, and the poet is forced to find other ways of saying what is meant. And
when that isn’t possible, the poet must look for other things to say. In both cases,
the constraints force the poet to look for something new to say or new way to say
it. Therefore, form in poetry is a device that helps create a climate or context for
creativity and newness.

The same is true for construction: When there is no room to do the obvious or
when a building must fit in a specific place, the architect must look for new solu-
tions. Because constraint by form limits options, ways must be found to use a sin-
gle space for multiple purposes.

Europe has a long history, and there are two more eff ects of that. One is that
when people are put into a small space, building with flammable materials is dan-
gerous. Therefore one must build with more durable and difficult materials. This
implies that the standard of perfection must drop, and the results are buildings
that look more like nature—more fractal-like.

The last eff ect is that today we see those buildings and towns that have sur-
vived because they are pleasant—there is a natural selection. It would be odd to
see towns and buildings in Europe that are old and just plain ugly; they would not
have survived.

Some of these things might be reasons to question whether the quality without
a name really exists separate from the quality of looking like nature or the quality
of being highly compressed.

42 / PATTERNS OF SOFTWARE

Software has a situation corresponding to compression: bummed code. Bum-
med code is code that must perform a particular task in a highly constrained foot-
print because there just isn’t any space to do the task in a straightforward manner.
This often requires very clever encoding and multiple uses of single resources.
Bummed code possesses a certain aesthetic quality, not unlike the compressed
quality without a name. The indirectness of such code is pleasing to admire,
though not, perhaps, to modify.

� � �

I still can’t tell you what the quality is, but I can tell you some things about soft-
ware that possesses it:

• It was not written to an unrealistic deadline.

• Its modules and abstractions are not too big—if they were too big, their size
and inflexibility would have created forces that would overgovern the overall
structure of the software; every module, function, class, and abstraction is
small and named so that I know what it is without looking at its implementa-
tion.

• Any bad parts were repaired during maintenance or are being repaired now.

• If it is small, it was written by an extraordinary person, someone I would like
as a friend; if it is large, it was not designed by one person, but over time in a
slow, careful, incremental way.

• If I look at any small part of it, I can see what is going on—I don’t need to refer
to other parts to understand what something is doing. This tells me that the
abstractions make sense for themselves—they are whole.

• If I look at any large part in overview, I can see what is going on—I don’t need
to know all the details to get it.

• It is like a fractal, in which every level of detail is as locally coherent and as well
thought out as any other level.

• Every part of the code is transparently clear—there are no sections that are
obscure in order to gain efficiency.

• Everything about it seems familiar.

• I can imagine changing it, adding some functionality.

• I am not afraid of it, I will remember it.

I wish we had a common body of programs with the quality, because then
we could talk about them and understand. As it is, programs are secret and pro-
tected, so we rarely see any but those we write ourselves. Imagine a world in

THE QUALITY WITHOUT A NAME / 43

which houses were hidden from view. How would Alexander have found the
quality with no name?

Think about the quality without a name when you look at your software. Do
you think your software possesses it? What would you do to make your software
have it?

45

�
Pattern Languages

Christopher Alexander’s work is based on the premise that the quality without a
name is an objective characteristic of things and places. As an architect, Alexander
wants to know where this quality comes from and, more important, how to create
it, how to generate it. In the previous essay, “The Quality Without a Name,” we
learned of the divorce centuries ago of beauty from reality. That science could
survive the divorce is understandable because science seeks to describe reality.
Science can live and succeed a long time before it needs to concern itself with
describing what makes something beautiful— when something is contingent, as
beauty seems to be in modern science, there is little need to describe it. Art, on the
other hand, cannot ignore beauty or the quality without a name because artists
create things—paintings, sculptures, buildings—that are beautiful, that have the
quality without a name. There are few fields that blend art and science: Architec-
ture is one, and computer science is another. Architects must design buildings
that can be built and architects have a “theory” about what they do—at least
architects like Alexander do. In computer science we can describe theories of soft-
ware, and we create software.

In a field that combines art and science, its practitioners are often divided into
camps—one that cares about the raw science and traditionally objective charac-
teristics of the field and another that cares about the beauty and elegance of its
creations. In software we care a lot about good code, and we rave about the good
coders that we know. In doing this we fall into a trap that Alexander wants us to
avoid: separating design from construction.

Before we plunge into patterns, I want to set the stage for the accepted view of
how architecture is done, at least in the pre-Alexander world. Architects are hired
to solve the problem of how to construct a building or buildings that meet certain
constraints as specified by the future inhabitants or people in a position to specify
what those inhabitants will need. The architect generally interviews those future

46 / PATTERNS OF SOFTWARE

inhabitants, studies the site, refers to the local building code, observes neighbor-
ing buildings, considers the building materials and construction protocols in the
area, and then is inspired, in the manner of all artists, to create a set of drawings
which a general contractor, in occasional conference with the architect, reduces to
a physical object.

This view of architecture should be familiar to software theorists: It corre-
sponds to the Waterfall Model with a Niagara-sized waterfall. The analyst or
designer studies requirements, construction techniques (choice of language), and
the context (related software) and, in the manner of all artists, creates the design
which he or she happily tosses over a large wall for someone else to implement.

Enlightened folks nowadays tend to view askance this methodology, preferring
one or another variant of the Spiral Model. (To be fair, the original Waterfall
Model contains backward arrows linking later stages to earlier ones in a feedback
type of arrangement, so there actually is not as sharp a contrast between the
Waterfall and other models as some would have us believe.)

In fields separated into theory and practice we frequently find that aesthetics
are fragmented. The theorist is often interested in beauty of a nature akin to
mathematical beauty. In computer science such beauty is exactly mathematical
beauty—Occam’s razor slicing away fat, eliminating ornamentation, the hard
chill beauty of a compact, precisely clever theorem. In architecture the architect
works with drawings and models. The beauty of a drawing is not the beauty of a
building. A beautiful drawing has spare lines, simple geometric shapes. A home or
town is involved, ornamented, shows a care for human interests. Only an inhabit-
ant could know what really counts.

The first of Alexander’s contributions to architecture was to reject the separate
architect and builder model and to posit user-centered design—in which users
(inhabitants) design their own buildings—and the architect-builder who would
blend the activities of design and construction. This was viewed by architects as
high treason enough, let alone the curious quest for an elusive quality that Alex-
ander cannot name.

The mechanism he proposed to accomplish his new model was the pattern
language. A pattern language is a set of patterns used by a process to generate arti-
facts. These artifacts can be considered complexes of patterns. Each pattern is a
kind of rule that states a problem to be solved and a solution to that problem. The
means of designing a building, let’s say, using a pattern language is to determine
the most general problem to be solved and to select patterns that solve that prob-
lem. Each pattern defines subproblems that are similarly solved by other, smaller
patterns. Thus we see that the solution to a large problem is a nested set of
patterns.

Of course, because usually several patterns can solve a given problem, and any
pattern requires a particular context to be eff ective, the process is generally not

PATTERN LANGUAGES / 47

linear but is a sort of constraint-relaxation process. These days we know all about
this sort of process, but back when Alexander came up with pattern languages, it
was relatively new. His initial work was done when Noam Chomsky’s transforma-
tional grammar was first in vogue, and the idea of a human activity—especially a
creative one—being subject to rules and generated by a language was hard to
swallow.

One interesting aspect of this approach is that it isn’t grounded ultimately in
things but stays at the level of patterns throughout. Some patterns talk about par-
ticular construction materials, but rarely is anything like a kitchen or a toilet
mentioned. This is partly to maintain a level of elegance—there are only patterns
and patterns of patterns, not things and patterns mixed—but also because the
patterns talk, in addition, about social and human activities. For example, a stove
is really a relationship between a surface, heating elements, thermostats, and
switches, and a stove is part of a pattern of activity—cooking a meal, perhaps in a
social context. Viewed this way, a stove is also a pattern within a larger pattern
which is the whole kitchen whose other patterns involve refrigerators, preparation
surfaces, cupboards, utensils, dining areas, walls, natural light sources, gardens,
doors, and possibly much, much more. Some of the patterns must be imple-
mented physically near one other, adding a layer of constraints on the solution to
the kitchen design/construction process.

The way Alexander motivates pattern languages is with the example of barns.
A farmer in a particular Swiss valley wishes to build a barn. Each barn has a dou-
ble door to accommodate the haywagon, a place to store hay, a place to house the
cows, and a place to put the cows so they can eat the hay; this last place must be
convenient to the hay storage location so it is easy to feed the cows. There must be
a good way to remove the cow excrement, and the whole building has to be struc-
turally sound enough to withstand harsh winter snow and wind.

If each farmer were to design and build a barn based on these functional
requirements, each barn would be diff erent, probably radically diff erent. Some
would be round, the sizes would vary wildly, some would have double naves, dou-
bly pitched roofs.

But barns in Swiss valleys do not vary wildly, so each farmer must be copying
something. The farmer is not copying a specific other barn, because the barns do
vary somewhat. Each is a little diff erent because of where it is located and each
farmer’s particular needs. Therefore, farmers do not copy particular barns. Alex-
ander says that each farmer is copying a set of patterns which have evolved to
solve the Swiss-valley-barn problem. Barns in any given Swiss valley are similar, as
are all alpine barns. They also are similar to barns in other areas of the world—a
family resemblance among buildings—but they do have diff erences. For example,
California barns are generally larger although they share the same general shape.

Here, again, is my working definition of abstraction:

48 / PATTERNS OF SOFTWARE

Abstraction in programming is the process of identifying common
patterns that have systematic variations; an abstraction represents
the common pattern and provides a means for specifying which vari-
ation to use. (Balzer et al. 1989)

Patterns in Alexander’s sense are a lot like the common patterns but without

the systematic variations. For Alexander, the variations of a pattern depend on the

other patterns it contains and those containing it, thus eliminating the possibility

of systematic variations. Patterns are not well structured enough to have system-

atic variations—their variations are too context dependent.

This is the format of patterns as presented in A Pattern Language (Alexander

1977b):

First, there is a picture, which shows an archetypal example of that
pattern. Second, after the picture, each pattern has an introductory
paragraph, which sets the context for the pattern by explaining how it
helps to complete certain larger patterns. Then there are three dia-
monds to mark the beginning of the problem. After the diamonds
there is a headline, in bold type. This headline gives the essence of the
problem in one or two sentences. After the headline comes the body of
the problem. This is the longest section. It describes the empirical
background of the pattern, the evidence for its validity, the range of
diff erent ways the pattern can be manifested in a building, and so on.
Then, again in bold type, like the headline, is the solution—the heart
of the pattern—which describes the field of physical and social rela-
tionships which are required to solve the stated problem, in the stated
context. This solution is always stated in the form of an instruction—
so that you know exactly what you need to do, to build the pattern.
Then, after the solution, there is a diagram, which shows the solution
in the form of a diagram, with labels to indicate its main compo-
nents.

After the diagram, another three diamonds, to show that the main
body of the pattern is finished. And finally, after the diamonds there is
a paragraph which ties the pattern to all those smaller patterns in the
language, which are needed to complete the pattern, to embellish it,
to fill it out.

There are two essential purposes behind this format. First, to
present each pattern connected to other patterns, so that you grasp
the collection of . . . patterns as a whole, as a language within which
you can create an infinite variety of combinations. Second, to present
the problem and solution of each pattern in such a way that you can
judge it for yourself, and modify it, without losing the essence that is
central to it. (Alexander 1977b)

PATTERN LANGUAGES / 49

Alexander’s book contains 253 patterns covering regions, cities, towns, neigh-
borhoods, transportation, homes, offices, work communities, relaxation areas,
rooms, lighting, windows, gardens, waiting rooms, terraces, walls, building mate-
rials, and construction. One thing that strikes many readers of the pattern lan-
guage is the degree to which Alexander talks about people and their activities in
the patterns—the patterns are a response to his arguments about how life is best
lived. Because of this, many regard A Pattern Language as a manual of how to live
and how physical surroundings can support and enhance living.

The book is full of evocative black-and-white photographs of towns, parts of
homes, scenes of life in Europe, Greece, the Middle East, Asia—all over—each
demonstrating a place with the quality without a name and which the patterns are
intended to create.

Alexander says:

And yet, we do believe, of course, that this language which is
printed here is something more than a manual, or a teacher, or a
version of a possible pattern language. Many of the patterns here
are archetypal—so deep, so deeply rooted in the nature of things,
that it seems likely that they will be a part of human nature, and
human action, as much in five hundred years, as they are to-
day. . . .

In this sense, we have also tried to penetrate, as deep as we are
able, into the nature of things in the environment. . . .
(Alexander 1977b)

Let me present an example pattern—I’ll condense it quite a bit to save space.

179. Alcoves**
. . . many large rooms are not complete unless they have smaller

rooms and alcoves opening off them. . . .

✥ ✥ ✥

No homogeneous room, of homogeneous height, can serve a group
of people well. To give a group a chance to be together, as a group, a
room must also give them the chance to be alone, in one’s and two’s in
the same space.

This problem is felt most acutely in the common rooms of a
house—the kitchen, the family room, the living room. In fact, it is so
critical there, that the house can drive the family apart when it
remains unsolved. . . .

In modern life, the main function of a family is emotional; it is a
source of security and love. But these qualities will only come into
existence if the members of the house are physically able to be
together as a family.

50 / PATTERNS OF SOFTWARE

This is often difficult. The various members of the family come
and go at diff erent times of day; even when they are in the house,
each has his own private interests. . . . In many houses, these interests
force people to go off to their own rooms, away from the family. This
happens for two reasons. First, in a normal family room, one person
can easily be disturbed by what the others are doing. . . .Second, the
family room does not usually have any space where people can leave
things and not have them disturbed. . . .

To solve the problem, there must be some way in which the mem-
bers of the family can be together, even when they are doing diff erent
things.

Therefore:

Make small places at the edge of any common room, usually no
more than 6 feet wide and 3 to 6 feet deep and possibly much smaller.
These alcoves should be large enough for two people to sit, chat, or
play and sometimes large enough to contain a desk or table.

✥ ✥ ✥

Give the alcove a ceiling which is markedly lower than the ceiling
height in the main room. . . . (Alexander 1977b)

What’s interesting to me is the argument about how families are served by
alcoves. This seems to go well with Alexander’s desire to emphasize that the
quality without a name is concerned with life and living. In fact, he says:

You see that the patterns are very much alive and evolving.
(Alexander 1977b)

Part of Alexander’s research program is to creative generative patterns—
patterns that generate the quality without a name. Generativeness is an inter-
esting trait. Typically something is said to be generative when it produces the
generated quality indirectly.

A good example of a generative process is a random-number generator. Such
programs perform simple arithmetic operations on simple starting quantities and
produce a stream of numbers with have no simple relation to one other. If we

PATTERN LANGUAGES / 51

look inside the generator, we don’t see any structure or parts that are clearly
related to the purpose of generating random numbers.

Another example from a diff erent domain is advice on how to hit a tennis ball.
The advice I’m thinking of is that you should not concentrate on hitting the ball
at the point of impact but, instead, on hitting a point beyond the ball in the
direction the racket is moving. The purpose of this advice is to avoid the eff ects of
the muscles trying to slow down or stop at the point of impact. That is, if I ask
you to hit a particular thing with a racket, your muscles will propel the racket
toward the target, and just before hitting the target, the muscles controlling
opposing movement will contract slightly in order to decelerate to the point of
impact—though you will not, obviously, be decelerating to zero velocity, you will
decelerate a little. The result of this small deceleration is to cause the racket to
jiggle or jitter and for the impact to be less precise. If, on the other hand, you are
told to hit something just beyond the target, your muscles will not involuntarily
contract until you have hit the target, and as a result, the hit and trajectory will be
smoother.

This is the same advice given to martial arts students who are attempting to
break boards and bricks.

Such advice is generative: The goal is to hit smoothly and with full power, but
this goal is not part of the advice. Rather, the advice is to do something else which
has the side eff ect of achieving the goal.

Patterns in a pattern language are intended to be generative—they are supposed
to generate the quality without a name. Just as the advice to write clearly and simply
is not possible to follow—because writing clearly and simply is achieved by choos-
ing words and syntax carefully, by choosing presentation order, and by deciding
how to emphasize topics in sentences and paragraphs—neither is the advice to pro-
duce the quality without a name.

� � �

The question we face is how pattern languages apply to software development.
People who have tried to apply pattern languages to software have done what you
might describe as the obvious thing: They started to develop patterns that are a
prescription of how to solve particular problems that come up in development.
This isn’t new. For example, Knuth’s The Art of Computer Programming (1969) is a
multivolume book that contains exactly such information. This book presents
programming situations and problems and describes, in the manner of a text-
book, various solutions. A large consideration for Knuth is the performance—
time and space complexity—of solutions, and he treats performance very mathe-
matically.

Patterns provide several benefits to programmers and system developers. One is
a common language. I’ve heard many discussions about programs in which the

52 / PATTERNS OF SOFTWARE

common reference points are algorithms and data structures Knuth describes—and
the discussions frequently refer to such algorithms or data structures by citing
Knuth’s name for them and the volumes in which the descriptions can be found.

Another benefit is a common base for understanding what is important in
programming. That is, every pattern in a program is a signpost that helps devel-
opers new to a program rapidly understand it. Each common pattern is both
important and points out its important subpatterns. For example, in low-level
programming languages, people often write while loops with the test at the end.
When you first come across this style of loop, you wonder what it’s all about—
your ability to understand a program is challenged by the puzzle of why this loop
is coded this peculiar way. Well, most people figure it out sooner or later or at
least come to understand the purpose of the code. However, they can understand
it more rapidly if they have read Knuth’s while-loop optimization discussion—
with such knowledge they can instantly recognize the Knuth while loop, and it is
a matter of recognizing a pattern. The loop pattern is important, and the pattern
highlights the meat of the loop—the part that is repeated—along with the loop
test.

A third benefit is that with a corpus of patterns a programmer is able to solve
problems more rapidly by having available a storehouse of solutions—a cookbook,
if you will.

Among the folks who write software patterns is the Hillside Group. This group
is at least spiritually led by Kent Beck and has met once or twice to talk about pat-
terns and to gather them up—it’s a sort of a writers workshop group for writing
patterns.

This group, like many others concerned with patterns, focuses on objects and
object-oriented programming. The idea is that behavior in object-oriented pro-
grams comes largely from configurations of objects and classes sending messages
to one another according to protocols. The analogy to architecture should be
plain.

Let’s look at a pattern discussed by this group. I will, again, abbreviate it.

Pattern: Concrete Behavior in a Stateless Object
Context: You have developed an object. You discover that its

behavior is just one example of a family of behaviors you need to
implement.

Problem: How can you cleanly make the concrete behavior of an
object flexible without imposing an unreasonable space or time cost,
and with minimal eff ect on the other objects in the system?

Constraints: No more complexity in the object. . . . Flexibility—
the solution should be able to deal with system-wide, class-wide, and
instance-level behavior changes. The changes should be able to take
place at any time. . . . Minimal time and space impact. . . .

PATTERN LANGUAGES / 53

Solution: Move the behavior to be specialized into a stateless
object which is invoked when the behavior is invoked.

Example: The example is debug printing. . . . (Kent Beck, personal

communication 1993)

The example actually explains the solution a lot better than does the solution
description—the example is given in Smalltalk. The idea is that you define a side
object (and a class) that has the behavior you want by defining methods on it. All
the methods take an extra argument which is the real object on which to operate.
Then you implement the desired behavior on the original object by first sending a
message to self to determine the appropriate side object and then sending the
side object a message with the real object as an extra argument. By defining the
method that returns the side object you can get either instance-level, class-level,
or global changes in behavior.

This is a useful pattern, and you can imagine how a book full of stuff like this
would turn a smart but inexperienced object programmer into something a little
closer to an expert.

Patterns seem to be a partial solution to the overabstraction problem I talked
about in “Abstraction Descant.” They are a way to take advantage of common pat-
terns without building costly, confusing, and unnecessary abstractions when the
goal is merely to write something understandable. That is, when there are more idi-
oms to use, using them is far better than inventing a new vocabulary. There are lots
of reasons that abstractions are used, and I’m not saying we shouldn’t use them, but
let’s not confuse their convenience in some situations as proof of their unqualified
usefulness. For example, abstractions allow us to avoid typing (fingers pounding
the keyboard). However, avoiding typing is something a programming environ-
ment is supposed to help accomplish, and one can imagine a programming envi-
ronment that would let people use a pattern about as easily as an ordinary
abstraction. Keep in mind that the most useful patterns are quite large, like the one
regarding concrete behavior in stateless objects. Furthermore, as Alexander points
out, patterns interact with larger and smaller patterns in such a way that the actual
manifestation of any given pattern is influenced by and influences several or many
other patterns.

Alexander talks about the poetry of patterns. Poetry is at least partly distin-
guished from prose by its stronger use of compression. Compression is that char-
acteristic of a piece in some language in which each word assumes many
meanings and derives its meaning from the context. In this way, a small expres-
sion can perform a lot of tasks because the context is rich. This is one reason that
inheritance works and is also a way that inheritance can go wrong. When you
write a subclass, you can reuse the methods above it—and the code you write is
compressed because it takes its meaning from the context of its superclasses. This

54 / PATTERNS OF SOFTWARE

is good, but if you have a deep or dense hierarchy, you could easily spend a lot of
time understanding it in order to write correct, highly compressed code.

For patterns, you can have compression if several patterns are present in one
space. Alexander says:

It is quite possible that all the patterns for a house might, in some
form, be present, and overlapping, in a simple one-room cabin. The
patterns do not need to be strung out, and kept separate. Every build-
ing, every room, every garden is better, when all the patterns which it
needs are compressed as far as it is possible for them to be. The build-
ing will be cheaper; and the meanings in it will be denser.
(Alexander 1977a)

Compression is what we saw when we looked at the constraints of European
and some Third-World architecture: small scale. With limited space, all the fea-
tures that people require to live must be present in the space available. This forces
people to be clever to design in all the parts in minimal space, most likely by over-
lapping and causing this poetry—the poetry of compression. It also forces things
into small, irregular pieces.

The question is: Is software that is compressed better than software that is not?
I think there is a great deal of admiration for compressed software, but is it more
maintainable?

� � �

Patterns in software are a good idea, but I have rarely seen the attention to the
human side—to living within software—that I see in Alexander’s patterns. One
architect commented on Alexander that he regarded the patterns as providing
information, sort of heuristics, about architecture, and I have to admit the pat-
terns I’ve seen about software do that—they provide information that the soft-
ware practitioner just plain ought to know.

But the picture is not quite complete, and I fear it may never be. The use of
patterns is clearly helpful, if for no other reason to capture in a common format
programming lore and tips—a sort of better-organized Art of Computer Program-
ming. The “but” concerns the quality without a name. Alexander hoped that his
pattern language would generate towns, buildings, communities, homes, offices,
gardens, and places with that quality. And he had the benefit of knowing what he
was trying to generate. He could go to Florence and walk the piazzas, the colon-
nades, the small hidden gardens, he could visit the temples in Kyoto, the perfect
alcoves in Norway, white hilltowns of Greece. We as computer scientists do not
have examples of programs exhibiting the quality without a name that we all can
agree on or even just name. That’s step 1. Step 2 is to understand the quality. I

PATTERN LANGUAGES / 55

took a stab at it in “The Quality Without a Name,” but I admit I was simply guess-
ing.

The worst thing is this: Alexander had the chance in the 1970s to try out his
pattern language. He observed the results of others trying it out and he even tried
it out himself several times. And guess what: It didn’t work. In one project in
Mexicali, Alexander, his colleagues, students, and a community of people con-
structed a community. Alexander says he found hints of the quality in only a few
places. Otherwise, the houses were “funky”. That is, when Alexander tried out his
theory, it failed.

The story is not over.

57

�
The Failure of Pattern Languages

We have been exploring the Christopher Alexander saga and it might surprise
some to learn that Alexander completed by the early 1970s all the work I’ve
reported so far—in what some would call the infancy of computer science. People
have read his work and taken off from it—The Hillside Group and others are
writing software patterns, believing they are doing something worthwhile—and
they are. But are they doing for software what Alexander set out to do for archi-
tecture—find a process to build artifacts possessing the quality without a name?
Or is the quality unimportant to what the software pattern writers are doing? Is it
important only that they are accomplishing something good for software, and
Alexander’s original goal is unimportant, merely a catalyst or inspiration—the
way fine drizzle drawing his eyes low, narrowing streetlights to a sheltering fog,
can inspire a poet to write a poem of intimacy and its loss? Or the way an inept
carpenter building an overly sturdy birdcage can inspire another person to con-
struct a tiger’s cage?

I think the quality without a name is vital to software development, but I’m
not yet sure how, because I am not clear on what the quality without a name is in
the realm of software. It sits zen in the midst of a typhoon frenzy of activity in
both architecture and software. Alexander’s story does not end with the publica-
tion of A Pattern Language in 1977. It went on and still goes on. And Alexander
did not sit still after he wrote the patterns. Like any scientist he tried them out.

And they did not work.

Read Alexander’s own words:

All the architects and planners in christendom, together with The
Timeless Way of Building (Alexander 1979) and the Pattern Lan-
guage (Alexander 1977a), could still not make buildings that are alive
because it is other processes that play a more fundamental role, other
changes that are more fundamental. (Grabow 1983)

58 / PATTERNS OF SOFTWARE

Alexander reached this conclusion after completing some specific projects.
One was the Modesto Clinic. In this project an architect from Sacramento used
Alexander’s pattern language to design and build a medical clinic in Modesto (in
the Central Valley of California). The building was a success in the sense that a
building was actually constructed and its plan looked good on paper. Alexander
noted:

Up until that time I assumed that if you did the patterns correctly,
from a social point of view, and you put together the overall layout of
the building in terms of those patterns, it would be quite alright to
build it in whatever contemporary way that was considered normal.
But then I began to realize that it was not going to work that way.
(Grabow 1983)

Even though the Sacramento architect tried hard to follow the patterns, the
result was dismal. Alexander says about the clinic:

It’s somewhat nice in plan, but it basically looks like any other build-
ing of this era. One might wonder why its plan is so nice, but in any
really fundamental terms there is nothing to see there. There was
hardly a trace of what I was looking for. (Grabow 1983)

This wasn’t an isolated failure, but one repeated frequently by other people trying
to use the pattern language from bootlegged copies of A Pattern Language:

Bootleg copies of the pattern language were floating up and down the
West Coast and people would show me projects they had done and I
began to be more and more amazed to realize that, although it
worked, all of these projects basically looked like any other buildings
of our time. They had a few diff erences. They were more like the
buildings of Charles Moore or Joseph Esherick, for example, than the
buildings of S.O.M. or I. M. Pei; but basically, they still belonged per-
fectly within the canons of mid-twentieth century architecture. None
of them whatsoever crossed the line. (Grabow 1983)

Alexander noticed a more bizarre phenomenon than the fact that the buildings
were no diff erent from their contemporaries—the architects believed they were
diff erent, vastly and remarkably diff erent. Alexander said:

They thought the buildings were physically diff erent. In fact, the peo-
ple who did these projects thought that the buildings were quite diff er-
ent from any they had designed before, perhaps even outrageously so.
But their perception was incredibly wrong; and I began to see this
happening over and over again—that even a person who is very
enthusiastic about all of this work will still be perfectly capable of

THE FAILURE OF PATTERN LANGUAGES / 59

making buildings that have this mechanical death-like morphology,
even with the intention of producing buildings that are alive.

So there is the slightly strange paradox that, after all those years of
work, the first three books are essentially complete and, from a theo-
retical point of view, do quite a good job of identifying the diff erence
but actually do not accomplish anything. The conceptual structures
that are presented are just not deep enough to actually break down
the barrier. They actually do not do anything. (Grabow 1983)

Alexander determined that they failed because the geometry of the buildings
was not as diff erent from the standard modern geometry as it needed to be to
generate the quality. One of his reactions was to consider the process of building:
the mortgage process, the zoning process, the construction process, the process of
money flowing through the system, the role of the architect, and the role of the
builder. By controlling the process, you control the result, and if the control
retains the old, broken process, the result will be the old, broken architecture.

This resonates with what we see in software development: The structure of the
system follows the structure of the organization that put it together, and to some
extent, its quality follows the nature of the process used to produce it. The true
problems of software development derive from the way the organization can dis-
cover and come to grips with the complexity of the system being built while
maintaining budget and schedule constraints. It is not common for organizations
to try to put together a novel large artifact, let alone doing it on schedule. When
an engineering team designs and builds a bridge, for example, it is creating a vari-
ant of a well-known design, and so many things about that design are already
known that the accuracy of planning and scheduling depends on how hard the
people want to work, not on whether they can figure out how to do it.

Even while considering process, Alexander never lost sight of geometry.

[T]he majority of people who read the work, or tried to use it, did not
realize that the conception of geometry had to undergo a fundamen-
tal change in order to come to terms with all of this. They thought
they could essentially graft all the ideas about life, and patterns, and
functions on to their present conception of geometry. In fact, some
people who have read my work actually believe it to be somewhat
independent of geometry, independent of style—even of architecture.
(Grabow 1983)

From the time when buildings routinely possessed the quality without a name
to the present when almost no buildings possess that quality, the process of build-
ing has changed from the so-called renaissance building paradigm to the current
industrial building paradigm, from one in which building was a decentralized
activity in which the architect, if one was used, was closely associated with the

60 / PATTERNS OF SOFTWARE

building or even participated in the building, and material was handcrafted on
site, to one in which an architect might design hundreds of homes which were
then built by a contractor buying and using modular parts, perhaps minimally
customizing them—for example, cutting lumber to the proper length. At the
same time, because building became a high-volume activity, the process of fund-
ing building changed so that, now, a large sum of money needs to be allocated to
produce any homes at all.

As I mentioned in “Habitability and Piecemeal Growth,” one problem with the
building process is lump-sum development. In such development few resources are
brought to bear on the problems of repair and piecemeal growth. Instead, a large
sum of money is dedicated to building a large artifact, and that artifact is allowed
to deteriorate somewhat, and anything that is found lacking in the design or con-
struction is ignored or minimally addressed until it is feasible to abandon the
building and construct a replacement. This phenomenon also occurs in the mort-
gage process. The bank lends someone, say a developer, a large sum of money to
construct a home. A homebuyer purchases this home by assuming a large debt.
The debt is paid off over time, with the early payments dedicated mostly to paying
the interest, which accumulates, and only at the end of the mortgage period is the
principal taken down. The result is that a homeowner might pay $1 million for a
house that cost $400,000 to build. The problem with this—aside from all the
problems you can easily identify yourself—is that the additional $600,000 paid
for the house is not available for repair and piecemeal growth. It is a fee to the
bank. And the house is not improved in any way or only minimally during the
payment period—10 to 30 years—at which point the house is sold to someone
else who pays another (or the same!) bank another enormous fee. The key ingre-
dient to long-term development—piecemeal growth—is thwarted.

Alexander started a lengthy process himself of constructing arguments to show
that process itself was the root cause for the practical failure of his theory of the
quality without a name and of his particular pattern language—that the process
of construction encompassed so many things controlling geometry that the out-
come had to be as flawed and disappointing as what he saw in the early, uncon-
trolled experiments.

First he needed to convince himself that process could be the primary deter-
miner of the outcome of a generative process. He got this from D’Arcy Thomp-
son; Alexander said:

What Thompson insisted on was that every form is basically the end
result of a certain growth process. When I first read this I felt that of
course the form in a purely static sense is equilibrating certain forces
and that you could say that it was even the product of those forces—
in a non-temporal, non-dynamic sense, as in the case of a raindrop,
for example, which in the right here and now is in equilibrium with

THE FAILURE OF PATTERN LANGUAGES / 61

the air flow around it, the force of gravity, its velocity, and so forth—
but that you did not really have to be interested in how it actually got
made. Thompson however was saying that everything is the way it is
today because it is the result of a certain history—which of course
includes how it got made. But at the time I read this I did not really
understand it very well; whereas I now realize that he is completely
right. (Grabow 1983)

It’s somewhat amazing that Alexander would fail to understand this right off,
because his theory—patterns generating the quality without a name—is an
example of it. His error, if there was one, was not to go far enough with his theory.
Once he latched onto this insight he went hog wild. First he examined the process
closely, identifying places where its details did not serve the quality without a
name and geometry. Second, he performed several important experiments in
which he controlled or nearly controlled the entire process.

These experiments were based on an alternative process developed by Alex-
ander, which he called the “grassroots housing process.” The basic idea is that a
sponsor—a group of people, a corporation—would provide land at a reasonable
price. There would be a builder who was actually an architect, a builder, and a
manager rolled into one. Families would get an allotment of money to begin con-
struction. The builder would help, and with the pattern language each family
would build its own home. Each family would pay a fee per year with the follow-
ing characteristics. The fee would be based on square footage and would decline
from a very high rate in the early years to a very low one in later years. It was
assumed to take around 13 years to pay off the fee. Materials for building would
be free to families (of course, paid for by the fees). This means that families would
be encouraged initially to build small homes. Because materials would be free and
the only fees would be for square footage, each family would be encouraged to
improve or embellish its existing space and the cluster’s common space. As time
passed and the fees dropped in later years, homes could be enlarged. These clus-
ters would nest in the sense that there would be a larger “political” unit responsi-
ble for enhancing structures larger than any particular cluster. For example, roads
would be handled in this way and the political unit would be a sort of representa-
tive government.

The existence of free materials and nested clusters would, Alexander hoped,
create a mechanism for planning within a community and with a nearby or
enclosing community.

The builder would help the families do their own building by instruction or by
doing those jobs requiring the most skill. Each builder would have several
apprentices who would be trained on the job. A builder would work with a cluster
of families, and over time the builder would gradually move on to service another
cluster, at which point the first cluster would become self-sufficient.

62 / PATTERNS OF SOFTWARE

The way this scheme would work, of course, is the same way the banks work,
but with a lower fee and with the community—the cluster—acting as the bank.
Profits from the process would be used to sponsor other clusters.

After presenting this proposed process, Christopher Alexander was shocked to
be quizzed about his views on Marxism. Nevertheless, two important concepts
came out of it: the nested cluster with shared common areas and the architect-
builder.

This led to several projects. One was to see whether local politics could be
changed to support this new building process. To this end Alexander managed to
get passed a Berkeley referendum in the early 1970s that put a moratorium on
new construction and established a commission to look into a new master plan
based on participatory planning of the sort talked about in The Oregon Experi-
ment (Alexander 1975). The result was not quite what he had in mind: There was a
new master plan, but one that asked local neighborhoods which streets could be
closed. As a result, some of them were—if you drive through Berkeley today, you
can still experience the results.

The most ambitious experiment was to build a community in Mexicali. The
Mexican government became convinced that Alexander would be able to build a
community housing project for far less than the usual cost, so they gave him the
power he felt he needed to organize the project. The land was provided in such a
way that the families together owned the encompassed public land and each fam-
ily owned the land on which their home was built. The point of the experiment
was to see whether with a proper process and a pattern language, a community
could be built that demonstrated the quality without a name. Because of the
expected low cost of the project and the strong recommendation of the University
of Mexico regarding Alexander’s work, the Mexican government was willing to
allow Alexander to put essentially into practice his grassroots system of produc-
tion. The details of this system hinged on the answers to these questions (all seven
questions are from Alexander 1985):

1. What kind of person is in charge of the building operation itself?

An architect-builder is in charge. This corresponds to the master
architect of a software system who also participates in coding and
helps his codevelopers with their work.

2. How local to the community is the construction firm responsible for
building?

Each site has its own builder’s yard, each responsible for local
development. This corresponds to putting control of the com-
puter and software resources for each small project within that
project. Local control and physically local resources are impor-
tant.

THE FAILURE OF PATTERN LANGUAGES / 63

3. Who lays out and controls the common land between the houses,
and the array of lots and houses?

This is handled by the community itself, in groups small enough
to come to agreement in face-to-face meetings. This corresponds
to small group meetings to discuss and negotiate interfaces in a
project. There is no centralized decision maker, but a community
of developers sits down and discusses in the group the best inter-
faces.

4. Who lays out the plans of individual houses?

Families design their own homes. This corresponds to each devel-
oper designing his or her own implementations for a component.

5. Is the construction system based on the assembly of standard com-
ponents, or is it based on acts of creation which use standard pro-
cesses?

Construction is based on a standard process rather than by stan-
dard components. This goes against one of the supposed tenets
of the object philosophy in which standardized class libraries are
de rigueur. Nevertheless, many experiences show that the true
benefits of reuse come from reuse within a project and not as
much from among projects. Such successful reuse is based on
being able to model the domain of the project so that classes
defined to represent aspects of the domain can be used for sev-
eral purposes within that same model. Typically such a model is
called a framework.

6. How is cost controlled?

Cost is controlled flexibly so that local decisions and trade-offs
can be made. This corresponds to giving a project a total budget
number rather than breaking it down too far, such as one budget
for hardware and another for developers.

7. What is the day-to-day life like, on-site, during the construction
operation?

It is not just a place where the job is done but a place where the
importance of the houses themselves as homes infuses the every-
day work. Developers need to have their own community in
which both the work and the lives of the developers are shared:
meals, rest time together in play. It’s called team building in the

64 / PATTERNS OF SOFTWARE

management literature, but it’s more than that, and every devel-
opment manager worth paying knows that this is one of the most
important parts of a project.

You might wonder why Alexander (or I, for that matter) considers a project’s
day-to-day life to be important. It’s because the quality of the result depends on
the quality of communication between the builders or developers, and this
depends on whether it is fun to work on the project and whether the project is
important to the builder or developer in a personal sense and not just in a mone-
tary or job sense.

Alexander tells the story of this project—including the sorts of meals the fami-
lies had and their celebrations after completing major projects—in The Production
of Houses (1985). At the end of that book Alexander tells about the failures of the
project as seen close up—that is, before he was able to sit back and look at the
results objectively. He says there were a number of failures. First, the Mexican gov-
ernment lost faith in the project and pulled the plug after five houses were built,
leaving 25 unbuilt. Partly they lost faith because the buildings looked “traditional”
rather than modern. Alexander said:

The almost naïve, childish, rudimentary outward character of the
houses disturbed them extremely. (Remember that the families, by
their own frequent testimony, love their houses.) (Alexander 1985)

Another reason was that the government was dismayed by Alexander’s experi-
mentation with construction systems. The government felt that because Alex-
ander was a world authority on architecture and building, he would simply apply
what he knew to produce beautiful homes cheaply and rapidly.

One failure that seemed to disturb Alexander was that the builder’s yard was
abandoned within three years of the end of the project. He felt that the process
would have continued without his involvement once the families saw that they
could control their own living spaces.

But did the buildings and the community have the quality without a name?
Alexander said at the time:

The buildings, for example, are very nice, and we are very happy that
they so beautifully reflect the needs of diff erent families. But they are
still far from the limpid simplicity of traditional houses, which was
our aim. The roofs are still a little awkward, for example. And the
plans, too, have limits. The houses are very nice internally, but they
do not form outdoor space which is as pleasant, or as simple, or as
profound as we can imagine it. For instance, the common land has a
rather complex shape, and several of the gardens are not quite in the
right place. The freedom of the pattern language, especially in the

THE FAILURE OF PATTERN LANGUAGES / 65

hands of our apprentices, who did not fully understand the deepest
ways of making buildings simple, occasionally caused a kind of con-
fusion compared with what we now understand, and what we now
will do next time. (Alexander 1985)

This chilling reference to the deep understanding required to build buildings
with the quality without a name is echoed in the discussion of the builder’s yard:

When their [the government’s] support faded, the physical buildings
of the builder’s yard had no clear function, and, because of peculiari-
ties in the way the land was held, legally, were not transferred to any
other use, either; so now, the most beautiful part of the buildings
which we built stand idle. And yet these buildings, which we built
first, with our own deeper understanding of the pattern language,
were the most beautiful buildings in the project. That is very distress-
ing, perhaps the most distressing of all. (Alexander 1985)

Later, after some reflection Alexander became more harsh:

There was one fact above everything else I was aware of, and that was
that the buildings were still a bit more funky than I would have liked.
That is, there are just a few little things that we built down there that
truly have that sort of limpid beauty that have been around for ages
and that, actually, are just dead right. That’s rare; and it occurred in
only a few places. Generally speaking, the project is very delightful—
diff erent of course from what is generally being built, not just in the
way of low-cost housing—but it doesn’t quite come to the place where
I believe it must.

. . . But what I am saying now is that, given all that work (or at
least insofar as it came together in the Mexican situation) and even
with us doing it (so there is no excuse that someone who doesn’t
understand it is doing it), it only works partially. Although the pat-
tern language worked beautifully—in the sense that the families
designed very nice houses with lovely spaces and which are com-
pletely out of the rubric of modern architecture—this very magical
quality is only faintly showing through here and there. (Grabow 1983)

Alexander noticed a problem with using the word simplicity to refer to the fun-
damental goal of the patterns:

We were running several little experiments in the builder’s yard.
There is an arcade around the courtyard with each room off of the
arcade designed by a diff erent person. Some of the rooms were
designed by my colleagues at the Center and they also had this
unusual funkiness—still very charming, very delightful, but not calm

66 / PATTERNS OF SOFTWARE

at all. In that sense, vastly diff erent from what is going on in the four-
hundred year old Norwegian farm where there is an incredible clarity
and simplicity that has nothing to do with its age. But this was typi-
cal of things that were happening. Here is this very sort of limpid sim-
plicity and yet the pattern language was actually encouraging people
to be a little bit crazy and to conceive of much more intricate rela-
tionships than were necessary. They were actually disturbing. Yet in
all of the most wonderful buildings, at the same time that they have
all of these patterns in them, they are incredibly simple. They are not
simple like an S.O.M. building;—sometimes they are incredibly
ornate—so I’m not talking about that kind of simplicity. There is
however a kind of limpidity which is very crucial; and I felt that we
just cannot keep going through this problem. We must somehow
identify what it is and how to do it—because I knew it was not just
my perception of it.

The problem is complicated because the word simplicity com-
pletely fails to cover it; at another moment it might be exactly the
opposite. Take the example of the columns. If you have the opportu-
nity to put a capital or a foot on it, it is certainly better to do those
two things than not—which is diff erent from what the modern archi-
tectural tradition tells you to do. Now, in a peculiar sense, the reasons
for it being better that way are the same as the reasons for being very
simple and direct in the spacing of those same columns around the
courtyard. I’m saying that, wherever the source of that judgment is
coming from, it is the same in both cases. . . . The word simplicity is
obviously not the relevant word. There is something which in one
instance tells you to be simple and which in another tells you to be
more complicated. It’s the same thing which is telling you those two
things. (Grabow 1983)

Another part of the problem Alexander saw with the Mexicali project had to
do with the level of mastery needed in the construction process. At the start of the
project he felt that merely having the same person do both the design and the
construction was enough, so that the important small decisions dictated by the
design would be made correctly. But during the project and later on Alexander
learned that the builder needed more.

Only recently have I begun to realize that the problem is not merely
one of technical mastery or the competent application of the rules—
like trowelling a piece of concrete so that it’s really nice—but that
there is actually something else which is guiding these rules. It actu-
ally involves a diff erent level of mastery. It’s quite a diff erent process
to do it right; and every single act that you do can be done in that
sense well or badly. But even assuming that you have got the technical
part clear, the creation of this quality is a much more complicated

THE FAILURE OF PATTERN LANGUAGES / 67

process of the most utterly absorbing and fascinating dimensions. It is
in fact a major creative or artistic act—every single little thing you
do—and it is only in the years since the Mexican project that I have
begun to see the dimensions of that fact. (Grabow 1983)

Not only must you decide to build the right thing, but you also must build it
with skill and artistry. This leads to an obvious question: Are buildings with the
quality without a name just too hard to put together deliberately, and were they
created in older societies only by chance and survive only because of the quality?
Or even more cynically, is there a form of nostalgia at work in which everything
old is revered, because it comes from a more innocent and noble age?

There is another, chilling possibility: Perhaps it takes a real artist to create
buildings and towns possessing the quality without a name. If you think about it,
however, there is nothing really surprising or shocking about this.

Not everyone can write a great poem or paint a picture that will last through
the ages. When we go to museums, we see art with the quality without a name
and we are not surprised. And when we go to an adult-education art class we are
not surprised to see good art, but art that is a little funky and perhaps it’s diff erent
but it’s not great.

The question is whether it is possible to write down rules or patterns for archi-
tecture—and software and art—so that ordinary people can follow the rules or
patterns and, by the nature of the patterns and using only the abilities of ordinary
people, beauty is generated. If this happens, then the rules or patterns are genera-
tive, which is a rare quality.

Art teachers can provide generative rules. For example, my father watched and
“studied” the various art programs on public television for 15 years, and I’ll be
darned but he stopped painting like a fifth grader waiting for recess and started
being a pretty decent still-life and landscape painter. You won’t see his work in a
museum in 20 years, but if you saw it on the wall in my house, you wouldn’t bat
an eye.

What he learned about painting surprised me. I expected that the lessons
would talk about drawing skills and how to reproduce what you saw in reality by
attending to each detail in order to create an accurate reproduction. What he
learned instead was that by using the nature of the medium, the paint, the brush,
and brush strokes, he could create the same eff ects as those of reality through
reflected light and by the oil on canvas. So, instead—as I expected—of spending
hours painting each branch on a conifer, my father would dab and push with a
thick brush to create the eff ect of needled branches, and from a proper viewing
distance his conifers looked as real as real.

Let’s recall what Alexander said about the people who helped build the houses
in Mexicali and who live there: “Remember that the families, by their own frequent
testimony, love their houses.” Perhaps these houses did not live up to Alexander’s

68 / PATTERNS OF SOFTWARE

high artistic standards, but they were nice homes and served their users well. Like
my father’s paintings, they are better than the untutored could accomplish. And
there’s nothing wrong with that.

Perhaps Alexander’s pattern language is working as well as it can—it’s just that
the artistry required to make buildings having the quality without a name wasn’t
present in any of the families who worked with Alexander or even in Alexander’s
team. The failure of the pattern language in the bootleg-designed houses and in
Mexicali are maybe simply the failures of artistry.

Perhaps, and perhaps these are true failures, but this should not dissuade us
from considering how to create things with the quality without a name.

It is easy to see that the process of constructing buildings has an obvious corre-
spondent in software: The process of software construction is the single most
important determining factor in software quality. Alexander’s building process
adapted to software could be called a form of incremental development because it
advises the use of small groups with autonomy, architect-builders at the helm.

But what of geometry? Alexander always goes back to this. And one of his key
questions is: What dictates geometry possessing the quality without a name—
what is that thing that is falsely called simplicity?

What corresponds to geometry for us?

I think it is the code itself. Many talk about the need for excellent interfaces
and the benefits of separating interface from implementation so that the imple-
mentation may vary. But few people talk seriously about the quality of the code
itself. In fact, most theorists are eager to lump it into the category of things best
not discussed, something to be hidden from view so that it can be changed in pri-
vate. But think of Alexander’s remarks: The quality comes in nearly equal part
from the artistry and creativity of the builder who is the one whose hands most
directly form the geometry that gives the building its quality and character. Isn’t
the builder the coder? And isn’t the old-style software methodology to put design
in the hands of analysts and designers and to put coding in the hands of lowly
coders, sometimes offshore coders who can be paid the lowest wages to do the
least important work?

Methodologists who insist on separating analysis and design from coding are
missing the essential feature of design: The design is in the code, not in a docu-
ment or in a diagram. Half a programmer’s time is spent exploring the code, not
in typing it in or changing it. When you look at the code you see its design, and
that’s most of what you’re looking at, and it’s mostly while coding that you’re
designing.

Poincaré once said: “Sociologists discuss sociological methods; physi-
cists discuss physics.” I love this statement. Study of method by itself is
always barren. . . . (Alexander 1964)

THE FAILURE OF PATTERN LANGUAGES / 69

This could be a lesson for some of our software development methodologists:
Study software, not software methods.

Patterns can help designers and designer-coders to make sure they put the
right stuff in their software, but it takes a coder with extraordinary mastery to
construct software having the quality without a name.

And what of simplicity? Can it be that blind subservience to simplicity in soft-
ware development can lead to the same “death-like morphology” that it causes in
architecture?

� � �

In 1995, software developers are writing and publishing patterns, and the
“patterns movement” is gaining momentum. What are they actually doing?
Most of the patterns I’ve seen present solutions to technical problems. For
example, a pattern language I’m familiar with explains how to produce a
design for a program that will validate a complex set of input values presented
on forms that the end user fills in. It’s a very nice pattern language, but I’m not
sure where the quality without a name is in this language. If I needed to write
a system with a component that had to validate input fields, I would use it, but
I doubt that the quality would emerge from what I learned from the pattern
language.

From the pattern language I would learn the issues that go into an input vali-
dation component, and I would be able to get all the parts right, and perhaps
folks later on maintaining my component would have an easier job of it for my
having used the pattern language, but I doubt there would be any artistic merit in
it or the quality.

When I look at software patterns and pattern languages, I don’t see the quality
without a name in them, either. Recall that Alexander said that both the patterns
themselves and the pattern language have the quality. In many cases today the
pattern languages are written quickly, sort of like students doing homework prob-
lems. I heard one neophyte pattern writer say that when writing patterns he just
writes what he knows and can write four or five patterns at a sitting.

That patterns that I wrote neither possess the quality nor generate it is not sur-
prising. Patterns are an art form, and they are designed to generate art within the
domain about which they speak. Art is not created at the clip of four or five pieces
per sitting. It takes time and the right context and the right preparation to write
them.

My patterns are doggerel, just as are poems written quickly this way—four or
five at a sitting. Poetic doggerel serves a purpose: therapy. And maybe so does pat-
tern writing of the sort we’re talking about.

Patterns written in this way will almost never generate the quality without a
name, and it is likely that people who write patterns like this and see them fail will

70 / PATTERNS OF SOFTWARE

attribute the failure to the concept of patterns and pattern languages. And people
who use the patterns and fail may do so as well.

But Alexander’s pattern language is not doggerel: It was written by many peo-
ple over many years, and each was subject to extensive discussion and criticism
before being published. It is clear that the patterns themselves have the quality
without a name, and I think this is because Alexander and his colleagues are pat-
tern artists.

It just seems that the experiments that Alexander’s team did in Mexicali were
not done by artists or that the muse didn’t visit them during the process.

� � �

Alexander’s story is nearly up to date, but to many it disappears at the point we’ve
left him here. Our modern-day pattern writers are content to stop with A Pattern
Language and The Timeless Way of Building and to go off writing patterns. They
ignore the failures that Alexander himself saw in his own processes at that point.
The next chapter of his story takes him back to geometry and art. It’s probably a
story that has only the most metaphorical application to software because it has
to do with beads, beauty, art, geometry, and Turkish carpets.

71

�
The Bead Game, Rugs, and Beauty

People in software research continue to find inspiration in the work of Christopher

Alexander—they find his concept of pattern language a means to codify design

skills. Some of them, though, don’t see the relevance of the quality without a name,

and anyhow some doubt there is anything about older building styles than they

have survived through time by a process of natural selection—the old buildings we

see today in Europe, let’s say, are nicer because the cruddy ones were torn down

and the nice ones imitated.

To many software patterns folk the quality without a name doesn’t apply to

things like software anyhow. I agree that most software—at least the software I

see—doesn’t have such a quality, but does that mean it couldn’t? I find it odd,

though, to take so much inspiration from the simple, mechanical parts of a per-

son’s work—the form of the pattern language and terms like forces—but to ignore

the heart of it. I’m not so sure the quality without a name is irrelevant.

When we last left Christopher Alexander, he had apparently despaired in his

quest for the quality without a name based on his experiences with the Modesto

and Mexicali projects. In those projects his pattern language was used to construct

a clinic (Modesto) and a small community (Mexicali). In Modesto the architect in

charge was not able to control the process of spending and building as Alexander

advocated in his “grassroots housing process.” In the Mexicali project, where Alex-

ander was in charge and had a special arrangement with the Mexican government,

he had all the control he needed. But the results were disappointing. Alexander felt

the buildings were “funky” and only in places demonstrated a hint of the quality.

It is at this point that Alexander went off in search of a universal formative prin-

ciple, a generative principle governing form that would be shared by both the laws

of nature and great art. If the principle could be written down and was truly for-

mative, then aesthetic judgment and beauty would be objective and not subjective,

72 / PATTERNS OF SOFTWARE

and it would be possible to produce art and buildings with the quality without a
name.

If there were such a universal principle, any form that stirred us would do so at
a deep cognitive level rather than at a representational level, where its correspon-
dence to reality is most important. That is, the feeling great form in art gives us
would be a result of the form operating directly on us and in us rather than indi-
rectly through nature; and nature would share the same forms because the princi-
ple is universal. Many philosophers from Plato onward believed in this deeper
level of form, including Alexander. According to Herbert Read,

The increasing significance given to form or pattern in various
branches of science has suggested the possibility of a certain parallel-
ism, if not identity, in the structures of natural phenomena and of
authentic works of art. That the work of art has a formal structure of
a rhythmical, even of a precisely geometrical kind, has for centuries
been recognised by all but a few nihilists. That some at any rate of
these structures or proportions—notably the Golden Section—have
correspondence in nature has also been recognised for many years.
The assumption, except on the part of a few mystics, was that nature
in these rare instances, was paying an unconscious tribute to art; or
that the artist was unconsciously imitating nature. But now the reve-
lation that perception is itself a pattern-selecting and pattern-making
function (a Gestalt formation); that pattern is inherent in the physi-
cal structure and functioning of the nervous system; that matter itself
analyses into coherent patterns or arrangements of molecules; and
that the gradual realisation that all these patterns are eff ective and
ontologically significant by virtue of an organisation of their parts
which can only be characterised as aesthetic—all this development
has brought works of art and natural phenomena on to an identical
plane of inquiry. (Grabow 1983; Read 1951)

Alexander took this point of view seriously and proposed the “bead game con-
jecture,” a mechanism that unifies all forms—science, art, music, society.

That it is possible to invent a unifying concept of structure within
which all the various concepts of structure now current in diff erent
fields of art and science, can be seen from a single point of view. This
conjecture is not new. In one form or another people have been won-
dering about it, as long as they have been wondering about structure
itself; but in our world, confused and fragmented by specialisation,
the conjecture takes on special significance. If our grasp of the world is
to remain coherent, we need a bead game; and it is therefore vital for
us to ask ourselves whether or not a bead game can be invented.
(Alexander 1968)

THE BEAD GAME, RUGS, AND BEAUTY / 73

“Bead game” refers to Hermann Hesse’s imaginary game in which all forms—art,
science, nature—can be represented in a single way.

As I noted in “The Failure of Pattern Languages,” Alexander attributed this
failure of his pattern language to two things: The first was that the level of mastery
of the pattern language and of the building and design skills needed to produce
the quality without a name were in fact limited in the folks doing the work; and
the second was that the participants—the architects and builders—did not suffi-

ciently appreciate the geometrical aspects of beauty and the quality. Alexander
said:

I had been watching what happens when one uses pattern languages
to design buildings and became uncomfortably aware of a number of
shortcomings. The first is that the buildings are slightly funky—that
is, although it is a great relief that they generate these spontaneous
buildings that look like agglomerations of traditional architecture
when compared with some of the concrete monoliths of modern
architecture, I noticed an irritatingly disorderly funkiness. At the
same time that it is lovely, and has many of these beautiful patterns
in it, it’s not calm and satisfying. In that sense it is quite diff erent
from traditional architecture which appears to have this looseness in
the large but is usually calm and peaceful in the small.

To caricature this I could say that one of the hallmarks of pattern
language architecture, so far, is that there are alcoves all over the
place or that the windows are all diff erent. So I was disturbed by
that—especially down in Mexico. I realized that there were some
things about which the people putting up the buildings did not
know—and that I knew, implicitly, as part of my understanding of
pattern languages (including members of my own team). They were
just a bit too casual about it and, as a result, the work was in danger
of being too relaxed. As far as my own efforts were concerned, I real-
ized that there was something I was tending to put in it in order to
introduce a more formal order—to balance this otherwise labyrin-
thine looseness.

The other point is that even although the theory of pattern lan-
guages in traditional society clearly applies equally to very great
buildings—like cathedrals—as well as to cottages, there was the sense
that, somehow, our own version of it was tending to apply more to
cottages. In part, this was a matter of the scale of the projects we were
working on; but it also had to do with something else. It was almost
as if the grandeur of a very great church was inconceivable within the
pattern language as it was being presented. It’s not that the patterns
don’t apply; just that, somehow, there is a wellspring for that kind of
activity which was not present in either A Pattern Language (1977a)
or The Timeless Way of Building (1979). (Grabow 1983)

74 / PATTERNS OF SOFTWARE

More important, I think, is the fact that people did not quite understand the
geometrical nature of what Alexander was talking about. The geometrical nature
of the quality is brought out in Chapter 26 of The Timeless Way of Building, called
“Its Ageless Character.” Let me quote some passages from that chapter to give you
a flavor:

And as the whole emerges, we shall see it takes that ageless character
which gives the timeless way its name. This character is a specific,
morphological character, sharp and precise, which must come into
being any time a building or a town becomes alive: it is the physical
embodiment, in buildings, of the quality without a name. . . .

In short, the use of languages does not just help to root our build-
ings in reality; does not just guarantee that they meet human needs;
that they are congruent with forces lying in them—it makes a con-
crete diff erence to the way they look. . . .

This character is marked, to start with, by the patterns underlying
it. . . .

It is marked by greater diff erentiation.

If we compare these buildings [the ones with the quality without a
name] with the buildings of our present era, there is much more vari-
ety, and more detail: there are more internal diff erences among the
parts.

There are rooms of diff erent sizes, doors of diff erent widths, col-
umns of diff erent thickness according to their place in the building,
ornaments of diff erent kinds in diff erent places, gradients of window
size from floor to floor. . . .

The character is marked, in short, by greater diff erences, and
greater differentiation.

But it is marked, above all, by a special balance between “order”
and “disorder”.

There is a perfect balance between straight lines and crooked ones,
between angles that are square, and angles that are not quite square,
between equal and unequal spacing. This does not happen because
the buildings are inaccurate. It happens because they are more accu-
rate.

The similarity of parts occurs because the forces which create the
parts are always more or less the same. But the slight roughness or
unevenness among these similarities, come from the fact that forces
are never exactly the same. . . .

And it is marked, in feeling, by a sharpness and a freedom and a
sleepiness which happens everywhere when men and women are free
in their hearts. . . .

It is not necessarily complicated. It is not necessarily simple. . . .

THE BEAD GAME, RUGS, AND BEAUTY / 75

It comes simply from the fact that every part is whole in its own
right.

Imagine a prefabricated window which sits in a hole in a wall. It
is a one, a unit; but it can be lifted directly out from the wall. This is
both literally true, and true in feeling. Literally, you can lift the win-
dow out without doing damage to the fabric of the wall. And, in your
imagination, the window can be removed without disturbing the fab-
ric of what surrounds it.

Compare this with another window. Imagine a pair of columns
outside the window, forming a part of the window space. They create
an ambiguous space which is part of the outside, and yet also part of
the window. Imagine splayed reveals, which help to form the window,
and yet, also, with the light reflected off them, shining in the room,
they are also part of the room. And imagine a window seat leaning
against the window sill, but a seat whose back is indistinguishable
from the window sill, because it is continuous.

This window cannot be lifted out. It is one with the patterns which
surround it; it is both distinct itself, and also part of them. The
boundaries between things are less marked; they overlap with other
boundaries in such a way that the continuity of the world, at this
particular place, is greater. . . .

The timeless character of buildings is as much a part of nature as
the character of rivers, trees, hills, flames, and stars.

Each class of phenomena in nature has its own characteristic mor-
phology. Stars have their character; rivers have their character;
oceans have their character; mountains have their character; forests
have theirs; trees, flowers, insects, all have theirs. And when buildings
are made properly, and true to all the forces in them, then they too
will always have their own specific character. This is the character
created by the timeless way.

It is the physical embodiment, in towns and buildings, of the qual-
ity without a name. (Alexander 1979)

Notice the possibly disturbing implications for software if we are to take Alex-
ander at face value: In an Alexandrian system there is never any sense of modular-
ity at any level of detail. Our definition of abstraction (“Abstraction Descant”)
allows for variations in the abstractions, but systematic ones. Is this definition
flexible enough to capture the sense of freedom we get from Alexander’s descrip-
tions? For example, in his description of a window, we sense that every part of the
abstraction—the panes, the frame, the relation to parts not specifically part of the
window—is a little diff erent in each instance depending on the forces at work at
the window site. Instances of classes can acquire some of this flavor by varying the
state of each object, each one diff erent according to its role in the system; but is it
enough?

76 / PATTERNS OF SOFTWARE

Windows are windows because of their behavior vis-à-vis people: You can look
through them, open them for air and spring smells; they provide light, and some-
times they act like seats or meeting places. Certainly this seems like the sort of
variation we can expect from an object system—to be able to define a class of
object very abstractly according to its behavior—but are we, perhaps, expecting
too much in the variations? For instance, some windows provide light and air, but
others act as chairs if they have sills so constructed. And windows can be ambigu-
ous in their surroundings—can we possibly accommodate this in a modern,
structured software design? Perhaps; perhaps if we drop some of our expectations
regarding reuse, for instance, and universal applicability of abstractions. I’ll say
more about this later.

Alexander felt that people did not understand the geometrical nature of the
quality, but he is partly to blame. It is sometimes hard to extract the importance
of geometry from Timeless Way and Pattern Language possibly because he does
not want people to think that modern architecture, with its obvious simplified
geometry—large rectangular buildings designed to be looked at and not lived
in—is an example of good architecture. He laments:

I’ve known from various readings that the book has had, that most
people do not fully understand that chapter [Chapter 26]. It’s just too
short and it does not fully explain itself—although I was aware that
in that book I just could not do the topic justice. In other words, I
became increasingly aware of the fact that my own understanding of
this, among other things, existed at a very highly developed geometri-
cal level and that all of what The Timeless Way of Building (1979)
was about—all of its human psychological and social content, and all
of its political and constructional content—could actually be seen in
the geometry. That is, there was a particular morphological character
that exists in buildings which have this quality and which does not
exist in buildings which lack it—and furthermore, that this geomet-
rical character is describable and quite clear. But although I knew
that to be so, and thought that I had written about it, I actually had
not. I thought that Chapter 8—which has to do with the morpholog-
ical processes in nature—together with the patterns, and together
with Chapter 26, must make this clear. But in fact they do not.
(Grabow 1983)

Alexander was surprised that people didn’t understand that the geometrical
nature of his pattern language was fundamental. He felt he always knew that the
geometry had to be right, and he always knew that he could tell quickly that it was
right or wrong. I don’t think that even after Mexicali he fully appreciated the
importance of geometry, certainly not to the extent he seems to in his study of
Turkish carpets. The problem in Mexicali wasn’t obviously that everything was

THE BEAD GAME, RUGS, AND BEAUTY / 77

fine except for a lack of appreciation for geometry—it was that and also that the
general skill level was low and that families participating in the design were unfa-
miliar with the language and process. But from his experience Alexander began to
believe that maybe there was more to the geometry than even he appreciated and
that perhaps it was something the could be codified. Alexander said:

The point is that I was aware of some sort of field of stuff—some geo-
metrical stuff—which I had actually had a growing knowledge of for
years and years, had thought that I had written about or explained,
and realized that, although I knew a great deal about it, I had never
really written it down. . . .

In a diagnostic sense, I can say that if this geometrical field is not
present in something then there is something wrong there and I can
assess that fact within a few seconds. (Grabow 1983)

What is this geometrical field of stuff? We can understand some of it from two
things he did: a series of experiments with black-and-white serial patterns and an
analysis of his Turkish rug collection.

I’ll start with the series of experiments because it predates the Turkish rug
studies, although the results of the experiments make more sense in the context of
understanding the rugs.

In the 1960s at Harvard, Alexander performed an experiment in which he
asked subjects to rank-order a set of strips from most coherent and simple to least
coherent and simple. There were 35 strips, each consisting of three black squares
and four white ones. Here are two examples:

If there was good agreement among the subjects about which were simpler and
more coherent, then there would probably be some truth to the conjecture that
there is an objective quality of wholeness or coherence or simplicity. It turned out
there was excellent agreement; as Alexander wrote:

First, Huggins [Alexander’s coinvestigator] and I established that the
relative coherence of the diff erent patterns—operationally defined as
ease of perception—was an objective quality, that varied little from
person to person. In other words, the perceived coherence is not an
idiosyncratic subjective thing, seen diff erently by diff erent people. It is
seen roughly the same by everyone. (Alexander 1993)

At the top of the next page are the 35 strips ordered according to the test sub-
jects from most coherent at the top left, moving down the first column and then
down each column from left to right, with the least coherent at the bottom right.

78 / PATTERNS OF SOFTWARE

Next Alexander asked whether there was some way to explain this ranking.

Oddly—I think—there is a way. It has to do with counting what Alexander calls

subsymmetries. A subsymmetry is a symmetrical subsegment. Coherence is

strongly correlated with the number of subsymmetries. Here’s how you calculate

this number: Consider all the subsegments of sizes 2, 3, 4, 5, 6, and 7. There is 1

subsegment of length 7, 2 of length 6, 3 of length 5, and so forth—21 in all. Here

are the subsegments of length 3:

Now we simply count the number of subsegments that are symmetric. A

subsegment is symmetric if it looks the same reversed. Let me repeat the previ-

ous figure with the number of subsymmetries to the right of each strip:

That there is such a correlation is remarkable. I can’t say that I’m convinced

that the ordering made by Alexander’s subjects seems right to me; for example, I

would have put the strip at the bottom of the first column ahead of the ones just

above it. However, let’s assume the data is accurate and try to understand the idea

of subsymmetries.

It seems that people prefer symmetries that appear on all levels—so in Alex-

ander’s formula, small symmetries count as much as large ones. The first strip

(upper left) has symmetries all over the place, and it is pleasant to look at, but is it

really more coherent than the one at the bottom of the first column? It seems

more regular in some ways, and it is certainly more interesting—it seems more

complex, but it seems easier to remember, since there is a simple alternation

rather than the 1-2-1-2-1 of the other. Maybe it’s more coherent. The idea of sub-

symmetries seems to take this into account, perhaps a little too simplistically.

Alexander wrote:

8
7
8
6

9
9
7
9
7
7
7

6
6
7

6
6
6
6
6
6
6

6
6
6
5
6
5
6

6
6
6
5
5
5
5

THE BEAD GAME, RUGS, AND BEAUTY / 79

Thus, apparently. the perceived coherence of the diff erent patterns
depends almost entirely on the number of symmetrical segments
which they contain. Since each of the segments which is symmetrical
is a local symmetry I summarize this whole result, by saying that the
most coherent patterns are the ones which contain the largest number
of local symmetries or “subsymmetries.” (Alexander 1993)

When we look at his carpets, we’ll see the same thing.

I spent a couple of hours playing with some variations on his computation and
found one that correlated slightly better with experimental data and which fits his
remarks on rugs as well. My computation adds additional bias in favor of doubled
outer boundaries that diminishes exponentially as the boundary grows smaller.

For example, a strip like this has a bias added to its subsymmetry count (it is
not a legal strip in his experiment):

This serves to boost the score of the strip that is third from the top in the first col-
umn and the one at the bottom of that same column. But the improvement is
marginal. I suspect that perfect correlation requires a general algorithm like Alex-
ander’s, along with special cases for strips of overwhelming power. For example,
it’s hard to get the third strip from the top in the first column () to
come out third best when in general subsymmetries or something like them have
to count in order to get the simple alternation strip to come out first—in Alex-
ander’s subsymmetry algorithm it comes out as low as ninth, and in my revised
one it comes out fifth.

Notice that although there is an algorithmic way to determine whether a strip
is coherent (to some degree of accuracy), there is not yet a formative rule for it,
though I suspect there would be, perhaps a context-free grammar. But Alexander
didn’t find one.

When he moved into a study of Turkish carpets, he moved into a vastly more
complex world. Next we’ll look at his surprising look into the carpets, and, even
more surprisingly, we’ll see some glimmer of connection to software.

� � �

Alexander’s foray into rugs follows the strip-research vein, but on a far less scien-
tific basis. There are no studies, there are no numbers (though he does talk about
the number of “centers” in a carpet correlating with its “wholeness”). And in
general the results there are a little less compelling as argument but much more
compelling in beauty.

In the early 1970s Alexander began buying Turkish carpets, religious Turkish
carpets. He said:

80 / PATTERNS OF SOFTWARE

I was extremely innocent when I started out. I simply liked them. My
main concern was actually in their color. I was completely absorbed
by the question of color but never thought it would have any serious
connection to my work. Also, I never thought of my interest in these
rugs as having to do with geometry. (Grabow 1983)

He spent a lot of money—even getting into financial trouble; he became a rug
dealer for a while—and he became known to Bay Area rug collectors. In fact, his
carpets were once shown in a special exhibition at the DeYoung Museum in San
Francisco.

Most people who collect rugs have a special interest, such the village where the
rugs were woven or the treatment of a particular theme, but Alexander’s rugs
weren’t in such neat categories—they were chosen because they had something
special about them. Because he had so little money compared with the cost of
each carpet, he spent a lot of time looking at them before he bought them. He
wasn’t especially aware of the special quality that set some carpets apart—even
though his interest in carpets began in the midst of his quest for the quality with-
out a name. His friends mentioned to him that his carpets had some special
something and he said:

When people started telling me this I began to look more carefully to
discover that there was indeed something I was attracted to in a half-
conscious way. It seemed to me that the rugs I tended to buy exuded
or captured an incredible amount of power which I did not under-
stand but which I obviously recognized.

In the course of buying so many rugs I made a number of discov-
eries. First, I discovered that you could not tell if a rug had this special
property—a spiritual quality—until you had been with it for about a
week. . . . So, as a short cut, I began to be aware that there were cer-
tain geometrical properties that were predictors of this spiritual
property. In other words, I made the shocking discovery that you
could actually look at the rug in a sort of superficial way and just see
if it had certain geometrical properties, and if it did, you could be
almost certain that it had this spiritual property as well.
(Grabow 1983)

Alexander taught some courses on the geometry of his rugs and discovered that
the carpets shared this magical property with religious buildings and religious art
as well. Over the next 20 years he prepared a book about it, recently published,
called A Foreshadowing of 21st Century Art: The Color and Geometry of Very Early
Turkish Carpets (1993). This is a remarkable book. It’s about 9 x 12 inches and
excellently bound. The paper is the sort you find in high-quality art-print books,
and the reason is that it is full of gorgeous reproductions of his carpet collection.

THE BEAD GAME, RUGS, AND BEAUTY / 81

The sad thing—for you—of course is that I cannot possibly reproduce any of

the art from this book in such as way as to do it justice, so some of my comments

will necessarily be a little on the abstract side (those of you who believe whole-

heartedly in the power of abstraction to solve all the world’s problem will have no

trouble with this at all). However, I will try my hand at reproducing some of his

examples. But for the real impact—and the beauty of his stunning carpets—buy

or borrow the book and enjoy.

In this book Alexander says some pretty darn unbelievable things. First is that

the beauty of a structure—a building, for instance—comes from the fine detail at

an almost microscopic level. He takes the grain size for noticeable structure from

that used in the carpets: one eighth inch. He wrote:

In short, the small structure, the detailed organization of matter—
controls the macroscopic level at a way that architects have hardly
dreamed of.

But twentieth century art has been very bad at handling this level.
We have become used to a “conceptual” approach to building, in
which like cardboard, large superficial slabs of concrete, or glass, or
painted sheetrock or plywood create very abstract forms at the big
level. But they have no soul, because they have no fine structure at
all. . . .

It means, directly, that if we hope to make buildings in which the
rooms and building feel harmonious—we too, must make sure that
the structure is correct down to ⅛th of an inch. Any structure which is
more gross, and which leaves this last eighth of an inch, rough, or
uncalculated, or inharmonious—will inevitably be crude.
(Alexander 1993)

Second is that color and feeling also comes from this fine structure:

The geometric micro-organization which I have described leads
directly to the glowing color which we find in carpets. It is this
achievement of color which makes the carpet have the intense ‘being’
character that leads us to the soul. (Alexander 1993)

Alexander feels that artists of the past—often of the distant past but as recently

as Matisse, Bonnard, and Derain—had a better hold on beauty and that it is the

task of late twentieth century artists to try to recapture the knowledge that

seemed, perhaps, so obvious to these earlier artists as to be intuitive. Carpets pro-

vide a way to study this mastery because they are pure design, pure ornament,

and their construction is so completely unconstrained by the materials of their

construction as to allow the artist’s true mastery to come forward. Alexander:

82 / PATTERNS OF SOFTWARE

In a carpet, we have something which deals almost entirely with pat-
tern, ornament. There is really nothing else: just the geometry and
the color of the plane. As I began to enjoy carpets, I realized that the
earliest carpets, especially, deal with this problem with enormous
sophistication. The design of the carpet is essentially made of tiny
knots—each knot usually about an ⅛ of an inch by an ⅛ of an inch.
Each knot is a separate bit of wool, and may be any color, without
any reference to the underlying warps and wefts. So it is a pure
design, made of tiny elements, and which the structure (the design
structure, the pure organization of the geometrical arrangement) is
the main thing which is going on. (Alexander 1993)

This is just a bitmap, but, as we’ll see, with perhaps quite a number of color bits
per pixel.

What is fascinating about this book is that Alexander is not afraid to come out
and say that the power of these carpets comes at least in part from the need of
these early artists to portray their religious feelings and needs. In fact, Alexander
boldly tells us in the first paragraph of Chapter 1:

A carpet is a picture of God. That is the essential fact, fundamental to
the people who produced the carpets, and fundamental to any proper
understanding of these carpets. . . .

The Sufis, who wove most of these carpets, tried to reach union
with God. And, in doing it, in contemplating this God, the carpet
actually tries, itself, to be a picture of the all seeing everlasting stuff.
We may also call it the infinite domain or pearl-stuff.
(Alexander 1993)

The color of the carpets is paramount, and Alexander points out that usually
the oldest carpets—even though they are the most faded—have the brightest and
most brilliant colors. He says this is partly because the master dyer was an equal,
in the twelfth century, to the master weaver. Such a master dyer served a 15-year
apprenticeship, after which the apprentice was required to produce a color no one
had seen before. Only after that could the apprentice become a master. Alexander
notes that this training is the equivalent today of training as a theoretical physicist
followed by training as a brain surgeon. Perhaps a dyer did not learn as much as
someone would for either of these two professions, but it certainly says a lot about
the importance of the dyer to Turkish society.

The depth of feeling in a carpet is related to a concept Alexander calls whole-
ness:

Both the animal-being which comes to life in a carpet, and the inner
light of its color, depend directly on the extent to which the carpet
achieves wholeness in its geometry. The greatest carpets—the ones

THE BEAD GAME, RUGS, AND BEAUTY / 83

which are most valuable, most profound—are, quite simply, the car-
pets which achieve the greatest degree of this wholeness within them-
selves. (Alexander 1993)

Alexander proposes that wholeness is an objective concept—it has nothing to
do with preferences or subjective feelings about the object that might display it.
Like the strips we saw earlier, Alexander gives the reader a test to prove it, in
which he shows us two pairs of carpets and asks an unusual question:

If you had to choose one of these two carpets, as a picture of your own
self, then which one of the two carpets would you choose? . . .

In case you find it hard to ask the question, let me clarify by asking
you to choose the one which seems better able to represent your
whole being, the essence of yourself, good and bad, all that is
human in you. (Alexander 1993, emphasis in original)

We are presented with two pairs of carpets. The first pair is the Berlin prayer
rug and the Kazak from the Tschebull collection; the second pair is the Flowered
Carpet with Giant Central Medallion and the Waving Border Carpet, both from
Alexander’s collection.

Alexander claims that almost everyone will pick the same carpet from each
pair, because an objective something, a wholeness or oneness, comes through.

Up to this point in reading the book I thought maybe Alexander had gone a lit-
tle off his nut and I was ready to quit, so I took the test to prove he was getting a
little too fanciful at this stage of his career. I stared at the two carpets in the first
pair and spent some time trying to second-guess him. Then I kept looking at the
first rug until I felt as calm as I could looking at it. After, I looked at the second
one, again until I became the most peaceful I could feel. Then I asked myself the
questions Alexander posed, and I chose the one that made me more at ease while
thinking about myself. I chose the Berlin prayer rug. This was the choice he pre-
dicted.

At this point I felt nervous.

He pointed out that the Berlin prayer rug is very well known, and sometimes
people have seen it and perhaps don’t remember it but unconsciously choose it
because it is familiar. He then invites us to try it on the previously unpublished
pair from his own collection: the Flowered Carpet with Giant Central Medallion
on the left and the Waving Border Carpet on the right.

I looked at the Waving Border Carpet—the right-hand one—which has a large
central octagon with four surrounding smaller octagons. They are mostly blue
with intricate interlocking patterns inside. The large octagon has some red, white,
and beige subpatterns. All the octagons are in a field of red. At the ends of the cen-
tral part of the carpet are triangular pyramidal indentations—sort of partial

84 / PATTERNS OF SOFTWARE

shapes pressing into the center portion containing the octagons. These are darker,

a deep blue-black—they are like an awakening into the center.

The primary feature of the carpet, though, is the waving border made of a

degenerating vine. It is not very symmetric when you look closely at it, and it con-

tains a recurring hook motif. Each bend of the vine contains a flower—maybe a

tulip form—or a goddesslike figure—very abstract but distinct. The eff ect is that

the motion of the border is so demanding that it enhances the calmness at the

center of the carpet. I was immediately attracted to it.

But then I started to wonder how I was being gamed by Alexander—what was

he trying to do? I looked at the other carpet—the left-hand one. It is partly

destroyed—the upper right quarter and half of the very central portion are com-

pletely missing. The border is partly chewed away; the colors seem faded. The

border is clearly less dramatic than the Waving Border Carpet. But the central

part of the rug has spandrels of a color I had never seen before, a lace interlock of

a deep green-black, but shimmering on a bed of slightly dark red. Sometimes the

green comes to the fore, sometimes the red. The interlace is symmetric only at

the grossest level, with almost every detail that should be the same, actually

diff erent. Each of the three existing spandrels are diff erent from the others but

seem of a kind. I found I was drawn to the upper-left spandrel, which is denser,

more involved—a complexity that I followed and focused on for 10 minutes

without noticing the time. I would be pulled in then pulled out, and as I moved

my eyes from one spandrel to another, I crossed the central medallion, a simple

blue, yellow, and red flower motif bordered in an Escher-field of abstract animal

figures.

But it was clear that the first rug was the more profound and impressive to a

trained eye, although I really wanted to look at the second one longer. Foo on

you, Alexander, I said, you and your idiosyncratic punctuation and crazy theo-

ries—I’m choosing this lesser rug—the left-hand one—and this will prove that

your damn ideas that I’ve puzzled over for years are worthless.

I believe that almost everyone, after careful thought, will choose the
left-hand example. Even though the two are of roughly equal impor-
tance, and of comparable age, I believe most people will conclude that
the left-hand one is more profound: that one feels more calm looking
at it; that one could look at it, day after day, for more years, that it
fills one more successfully, with a calm and peaceful feeling. All this is
what I mean by saying that, objectively, the left-hand carpet is the
greater—and the more whole, of the two. (Alexander 1993)

My domestic partner made the same choices, feeling as I did that the left-hand

carpet of the second pair showed significant flaws that mirrored something in her,

THE BEAD GAME, RUGS, AND BEAUTY / 85

though it was obviously the lesser carpet in some formal sense. (Later that week
nine of 10 people I quizzed made the same choices.)

I kept reading.

The book is in four parts: a theoretical discussion of where the quality of
wholeness comes from, a discussion of dating the carpets and how they fit into a
progression, pictures and descriptions of the carpets themselves, and finally a
comparison of two carpets, the first at the start of the progression and the second
at the end—using them Alexander shows us how far the art has degenerated. I
want to talk only about the origins of wholeness.

A carpet is whole to the degree that it has a thorough structure of centers.
Alexander starts us out with this definition:

As a first approximation, a “center” may be defined as a psychological
entity which is perceived as a whole, and which creates the feeling of a
center, in the visual field. (Alexander 1993)

This definition doesn’t help much, so he gives us some examples.

The following is an example of a center from a round blossom from the Blos-
som fragment:

Notice that this figure has a strong center—in the very middle. But that’s not the
main point. Each of the lighter octagons and diamonds forms another center, the
darker dots at the centers of the smaller blossoms form others. The asymmetrical

86 / PATTERNS OF SOFTWARE

black leaves are kinds of centers. The sharp indentations of the outer press toward
the middle, reinforcing the center. The Blossom center gives the impression that
centers are all like mandalas—somewhat circular and concentric. Not so.

Here is a sketch from the niche of the Coupled column prayer rug:

This form is a center because of the hexagonal archway, the steps, the arms with
hexagons at the ends, and the lily at the top—not because of the overall shape.

The next point Alexander makes is that for wholeness, it isn’t that a carpet has
a single center but that it has a multiplicity of centers that reinforce one another
by influence and by their structure, and that’s what makes the diff erence.

Alexander says:

The degree of wholeness which a carpet achieves is directly correlated
to the number of centers which it contains. The more centers it has in
it, the more powerful and deep its degree of wholeness.
(Alexander 1993)

In fact, the more centers there are and the more intertwined and interlaced they
are, the more whole the carpet becomes because the centers are denser. At the top
of the next page is an example of this from the border of the Seljuk prayer carpet.
Both the dark design elements and the lighter background form centers wherever
there is a convex spot, wherever linear parts cross, and at bends. There are per-
haps a dozen or more centers here.

THE BEAD GAME, RUGS, AND BEAUTY / 87

Centers are made up of local symmetries.

1. Most centers are symmetrical. This means they have at least one
bilateral symmetry.

2. Even when centers are asymmetrical, they are always composed
of smaller elements or centers which are symmetrical.

3. All centers are made of many internal local symmetries, which
produce smaller centers within the larger center (most of them not on
the main axis of the larger center), and have a very high internal
density of local symmetries. It is this property which gives them
their power. (Alexander 1993)

One of the interesting things about the carpets is that the sense of symmetry
remains even when the parts that are supposed to correspond are not exactly
alike. At the top of the next page is an interesting example. Look at it quickly and
decide whether you think it is symmetric. Looking closely at it, it’s clear that it is
crudely symmetric, but this is enough for most people to see it as very symmetric.
There is actually something remarkable at work here: It is not just that the
crudeness of this form—both in the original and in my even cruder reproduc-
tion—does not get in the way of its beauty; in fact, it enhances that beauty. On
the wall above my writing place I have a photograph of a Greek “shack” taken by

88 / PATTERNS OF SOFTWARE

Barbara Cordes. The shack is made of stone with a red-tile roof. Each stone is of
a diff erent size—some roughly cut, others seemingly randomly selected. The
roof tiles are all diff erent colors and roughly arranged. There is a deep blue frame
window, and the shack sits behind a dead bush. The reason I have the picture
there is that it is relaxing and helps me write. Its beauty, somehow, comes from
the irregularity of the construction. Here is what Alexander wrote about a simi-
lar building, the famous House of Tiles in Mexico City:

We have become used to almost fanatical precision in the construc-
tion of buildings. Tile work, for instance, must be perfectly aligned,
perfectly square, every tile perfectly cut, and the whole thing accurate
on a grid to a tolerance of a sixteenth of an inch. But our tilework is
dead and ugly, without soul.

In this Mexican house the tiles are roughly cut, the wall is not per-
fectly plumb, and the tiles don’t even line up properly. Sometimes one
tile is as much as half an inch behind the next one in the vertical
plane.

And why? Is it because these Mexican craftsmen didn’t know how
to do precise work? I don’t think so. I believe they simply knew what is
important and what is not, and they took good care to pay attention
only to what is important: to the color, the design, the feeling of one
tile and its relationship to the next—the important things that create
the harmony and feeling of the wall. The plumb and the alignment
can be quite rough without making any diff erence, so they didn’t
bother to spend too much effort on these things. They spent their
effort in the way that made the most diff erence. And so they pro-
duced this wonderful quality, this harmony . . . simply because that is
what they paid attention to, and what they tried to produce.
(Alexander 1991, emphasis in original)

The reason that American craftsmen cannot achieve the same thing is that they
are concerned with perfection and plumb, and it is not possible to concentrate on
two things at the same time—perfection and the field of centers.

THE BEAD GAME, RUGS, AND BEAUTY / 89

In our time, many of us have been taught to strive for an insane per-
fection that means nothing. To get wholeness, you must try instead to
strive for this kind of perfection, where things that don’t matter are
left rough and unimportant, and the things that really matter are
given deep attention. This is a perfection that seems imperfect. But it
is a far deeper thing. (Alexander 1991, emphasis in original)

At this point it is clear that Alexander’s earlier work on subsymmetries plays
right into the wholeness of rugs: The strips with more subsymmetries were seen
as more coherent than those with fewer. A subsymmetry is like a center, and the
more centers the more whole the carpet is. Furthermore, subsymmetries range
from the size of the entire strip down to the smallest place where symmetry is
possible—pairs of squares. The same is true of centers: They must exist at all lev-
els of scale. In fact, carpets with all the other characteristics for wholeness but
lacking centers at all levels will not achieve wholeness and so can be boring. Alex-
ander states the rule thus:

A center will become distinct, and strong, only when it contains,
within itself, another center, also strong, and no less than half its own
size. (Alexander 1993)

This is true not only for the same reasons it is true in the strips but also
because without large structure, the design cannot hold together—it becomes
merely a jumble of isolated design elements, each of which might hold attention
but without the large glue it will not be calm and whole—it would be like gluing
together several masterpiece paintings at the edges. With this definition it is
apparent that the goal of a carpet is to present a single center—the one at the larg-
est scale—which necessarily must be constructed from other centers that support
it.

One of the things I noticed about the Flowered Carpet with Giant Central
Medallion was that the interlaced green and red spandrels held my attention. This
is an example of Alexander’s notion of the strong use of positive space. In such use
both the positive and negative spaces have good shape and form centers. In this
way the density of centers can be higher, and the degree of wholeness stronger.
This concept should be familiar because it is like those Escher drawings of fish, for
example, in which both the figure and ground can be seen as fish. It is a little
more subtle in this niche, which appears at the top of the next page.

The shapes of the white convexities are strong as are the black convexities that
are white concavities. The figure is bilaterally symmetric and leads us to strong
centers at the half-hexagon at the top and in the spandrels.

Now that we have centers—lots of them—we need to make them distinct—the
centers need to be diff erentiated; recall that in Alexander’s A Timeless Way (1979),

90 / PATTERNS OF SOFTWARE

Alexander talked at length about diff erentiation. At the top of the next page is a

very rough sketch of the central star of the star Ushak rug.

Alexander says the star achieves its distinctiveness from five sources:

1. The centers next to the figure—those created by the space
around it—are also very strong.

2. These strong centers are extremely diff erent in character from
the star itself—thus the distinctness is achieved, in part, by the diff er-
ences between the centers of the figure, and the centers of the ground.

3. There are very strong color diff erences between field and
ground.

4. The complex character of the boundary line seems, at least in
this case, to contribute to the distinctiveness of the form. . . .

5. The hierarchy of levels of scale in the centers also help create the
eff ect, by increasing the degree to which the form is perceived as a
whole, entity, or being in its own right. (Alexander 1993, emphasis in

original)

The definition of a center now is:

Every successful center is made of a center surrounded by a boundary
which is itself made of centers. (Alexander 1993)

That this is a partially circular definition seems to startle Alexander, although we

computer scientists and mathematicians find it simple. It reminds me of the defi-

THE BEAD GAME, RUGS, AND BEAUTY / 91

nition of system, which I’ll talk about once we’re through with Alexander’s wild
ride.

Alexander goes back to the bead game and talks about the difficulty of finding
two-dimensional patterns with high degrees of subsymmetries like the strips we
saw earlier. He points out one that is seen in a couple of rare Konya carpets—it is
a figure that is almost immediately familiar and unique (top of the next page).

There clearly are many centers here, and the figure ground distinction is amaz-
ing. There are embedded crosses, giving the entire figure the feeling of a being,
and there are almost smaller beings within the larger one.

This figure lies in an 11 x 15 grid. It is one shape out of 1047 possibilities.
Because of this, Alexander is enthralled by the creative process require to find it.
He says something interesting about this process, which we can liken to the design
process in software:

[T]he greatest structures, the greatest centers, are created not within
the framework of a standard pattern—no matter how dense the
structures it contains—but in a more spontaneous frame of mind, in
which the centers lead to other centers, and the structure evolves,
almost of its own accord, under completely autonomous or spontane-
ous circumstances. Under these circumstances the design is not
thought out, conceived—it springs into existence, almost more
spontaneously, during the process by which it is made.

92 / PATTERNS OF SOFTWARE

And, of course, this process corresponds more closely to the condi-
tions under which a carpet is actually woven—since working, row by
row, knot by knot, and having to create the design as it goes along,
without ever seeing the whole, until the carpet itself is actually fin-
ished—this condition, which would seem to place such constraint
and difficulty on the act of creation—is in fact just that circumstance
in which the spontaneous, unconscious knowledge of the maker is
most easily released from the domination of thought—and thus
allows itself most easily to create the deepest centers of all.
(Alexander 1993, emphasis added)

The implication is clear: When we carefully design or work from a standard
pattern, we do not achieve artifacts of the deepest meaning and wholeness. Per-
haps the results are pleasant, but they are eventually boring and funky—perhaps
they are commonplace or do not serve their purpose as well as they could. Alex-
ander says he has evidence for his bold statement—he leaves it to the next book
(not yet published) in the sequence, The Nature of Order—but there is not
enough room in such a small book as A Foreshadowing to go into it.

This is also the way the best (creative) writing is done. When you sit down at
your writing place, sometimes you are transformed into a mere scribe as the
power of the story or poem takes over—it is an adventure to see where it will lead.
Many writers have a ritual or set of superstitions that they hope will lead them to
this magic place where the story becomes guide. When asked why they write,
some writers say it is to find out what happens in the end.

I write poetry and fiction as well as essays. In all three, but especially in poetry,
I am often shocked to read what I wrote, because it rarely corresponds to any plan
I’ve made. Books on writing—at least the most recent ones—tend to discourage
overplanning the story or poem. The question becomes—and you must answer
this for yourself—does this clearly creative process have a place in a software pro-
cess?

THE BEAD GAME, RUGS, AND BEAUTY / 93

The last topic Alexander addresses is one I casually brought up just a bit ago—

the emergence of beings.

I’ll leave it to Alexander to introduce the topic:

I now present the culmination of the argument. This hinges on an
extraordinary phenomenon—closely connected to the nature of
wholeness—and fundamental to the character of great Turkish carpet
art. It may be explained in a single sentence: As a carpet begins to be
a center (and thus to contain the densely packed structure of
centers. . .), then, gradually, the carpet as a whole also begins to
take on the nature of “being.” We may also say that it begins to be a
picture of a human soul.

The subject is delicate, because it is not quite clear how to discuss
it—not even how to evaluate it—nor even in what field or category
to place it. It opens the door to something we can only call “spirit”
and to the empirical fact—a fact of psychology if of nothing else—
that after all, when a carpet does achieve some greatness, the great-
ness it achieves seems to lie in the realm of the spirit, not merely in the
realm of art. (Alexander 1993, emphasis in original)

What is a being? It’s a powerful center that transcends the merely fascinating. It

is a center that takes over and reflects the human and perhaps god-spirit. It is

autonomous, a “creation unto itself.” The figure at the top of the next page is the

being that appears in the Seljuk prayer carpet.

I think it’s rather impressive.

Alexander ends his book by telling us:

I see the beginnings of an attitude in which the structure may be
understood, concretely, and with a tough mind—not only with an
emotional heart. And I see the rebirth of an attitude about the world,
perhaps based on new views of ethics, truth, ecology, which will give
us a proper ground-stuff for the mental attitude from which these
works can spring.

I do not believe that these works—the works of the 21st century—
will resemble the Turkish carpets in any literal sense. But I believe
some form of the same primitive force, the same knowledge of struc-
ture, and the same desire to make a work in which the work carries
and illuminates the spirit—will be present.

I am almost certain, that in the 21st century, this ground-stuff will
appear. (Alexander 1993)

Perhaps.

94 / PATTERNS OF SOFTWARE

Well, what can this possibly have to do with software? Maybe not too much,
but Alexander’s definition of center sounds familiar to me. Here is a definition of
system I’ve been using:

A system is a set of communicating components that work together
to provide a comprehensive set of capabilities.

Of course, a component is another system. The nature of a system is such that
at almost any granularity it looks the same—it is a system. This is easy: A system
is composed of subsystems that achieve certain eff ects by exhibiting behavior in
response to requests. The system and each subsystem are defined behaviorally
according to the roles and responsibilities of that system or subsystem. Each sub-
system can be viewed as a center, and the near circularity of Alexander’s definition
of center is reflected here: The goal is to build a system which is necessarily made
up of other systems.

THE BEAD GAME, RUGS, AND BEAUTY / 95

We can compare this with the definition of autopoietic system, which is a term
from a field that studies systems from the point of view of biology—you could
call it a field that has a mechanistic view of biological systems.

An autopoietic system is organized as a network of processes of pro-
duction of components that produces the components that: (1)
through their interactions and transformations continuously regen-
erate and realize the network of processes that produced them; and
(2) constitute it as a concrete entity in the space in which they exist
by specifying the topological domain of its realization as a network.
(Varela 1979)

If you read this definition carefully, you will find that it isn’t so very diff erent
from my definition of “system” or Alexander’s definition of “center”. When we put
together an object-oriented thing, it is a system, not a program. The diff erence
between a program and a system is precisely the characteristic of a system having
many centers or ways of approaching it—from the vantage point of any sub-
system, the rest of the system is a server—whereas in a program, you generally
have a single way of viewing it, usually from the top down.

The most wonderful thing can happen if you construct a system that can be
customized or specialized—it becomes a framework.

A framework is a system that can be customized, specialized, or
extended to provide more specific, more appropriate, or slightly
diff erent capabilities

If you have a framework, you can use it for diff erent purposes without having
to recode it all. It is in this sense—and in this sense only—that objects and object
technology provide reuse. There is no such thing as (easy) reuse in a general sense
in which you can stockpile components except for the most trivial and inconse-
quential.

Building a system is like making a Turkish carpet: It requires an enormous
amount of work, concentration, inspiration, creativity, and, in my opinion, it is
best done piecemeal exactly the way the best Turkish master makers did it—by
starting with an idea and partly designing it and then seeing where it goes.

Only in some systems does the being emerge, the framework that can be used
and reused which gives systems and objects their spirit.

Like the best Turkish carpets the best systems are unique, but the work will not
be wasted if you can continue to use it for new but related purposes. It is an asset
and an inspiration to others who follow to try to do as well. A system can afford to
be diff erent—and perhaps over time we will develop mechanisms in our overly
speed-conscious programming languages and system-building languages to make

it easier to produce highly diff erentiated and center-full systems—I have hopes
for the twenty-first century too.

What are patterns, then? Perhaps they are for Alexander what they are by anal-
ogy for computer scientists: just a way to remember what we’ve forgotten about
buildings so that when we set out to build towns and buildings, cottages and
homes, paths and places to congregate, we don’t forget the stuff we need to help
create the centers, to give them life, give them the quality without a name, the
being that emerges at last.

PART II
�

LANGUAGES

99

�
Language Size

The Lisp world has had numerous and lengthy debates on the relative worth of
large versus small programming languages. Large languages like Common Lisp
have a relatively small core of true primitives with a large library of functionality,
but—a big but—there is no distinction made between the primitives and the
library in the language specification itself. Thus it appears to a casual observer as
if the language were just plain big.

This is relevant to object-oriented programming because a point of the large-
ness of Common Lisp is to provide a useful corpus of reusable components in the
form of functions. If there is a fundamental reason that large languages are
believed inferior or less useful than a small one, the hope for the ubiquity of reus-
able components is in trouble.

It probably matters whether the library is included as part of the language or
whether it is an acknowledged library. When a library is part of a language, as it is
with Common Lisp, you cannot easily choose to ignore it, and later maintainers
cannot easily know what parts of the language are used. When a library is pack-
aged as a library, there is at least the possibility of documentation that states what
libraries are actually used.

Let me take a minute to outline enough about the history of Common Lisp and
its size woes to give you an idea of the context in which the debate exists. In 1980
there were two main dialects of Lisp—InterLisp and MacLisp—each vying to be
the one true Lisp. But MacLisp had multiplied into a variety of similar subdialects,
some on Lisp machines and some on stock hardware. InterLisp, on the other hand,
was relatively stable and apparently about to win the Lisp sweepstakes. The
MacLisp folks really didn’t like InterLisp winning out—just as the Eiff el folks
appear to dislike C++ winning out—and so they got together to define a descrip-
tion of a family of languages, called Common Lisp, but the effort changed over time
so that Common Lisp became a true dialect. In the beginning it was relatively

100 / LANGUAGES

small: 772 defined symbols, including function names, macro names, global vari-
ables, and constants. When the rest of the world saw Common Lisp on the rise, an
ISO Lisp effort began, and the United States responded with an ANSI effort. Well,
this opened the floodgate for every would-be Lisp language designer to join and
start flailing away at Common Lisp. The result is that ANSI Common Lisp has
about 1,000 defined symbols and its specification is 1,300 pages long.

Part of the expanded Common Lisp is its object-oriented component (called
CLOS for “Common Lisp Object System”), a generalized iteration construct
called LOOP, and a full-blown condition system. Even though dozens of people
contributed to the final design, it is relatively clean, given its starting point. For
example, CLOS meshes very well with the rest of Common Lisp so that the only
real places where the seam is visible are the (ordinary) functions that are not
generic functions and the types that are not classes.

The standardization process lasted from around 1987 until 1995, and during
that period, Lisp companies changed from enjoying a booming business to being
just barely in business. There are probably lots of reasons for this—the bad busi-
ness judgment of artificial intelligence (AI) companies being not the least—but
one that has been proposed is that Common Lisp was just too big to run fast and
produce small executables. Actually, the AI businesses tried to blame their busi-
ness failures on Lisp and switched to C/C++ instead.* The Lisp community—
always ready to aim for the simplistic answer—looked at the features that C/C++
have and contrasted them with Lisp features and tried to conclude that the diff er-
ences were what made C/C++ successful. These diff erent features boiled down to
“small and fast.”

The problem of size is what I want to address. While researching language size,
I talked with a number of people on this issue. One person wrote this:

There is a basic tension here between small, elegant languages and
large, efficient languages. The reason for efficient languages being
large is that typically the price for efficiency is specificity, so in order
to have a general-purpose efficient language, the number of con-
structs must grow. (anonymous)

A common belief is that a language is large because the designers wish it to be
efficient. For example, Scheme has no multidimensional arrays (only vectors) and
there is an argument in the Scheme community about whether to add them, thus
increasing the size of the language. The argument for arrays is that programming

* This seemingly nonsensical decision actually makes sense, because large companies that
bought AI software usually required the source be put in escrow, planning to take over
maintenance if the supplier went under. It was thought cheaper and easier to hire C/C++
programmers than Lisp programmers to maintain and enhance the source.

LANGUAGE SIZE / 101

with them is common and so should be supported; the argument against is that
you could roll your own arrays (using vectors of vectors) and the only diff erence
would be speed—therefore, because multidimensional arrays can be expressed in
terms of other more primitive constructs, Scheme would become less elegant by
admitting redundant constructs. That is, to the Scheme community, adding
multidimensional arrays would decrease Scheme’s elegance while merely provid-
ing fast arrays.

There are more compelling reasons than efficiency, however, for adding con-
structs. If a data structure is commonly used, it should be supported as well as it
can be. If a useful and frequently used function is difficult to implement correctly,
it probably should be supported. A good example of this latter point focuses on
one of Common Lisp’s most ridiculed features, format, which is inspired by For-
tran’s FORMAT statement and is used to output strings. As you’d expect, format is
used for printing floating-point numbers in a variety of ways and for printing
tables and all sorts of things. As you might not expect, it can perform iteration,
conditional execution, and non-local exits. With it you can construct pretty nice
error messages and diagnostics. Here is an example: Suppose you have a compiler
and you want to report the number of errors and warnings when it completes. You
can define the following:

(defvar *compiler-format-string*

 "Done.~^ ~@(~R~) warning~:P.~^ ~@(~R~) error~:P.")

Then if there are no warnings or errors, you write

(format t *compiler-format-string*)

which prints

Done.

If there are three warnings you write

(format t *compiler-format-string* 3)

which prints

Done. Three warnings.

If there is 1 warning and 5 errors you write

(format t *compiler-format-string* 1 5)

which prints

Done. One warning. Five errors.

102 / LANGUAGES

Notice a couple of things. First, there apparently is some control structure
encoded in format strings—a format string can determine whether there are
remaining arguments and can abort if there are none. Second, the syntax of such
strings is obscure at best. Third, the encoding of format strings is compact, so that
complicated instructions don’t take up much space. Fourth, format allows you to
express things normally difficult to express, such as the names of numbers spelled
out, capitalization, and determining plurals. (Not shown are things like printing
comma-delimited lists without breaking words across newlines and justifying
text.) Fifth, format is powerful enough that there really isn’t much excuse to
forgo nice diagnostics in your programs.

What are the trade-offs? Format strings don’t look like Lisp, and they consti-
tute a non-Lispy language embedded in Lisp. This isn’t elegant. But, the benefit of
this is compact encoding in such a way that the structure of the fill-in-the-blank
text is apparent and not the control structure. Consider the format string
above—don’t worry, I won’t explain it to you or make you understand it. You can
see that it prints basically three sentences:

“Done. warning . error .”

The control structure that tells format to end early is encoded by ~ .̂ It’s
thereby out of the way; were there no way to encode an early exit, the basic struc-
ture of the message would be lost, tangled up in conditionals and maybe exits
expressed in ordinary Lisp code. It is unlikely that people will implement format
on their own, and it is almost equally unlikely that people will bother writing the
code to produce nice, readable diagnostics. Instead, we are likely to be stuck with
messages like this:

Done. 1 warnings. 1 errors.

Of course, format could be part of a library, which isn’t a problem as long as
the library is universally accepted and available. With format part of the lan-
guage, everyone uses the same function, and code is more readable.

However, consider proving that a compiler written using this format state-
ment outputs correct messages. There is no access to the source, neither for prov-
ing nor for improving. And some would argue that libraries shouldn’t supply
source.

I won’t even comment on the apparent linkage the first commenter made
between “small” and “elegant.”

Another person wrote:

It’s easier to reason about an algorithm expressed in a small lan-
guage, because the primitives of a small language have simpler, more
intelligible, and (often) better-defined semantics. So it’s easier to

LANGUAGE SIZE / 103

show that algorithms so expressed satisfy their specifications and to
analyze their complexity. (John David Stone, personal communication

1993)

It is probably true that algorithms have specifications, but this isn’t true very
often of “regular” code, which has been constructed by a process of piecemeal
growth. The difficulty of a proof of correctness, though, is at least partly depen-
dent on the size of the text. In a small language, text is large, because either things
are spelled out in situ or there are auxiliary functions (or programs). In either
event, the proof of correctness will likely have lemmas corresponding to chunks
of the program text—just to make the proof manageable—and these chunks will
be equivalent to the constructs you’d find in a large language. So, I don’t think
proofs would be substantially easier based on size considerations alone. Any
diff erence would be because one language might have a formal semantics,
whereas another might not. A small language defined by a group of mathemati-
cians or would-be mathematicians might have a usable formal semantics, and
people who wish to prove correctness would be in luck with such a language.
But—I hate to be the one to break the news—I’ve been in industry for over 10
years, and I don’t see a whole lot of people proving correctness; I see them reason-
ing about their programs, but they don’t need a formal semantics to do that.

Informal reasoning about a program using a complex language construct,
however, can be difficult when only a small portion of the construct is used in a
particular case. It’s a matter of conjecture whether it is easier to prove the correct-
ness of a reduced use of functionality than to code and prove correct your own
reduced version of it. Certainly there is less reuse in the latter case.

The same writer made this remark:

The conclusions one reaches by reasoning about an algorithm
expressed in a small language are more likely to apply to actual com-
puter executions of the algorithm, because a small language is more
likely to be correctly implemented on a computer. (Stone 1993)

This is bad news for libraries. If you can’t trust the implementers of a language
to implement correctly something well specified in a standards document, how
can you trust a library implementer? Indeed, since we know that language imple-
menters discouragingly often get it wrong. But the key here is how to get to a cor-
rect program in the face of its size and its piecemeal origins. Better put, how can
we retain a correct program as it evolves? Clearly, if correctness is important, you
need to maintain that correctness incrementally just as the program grows.

He also said this:

It’s easier and quicker to learn a small language. (Stone 1993)

104 / LANGUAGES

When I asked Stone to be more specific about how long it should take to learn a
programming language he added,

One semester of thirteen or fourteen weeks, for one’s first language.
Four to eight working days of eight to twelve hours each, for any sub-
sequent language. After a couple of months of programming in a new
language, maybe one or two more working days; after the promulga-
tion of a new language standard or the acquisition of a new major
revision of the translator, maybe one more working day.

Let me turn it around: If a company hires a new B.S. in computer
science of average ability and throws a new programming language at
him and after a month he’s still not using the resources of that lan-
guage eff ectively, then probably the language is too big. (Stone 1993)

If we think in terms of habitability, it seems amazing that learning a language
would take time measured in days or weeks. Sure, you can learn the constructs of
a language and its rules of composition in such a time, but do you really know the
language? For instance, Lisp aficionados just laugh and laugh when they read
code produced by someone who first learned Fortran and then spent four to
eight working days learning Scheme (a small language according to the second
commenter). This is because such code is just Fortran code transliterated, and
Fortran is imperative whereas Scheme is quasi functional.

I think there is a useful distinction to be made between learning a language
and being a master of it. You use a programming language to communicate to
both a computer (or a compiler) and also to people, the people who will maintain
and grow and alter your code after the original authors no longer maintain it.
Because of this, the code you write must communicate well using familiar idioms
and patterns of use. This is not learned by studying a book but by years of experi-
ence, including reading great programs.

If this is true—that mastery takes a long time—then the real question becomes
whether the time for mastery diff ers for small and large languages. If the small
language is augmented by libraries, there will be no diff erence between large and
small languages, and if you need to reinvent or acquire idioms to make writing
code faster and easier in a small language, there will probably be no diff erence
either. Only if the language is illogical or so poorly designed or so syntactically
obscure that it hinders common sense will the language itself be the high-order
bit on mastering it.

When I made this argument to the first commenter, he replied:

Yes, but learning programming languages is only a very small part of
mastering the profession of programming—and the smaller the bet-
ter, unless it actually makes a visible diff erence in the quality of the
programs produced. I can see taking years to learn the art of user-

LANGUAGE SIZE / 105

interface design; I can see spending three months every two years
becoming acquainted with new hardware and its capabilities; I can
see and approve endless learning about algorithms and data struc-
tures. But I can’t see that a professional programmer who has instead
spent the equivalent amount of time becoming a master of COBOL,
PL/I, and Ada is really much of an ornament to her profession.
(anonymous)

It’s hard for me to see how a language can be mastered outside many of the
activities he mentioned, such as working with new algorithms and data structures
and generally solving all the exercises one needs to solve in order to master com-
puter programming—and sadly, I have no doubt that a lot of people become
masters only of their language and not their professions. I mean, how can one
possibly master a programming language without programming, and how can
one program without learning about data structures, algorithms, and stuff like
that?

Think about learning to be an architect. You have to become acquainted with
mechanical drawing skills, which takes one or two semesters. Then you start
designing buildings, studying them, studying their plans, making your own. Dur-
ing all this you are honing your mechanical drawing skills. Part of your effort is in
mastering the “language” of your profession, but this is hidden beneath the fabric
of learning the facts and techniques of that profession.

But drawing is not the only language of architecture. Remember Alexander’s
thoughts about architecture: Those who study only design and not pattern lan-
guages—languages that enable building habitable buildings and towns—are not,
in general, capable of doing their jobs as well as they might. Another way to put
this is that architects fail when they ignore the task of becoming masters of the
languages they need to master.

Let’s think about mastering English. I mastered English by using it to study
history, philosophy, even mathematics, and by writing 20 to 50 e-mail letters
every day for the past 20 years, by writing grant proposals and a dissertation
(along with stories and poetry). I graduated the sixth grade having learned
English; I mastered it 30 years later.

Consider the ways to approach writing software documentation. The best way
is to have a developer who is an excellent writer. The next best way is to have an
excellent writer interview a developer or start with notes written by a developer.
The third best way is to let a developer write it. Finally, an excellent writer with no
knowledge of the topic is worst. I think I wouldn’t want to read the documenta-
tion written by the last two: One wouldn’t make much sense, and the other would
not tell me much—hard to guess, really, which would be worse. This supports
partially the remark by the commenter that knowledge of the area is important,
that knowing only how to write (English or a programming language) is not

106 / LANGUAGES

nearly enough. But the two best alternatives require good writers, so skill and

mastery of writing and English do count for something.

When we think about how to apply this lesson to mastering programming lan-

guages, the best alternative is an excellent designer (for lack of a better term—I

really need a word that denotes a great developer who doesn’t necessarily know

the programming language very well) who is also a master of the programming

language; the next best is a great designer along with a language master; the third

best is a great designer only; and the worst is a language master.

Applying Alexander’s lessons, habitability and piecemeal growth require that

software be developed with idioms, common patterns, small abstractions, and

well-written, straightforward code. The real question we need to answer is

whether such code can be more easily written with a small language, and we can

not really know the answer to this without scientific studies.

English provides an example, even though it’s hard to apply accurately to pro-

gramming languages the lesson of the example—Basic English. In the 1920’s and

continuing through the 1930s, C. K. Ogden developed and promoted a sort of

subset of English for the purposes of providing an international language, a gentle

introduction to “full” English, and a plain English. The “Basic” in Basic English is

an acronym for British, American, Scientific, International, and Commercial.

Originally there was a fixed analytic word order, six affixes (-s, un-, -ed, -ing,

-ly, and -er), rules for compounding (farmhouse, teapot), and a reduced vocabu-

lary: 400 general words, 200 picturable words, 150 adjectives, 82 grammatical

words, and 18 operators (verbs like put and get). Operators were used to replace

some verbs (get replaced receive, obtain, and become) and to form phrases to

replace other verbs (get money for replaced buy and put together replaced assem-

ble). In addition were numbers, names, and technical words for various disci-

plines.

Basic English is like a small programming language except that word com-

pounding is the only way to define new words; that is, it has no abstraction capa-

bilities. Even with support from Churchill and Roosevelt and with dictionaries

published until the late 1980s, Basic English never made it. Part of the reason has

to be that sentences in Basic English are longer and in some ways less pretty or at

least more contorted than ones in regular English. Here is an example from “Time

in Philosophy and Physics.” In English:

The final word on this was said by St. Augustine. “What is time?” he
asked, and replied “if no one asks me, I know; if I want to explain it to
a questioner, I do not know.” (Dingle 1979)

The same passage in Basic English:

LANGUAGE SIZE / 107

The statement which says the most it is possible to say about it was
made by St. Augustine. His answer to the question “what is time” was
“if no-one puts the question to me, I am certain about it; if I have a
mind to give a questioner an account of it, I am uncertain.”

The second version is longer, more contorted, and, I daresay, uglier (except for
the nice phrase “if I have a mind to give a questioner an account of it”). Code in
small languages is like this: convoluted, longer, and a little harder to understand
than it could be. With universally accepted libraries the expressiveness is better.

The same commenter I quoted earlier continued:

Someone who has learned a small language is generally familiar with
almost all of its constructs and can therefore read most of the pro-
grams written in that language. Someone who has spent an equal
amount of time learning a large language has only a passive and
sketchy knowledge of many of its constructs and will have a harder
time understanding many programs because they use unfamiliar
parts of the language. Hence, programs written in a small language
are often more easily maintained and ported. (Stone 1993)

Offhand this sounds like a case of not having spend enough time mastering a
language, but there is a truth here: If a language is too convoluted, illogical, or
nonorthogonal, it won’t be possible to master it, and programmers will tend to
program in subsets, and the eff ect the commenter described will occur. This is all
too likely, because

[s]mall languages tend to be better designed than large ones, showing
fewer signs of ad hoc compromise between conflicting aesthetic prin-
ciples and design goals. (Stone 1993)

Aesthetic principles and design goals don’t excite me, because often they have
nothing to do with how people really program (habitability and piecemeal
growth) but more often reflecting mathematical or abstract considerations and
look-Ma-no-hands single-mechanism trickery. One cannot deny, however, that a
small set of principles and goals applied to designing a small language usually
results in a consistent concise language.

Large languages just cannot be as consistent as small ones—large languages
necessarily address more problems, and it makes sense to do this only if those
problems vary. With a small language with a large class library—for example,
Smalltalk—you have exactly the same problem. The success of Smalltalk is due to
the consistent and careful design of those class libraries coupled with a uniform
access technique (message passing). It certainly didn’t hurt that most of the
libraries were designed by essentially the same people who designed the language.

108 / LANGUAGES

I want to end with two quotations. The first is part of the introduction to the
Revised4 Report on Scheme, and the second is from one of the CLOS designers.

Programming languages should be designed not by piling feature on
top of feature, but by removing the weaknesses and restrictions that
make additional features appear necessary. Scheme demonstrates
that a very small number of rules for forming expressions, with no
restrictions on how they are composed, suffice to form a practical and
efficient programming language that is flexible enough to support
most of the major programming paradigms in use today.
(Clinger and Rees 1993)

The problem with this approach, as Scheme itself demonstrates, is that one
can fall into the trap of adding a feature that, because of its power, indeed
reduces the number of features but is so powerful that it cannot be used safely
and programs written using it are incomprehensible. I refer, of course, to call-
with-current-continuation, which essentially eliminates the possibility of
knowing how many times a statement is executed unless all the code in the pro-
gram is available for inspection. In the presence of side-eff ects (which Scheme
has) this can be a disaster.

Here are three widely-believed arguments about small versus large
languages. In spite of the contradictions among these arguments and
a certain amount of flawed reasoning inherent in them, many people
believe one or more of these arguments and each of them contains
some truth.

• Small programs are better than large programs because small pro-
grams fit on fewer diskettes, which cost less postage to mail and
take less time to feed into the diskette drive. Small languages are
better than large languages because small languages produce
small programs and large languages produce large programs.

• The most important aspect of product development is time to
market. Large languages are better than small languages because
large languages allow products to be developed more quickly, since
they contain more reusable components.

• The most important aspect of product development is time to
market. Small languages are better than large languages because
small languages allow products to be developed more quickly,
since they don’t require as much time to learn all the reusable
components.

The above arguments assume the library is part of the language, as
do most of the Scheme versus Common Lisp arguments. If we grant
that the library is part of the language, and the library includes such

LANGUAGE SIZE / 109

things as the user interface toolbox, then there is no such thing as a
serious small language today.

If we look only at core languages and not libraries, the size of the
core language has more to do with elegance perceived by language
connoisseurs than with size or time to market of delivered applica-
tions. A small core language probably does lead on the average to eas-
ier compilability and a higher quality of implementation, although
size of core language is just one of many forces aff ecting those quali-
ties.

If any of this sounds sarcastic, well what can I say, I meant it
seriously. (David A. Moon, personal communication 1993)

There is something to these remarks. It isn’t clear right away whether using a
library will hurt or help the speed of development. It is not just learning the reus-
able components but also adapting the code that uses them. We saw this in an ear-
lier essay: If a module is rigidly defined, the code that uses it must be written so
that it can be used as is (if the door you bought is two feet wide and 10 feet high,
that’s how big you have to make the opening). Furthermore, good luck if there is a
problem inside one of the components—a problem is not necessarily a bug, it can
be something you (or one of your customers) will want to change.

If there is some diff erence in eff ectiveness or usefulness between a small and
large programming language, we will need scientific studies to tell us what they
are. No amount of reasoning from first principles can inform half as well as can a
few carefully done studies.

111

�
The End of History and the Last Programming Language

In April 1993 Guy Steele and I gave our “Evolution of Lisp” paper at the ACM
History of Programming Languages II Conference (Steele and Gabriel 1993). The
histories of the following languages were presented there: ALGOL 68, Pascal, Ada,
Lisp, PROLOG, FORMAC, CLU, Icon, Forth, C, and C++. According to the pro-
gram committee’s requirements, the only languages considered for the conference
were those that had been in existence for a long time and have had a significant
impact, measured in an indeterminate manner.

Two days before the conference started, Steele and I sat in his living room in
Lexington, Massachusetts, trying to decide what to present—we had not yet pre-
pared our talk, contrary to the strict rules of Jean Sammet, the conference chair-
woman. We noted that with only two exceptions, every language being presented
was dead or moribund. The exceptions were C and C++. We thought for a while
about the history of Lisp and noticed that at that time, though there were new
Lisp sprouts pushing up through the earth, Lisp could be characterized as having
gone through two periods of expansive growth, the first followed by a minor con-
solidation and the second followed by a major consolidation which dwindled to
its then-current stagnant state. This stagnation, it seemed, was typical of all pro-
gramming languages, and we set out to figure why.

Even though we did come up with a theory that seemed to explain why the
field of general-purpose programming languages is currently dead and predicted
the death of a currently expanding language, we decided against presenting the
material because it might be too controversial. Little did we know that during the
concluding panel session of the conference—entitled “Programming Languages:
Does Our Present Past Have a Future?”—the general remarks would hint that our
feeling was shared by at least some in attendance. Our feeling was also bolstered
by the average age of the papers’ authors, somewhere in the 50- to 60-year-old
range.

112 / LANGUAGES

In this essay I will present our theory, but first a word about general-purpose
versus application-specific languages.

Languages can be broken into two categories: application specific and general
purpose. Some languages are fairly obviously application specific, such as simula-
tion packages, spreadsheet programming languages, and even 4GLs. In some ways
these languages are the most prevalent, particularly if you consider COBOL to be
an application-specific language. A case can be made that COBOL is such a lan-
guage by arguing that it is applicable only to business-related computations such
as payroll, inventory, and accounts receivable. When you lump COBOL into this
category, the size of the general-purpose programming language population (in
lines of code) is somewhat small. Later in this essay I will present some figures
that show this.

If you group COBOL with the general-purpose programming languages, you
have to conclude that it renders all the others essentially irrelevant, except one or
two. Again, we’ll see the figures later.

� � �

There are four parts to the theory:

• Languages are accepted and evolve by a social process, not a technical or
technological one.

• Successful languages must have modest or minimal computer resource
requirements.

• Successful languages must have a simple performance model.

• Successful languages must not require users have “mathematical sophistica-
tion.”

� � �

Let’s look at how languages are accepted and evolve. My theory, which Steele
seems to accept, is that a number of factors enable a language to flourish:

• The language must be available on a wide variety of hardware.

• It helps to have local wizards or gurus for the language.

• It must be a minimally acceptable language.

• It must be similar to existing popular languages.

The process is social because it relies on the actions of people in response to a
language. Many of us, particularly academics, hope that the nature of the language
would be the dominant factor. I want to put people ahead of the language so that

THE END OF HISTORY AND THE LAST PROGRAMMING LANGUAGE / 113

we all realize it is not the abstract nature of the language that is critical but the way
that human nature plays into the acceptance process.

The acceptance process is not unique to languages—it works well and
sometimes better with other things such as application programs and operat-
ing systems.

� � �

The language must be on every platform the acceptance group needs—an accep-
tance group is a potential population of users that is large enough and cohesive
enough to make a diff erence to the popularity of the language. This can be
accomplished if developers port the language to every such computer, but often it
is better to make a portable implementation or a particularly simple implementa-
tion and let local wizards or gurus do the porting for you.

� � �

It’s sometimes hard to get started with a new language—basics to master, tricks to
learn. It helps to have a local wizard to help with this, and what better way to
develop a wizard than porting the language to the local computers? Having a wiz-
ard can make a huge diff erence. Because information is local you have some con-
trol over when you can get it and how much you get—the source is not an
impersonal voice on the other end of a phone or some words with a return e-mail
address, nor is there some hidden problem more important than yours that keeps
your informant from answering you.

With a local wizard who is at least a porter, both you and the wizard have a
personal attachment to the new language through the power to control it—the
language is not completely someone else’s master plan: you share in it. This is
important for two reasons. First, people generally prefer to use something over
which they are granted some degree of control; this is just human nature. It is
especially difficult to have accepted a language whose designers and proponents
hold it out as an untouchable panacea. Second, this tends to reduce the risk by
putting the key technology in your hands. Would you risk your job on a new
language whose implementation might be wrong and out of reach?

This implies something else: A proprietary language has little chance of success.
Of course there are exceptions—the most notable being Visual BASIC— but I
think it would be hard to buck this logic.

� � �

Despite the required simplicity of the language, it must be acceptable, and there
must be a reason to move to it. In general the reason is that it solves a new problem

114 / LANGUAGES

well or makes certain tasks easier to do. Sometimes the only benefit needs to be
that it makes existing tasks more reliably done.

The eff ect of the whole process as outlined so far is that a simple language with
a minimal implementation takes hold through the vehicle of solving a new prob-
lem, for example, along with the local wizardry to make such a change sufficiently
risk-free. Then, when the language is established, it can be improved. Improve-
ments are always easier to accept than a new language is.

This last point is important. People who design and promote an exotic new
language always try to defeat in the minds of users a simpler language by explain-
ing why that simple language is no good, vastly inferior to the new one. But in
time, the simpler one usually is improved, eroding the argument. Furthermore, if
the simpler language is entrusted to local wizards, they will not only port it but
improve it. In eff ect, the simpler language traveling by way of popular demand
has an army of people trying to improve it; all the more reason proprietary lan-
guages are crippled in the language sweepstakes.

If we think about this model as developed so far, it resembles that of a virus. A
simple organism that can live anywhere eventually attaches itself to widespread
host organisms and spreads.

� � �

The language must be similar to existing languages. I think some people find this
point hard to understand because it sounds too conservative or pessimistic. But I
compare it to two of the major processes for change we see in the world around
us: the free market and evolution.

The free market works like this: It is in business’s best interest to have frequent
small releases that cost money. Innovation costs too much and is too risky. If the
innovation is technological, it is least risky to apply the innovation conservatively
and then improve or expand its application. This way you can spend either a lot
of money or most of your money on quality, which builds brand loyalty. Much of
the automotive and consumer electronics markets work like this. (More on the
general workings of free markets will be explored in the essay, “Money Through
Innovation Reconsidered.”)

This works well with languages: With a simple language and implementation,
you can spend time to make sure that it just plain works the first time every time.
If you need to innovate over and over just to get the thing off the ground, its qual-
ity will be low and peoples’ first taste will be a bad taste.

In the marketplace, adapting to innovation requires a long learning curve,
and rarely is a compelling payoff in sight for the learning. People had trouble
learning Lisp in the 1980s even when they believed they would achieve extraordi-
nary productivity gains and when the price of admission to the artificial intelli-
gence sideshow was a working knowledge of Lisp. Because of the difficulty

THE END OF HISTORY AND THE LAST PROGRAMMING LANGUAGE / 115

learning Lisp, they were unable to learn it properly and gained almost none of
the benefits. Also, it was never clearly shown that the higher productivity of Lisp
programmers wasn’t due to their greater natural ability—let’s say better mathe-
matical aptitude—of those who could learn Lisp.

The free market works like this because people don’t like to take risks, espe-
cially by adopting a new language or any new way of doing things. People prefer
incremental improvement over radical improvement. We are conditioned for this
in all sorts of ways. Very little in public education prepares us for it. Our mothers
didn’t teach us to risk. And who wants to risk a job needlessly by using an exotic
new language—there is always a safe alternative in the language domain.

People don’t like to be diff erent; being an early adopter of a radical thing is to
really be diff erent. When you’re diff erent, people notice you and sometimes
laugh, especially when you are diff erent for no particular reason. Diff erent is
risky. Why bother?

We can take an analogy from evolution. (Remember, this is an analogy only and
has no compelling argumentative force except to comfort us that this radically
conservative view of how things progress is common.) People normally consider
that the primary purpose of natural selection is to promote small improvements—
and this does happen. But there is no inexorable push from single-celled organ-
isms through rats through monkeys and apes to humans. Rather, progress is made
in fits and starts, and the main purpose of natural selection is to reject harmful
changes, not to promote large leaps.

Only those things that are relatively worthless change rapidly and dramatically.
These worthless things provide variety: Someday an environmental change can
make one of those changes or a related group of them important to survival, and
this one or this group will then join the ranks of the natural-selection protected,
and perhaps some formerly static parts will no longer be essential and thus can
begin changing.

In other words, natural selection provides very little incremental improve-
ment: Almost all dramatic change occurs because the environment changes and
makes the worthless invaluable. This is part of a larger argument regarding a the-
ory of technological improvement and adoption called Worse Is Better, and in the
essay called “Money Through Innovation Reconsidered” I will expand the evolu-
tion argument.

When applying the lesson from evolution to programming language design,
there are two important features of languages that I think cannot be changed at
the moment: a simple performance model and a need for only minimal mathe-
matical sophistication. This leads us to the last two points of our quadripartite
theory.

� � �

116 / LANGUAGES

The requirement to be on popular platforms has important technical fallout.

Invariably the most prevalent commercial platforms are those that have been in

the field for a year or two or more, which implies that they are one to three tech-

nology generations behind current hot boxes. The language must run well on

such computers, which means it must not be a resource hog in any sense of the

word, and in fact, it must be comparatively tiny.

This also implies that the language cannot attempt to break new ground in

language design if doing so would require resources. Furthermore, breaking new

ground sometimes requires time and testing, which delays the release of the new

language while competitors—new or old—become established. This also applies

to systems such as operating systems, and the example I use to show this point

comes from UNIX.

An operating system provides services to a user program, and such services are

provided by system calls. However, in most operating systems the end user can

interrupt the execution of a program. Typically this is handled in the operating

system by saving the user-level program counter and minimal context informa-

tion in a save area such as the stack. Notice, though, that the user-level program

counter does not adequately capture the execution point when the program is

executing a system call. For instance, if the program is opening a file for reading,

the operating system may be allocating a buff er. The operating system designer

has three choices: Try to back out of the call, try to save the true state, or return a

flag from the system call that states whether the call succeeded. The first two are

very hard to do technically. One operating system I know from the past required

approximately 60 pages of assembly language code to back out of the call in all

cases. UNIX does the third. This requires almost no coding by operating system

implementers, but it does require each application writer to write code to check

the flag and decide what to do. This behavior—considered quite ugly and, well,

stupid in modern operating system circles—has not harmed UNIX’s success.

One can only imagine how much worse DOS must be.

The lesson is that you should choose carefully the problems you spend time solv-

ing by means of innovation. In this case, using innovation to solve the interrupt

problem correctly served the purpose of merely bloating the operating system—the

end users just did not care. The designers of the correctly functioning operating sys-

tem probably thought that because computers do so many things correctly by

design, they ought to be perfect. UNIX designers probably thought that it was OK

for computers to be like anything else—lousy, and they were right: I’ve seen people

grumble when they try to resume a UNIX program they’ve control-C’ed out of, but

they just run the program again.

To a large extent the sophistication of a programming language is limited by the

sophistication of the hardware, which may be high in terms of cleverness needed to

THE END OF HISTORY AND THE LAST PROGRAMMING LANGUAGE / 117

achieve speed but is low in other ways to maintain speed, such as inexpensive large
memory systems and secondary storage.

� � �

One of the things I learned by watching people try to learn Lisp is that they could
write programs that worked pretty well but they could not write fast programs.
The reason was that they did not know how things were implemented and
assumed that anything in the language manual took a small constant time. In real-
ity, for example, there are many Lisp operations whose running times are linear in
the length of one or several of their arguments. When you assume the constant-
time model, the programs these novices wrote make perfect sense.

Another thing I learned from watching software businesses is that speed is
king. In some cases a company would switch compilers for as little as 2% speed
improvement and 1% of space, even though the cost of the change could be work
years of effort. People will sacrifice all sorts of excellent features and significant
personal productivity for a fast tool: Notice that vi is the editor of choice for
UNIX, not Emacs, which is vastly “better” in some sense.

People can program eff ectively and happily when they feel they have mastered
their craft, which means when they can write fast programs. People are quite
capable of understanding the von Neuman architecture, and so a language whose
performance model matches that architecture is a shoo-in.

A final point is that the marketplace does not care how much it cost a company
to produce a software product; what customers really care about is price and
speed. If your program costs too much, forget it; if it’s too slow, forget it. The
CEO who saves money on development by using a language with high productiv-
ity and (necessarily) poor performance is a fool.

� � �

The second mandatory feature is that the language cannot require mathematical
sophistication from its users. Programmers are not mathematicians, no matter
how much we wish and wish for it. And I don’t mean sophisticated mathemati-
cians, but just people who can think precisely and rigorously in the way that
mathematicians can.

For example, to most language theorists the purpose of types is to enable the
compiler to reason about the correctness of a program in at least skeletal terms.
Such reasoning can produce programs with no run-time type errors. Strict type
systems along with other exemplary behavior, moreover, enable certain proofs
about programs.

Well, the average programmer might be grateful somewhere in his heart for
the lack of run-time type errors, but all he or she really cares about is that the

118 / LANGUAGES

compiler can produce good code, and types help compiler writers write compilers
that do that.

Furthermore, types that try to do more than that are a hindrance to under-
standing. For example, abstract data types allow one to write programs in which
the interface is completely separate from the implementation. Perhaps some large
programming teams care a lot about that, but a lot of programming goes on in
ones and twos, maybe threes. Types of this variety, with complicated syntax and
baffling semantics, are a hindrance to programming for many of these folks. Sure,
someday this will be important as the size of programming teams increases and as
the level of mathematics education increases (no laughing, please), but today it is
not.

Inheritance and polymorphism are examples of programming language con-
cepts requiring mathematical sophistication to understand.

� � �

The three parts of the theory work together like this: The first part—an accep-
tance process—provide a means for a language with the right ingredients to be
spread and accepted. This shows why certain modest languages succeed over
others. Furthermore, the first part describes the best acceptance process. The
second, third, and fourth parts are hard requirements for a language to be
accepted, but without them, a language cannot succeed merely by following the
process described in the first part.

Let’s look at some examples of this theory in action. The first programming
languages were machine language and assembly language. Assembly language is
just a symbolic machine language. There are no types. No mathematical sophisti-
cation is required at all. The performance model is the machine model. Every
computer comes with an assembler, and often local wizards are needed to bum
the tightest loop.

After that came Fortran, which has a simple machine performance model.
Until 1990, the majority of non-application-specific programming took place in
assembly language and Fortran.

Fortran allows one to program small integers and floating-point numbers
stored in variables or arrays. Many computers support these operations directly.
Types enable the compiler to produce good code. The level of mathematical
sophistication required is minimal, but remember mathematicians or people very
like them are programming in Fortran. Over the years Fortran came to run on
every machine. Fortran can be considered an application-specific language
because it is used so heavily in scientific computation.

In the early 1980s we saw the next step in the evolution of assembly language
make its major move in acceptance—C. C also is the first language to use the
acceptance process described in the first part of the theory.

THE END OF HISTORY AND THE LAST PROGRAMMING LANGUAGE / 119

The performance model of C is essentially the same as assembly language. The
primary purpose of types in the original C (K & R C) is for performance. C allows
one to manipulate bits, bytes, words, and very simple recordlike structures. C is
easy to implement on almost any computer, and there are many local wizards. No
mathematical sophistication is required to program in it. Because it follows either
the virus model (through such things as gcc from the Free Software Foundation)
or the assembly language model (through the hardware manufacturer), it runs on
every machine.

COBOL has a simple performance model and requires absolutely no mathe-
matical sophistication. Like Fortran, it doesn’t follow the acceptance model, but
it can also be considered an application language.

Lisp has a complex performance model and requires a great degree of mathe-
matical sophistication to program in it. It has a functional flavor and many pro-
grams require recursive functions or higher order functionals. Some Lisp dialects
and implementations follow the acceptance model, but only the smallest Lisps
can run on all computers.

PROLOG has a very complex performance model based on backtracking and
unification and requires very high degree of mathematical sophistication to
master. In many ways PROLOG is like a proprietary language because it is rarely
moved forward by the preferred acceptance model.

Pascal has a simple machine model for performance but requires a small
degree of sophistication to understand its type system. However, because its type
system is rudimentary, this level is still quite modest. I would say its performance
model is less directly that of the machine than C, and its required mathematical
sophistication is significantly higher. Pascal runs on every computer but does not
follow the acceptance model.

Let’s see how we’re doing with usage numbers. First we’ll look at lines of code.
The following numbers indicate the percentage of lines of code worldwide in the
languages I’ve mentioned in 1992 (Dataquest 1992):

Language
Percentage

(lines of code)

COBOL 44%

Fortran 12%

Assembly 11%

C 3%

Pascal 3%

Lisp <6%

PROLOG <6%

120 / LANGUAGES

Not fair, you might think, to look at total number of lines of code. OK, let’s look
at the usage by programmers in 1992 in North America in the technical program-
ming segment.

In this study the technical world is defined in such a way to as exclude COBOL
and Fortran.

So far we can see that the theory can “explain” the relative proportions of exist-
ing languages. The real test comes with predictions.

The next interesting candidates are the object-oriented languages, Smalltalk and
C++. Smalltalk, though designed for children to use, requires mathematical sophis-
tication to understand its inheritance and message-passing model. Its performance
model is much more complex than C’s, not matching the computer all that well
from a naïve point of view. Smalltalk does not run on every computer, and in many
ways it is a proprietary language, which means that it cannot follow the acceptance
model.

C++ is an interesting case because it is an attempt to develop C in a particular
direction. This direction is not, by the way, an object-oriented direction but one
that allows two things: more sophisticated user-defined types than is possible in C
(something resembling abstract data types with encapsulation) and a little more
safety from type errors and some other errors. However, C++ is intended to
retain the C performance model when specifically C++ features are used. Best yet,
C++ uses the virus model, just as C does.

Unfortunately, I believe the theory predicts that C++ will fail, even though it is
clearly in the C camp and uses the acceptance model. It will fail because the perfor-
mance model is too much like Smalltalk’s—it is not simple— and the degree of
mathematical sophistication required to use it is much greater than Smalltalk’s.

Our theory predicts that C++ will do better than Smalltalk because C++ follows
the acceptance model whereas Smalltalk is more like a proprietary language.

When we add Smalltalk and C++ to the second table we get the table at the top
of the next page.

� � �

Language Usage

Assembly 88%

C 80%

Pascal 33%

Lisp <6%

PROLOG <6%

THE END OF HISTORY AND THE LAST PROGRAMMING LANGUAGE / 121

As we look at the history of programming languages, we sit in an era where, basi-
cally, only assembly language and C are in use in the technical arena, and only
COBOL, Fortran, and assembly language are in use worldwide. The 1980s saw
some grand experiments with higher-level and more sophisticated languages like
Lisp and PROLOG, but both those failed.

Languages like Modula-3 and Oberon are interesting to the language designer,
but according to our theory, sadly they fall far short of Pascal in terms of accept-
ability. The great object-oriented experiment is under way, but the theory pre-
dicts failure there, too. Of course, like natural selection the theory is not static—it
depends on when you apply it. In the early days of computers, the theory would
predict that Fortran would not succeed, and it didn’t for many years, but like the
natural world, the environment changed with the need for scientific computing,
and Fortran grabbed a big chunk of the computing world. Likewise, the need for
larger programming teams might provide the environmental discontinuity that
languages like Smalltalk and C++ need. The business world at large, though,
resists such discontinuities.

One questioner at the HOPL II conference noted that only one language of
those represented at the conference is alive: C. Looking at the last table, I would
add assembly language to the list.

Right now the history of programming languages is at an end, and the last
programming language is C.

Language Usage

Assembly 88%

C 80%

Pascal 33%

C++ 6%

Smalltalk <6%

Lisp <6%

PROLOG <6%

123

�
Productivity: Is There a Silver Bullet?

For decades we computer scientists have been out trying to slay the dragon—poor
programming productivity. How long does it take to develop 100 lines of produc-
tion code, code that ends up in a commercial product or a delivered system? A
month? Two months? Over the decades the “productivity” index has increased, by
my estimate, from maybe 10 lines a month to a few hundred. Part of this produc-
tivity increase is due to better programming languages, some to better tools like
better diagnostics in compilers, some to faster computers, some to symbolic
debuggers, and probably most to better education. Some people claim 1,000 lines
per month. However, in most cases this level of productivity seems difficult to
sustain—if you had a programmer who could produce 1,000 lines a month of
production code, you probably couldn’t count on that programmer to produce
1,000 lines a month for two years running on one large project.

As object technologists—don’t you love names like this?—we believe that we
can increase productivity through object-oriented languages and design tech-
niques. We are ever the technologists and always look toward technology for the
answer. But maybe that is not the best place to look for productivity.

The word productivity itself is somewhat loaded. Do programmers working at
some company wish they were more “productive”? Probably not. Such program-
mers wish they were more eff ective, that their tools were better, that there were
fewer barriers to getting work done, that management was more competent, that
working conditions were better, that there was some direct link between the suc-
cess of the company and the efforts of the programmers, and that it wasn’t a
struggle for the company to survive from quarter to quarter. Productive is a term
that management uses to describe what an employee is or isn’t. When an
employee is productive, the corporation can enjoy a better return on investment
and profits. An employee who is not productive is a candidate for layoff. (The law
says that you cannot lay off people for poor performance—you can eliminate only

124 / LANGUAGES

those positions not required for the success of the company. However, most
development managers and vice presidents I know secretly and not so secretly
consider a layoff an opportunity to let natural selection take its toll by eliminating
weak, nonproductive people; when hiring starts up again—often about three
months later—they hire new people and do not even consider laid-off employees
for re-hire.)

Productivity is often associated with “effort”—a developer is less productive
because he or she is exerting less effort than is required. (One CEO I know of once
gave the order to his engineering manager to prepare a layoff list in which the sole
selection criterion was effort. The CEO was willing—and eager—for the manager
to eliminate people who got good results but whose effort and enthusiasm was
lacking. That manager used the “gold watch” strategy: He measured each devel-
oper by the diff erence between what that developer could accomplish and what he
or she actually did accomplish, as judged by the engineering manager and by the
developer’s direct manager. When the engineering manager’s layoff list included
the chief architect—who worked exactly eight hours a day for family reasons—
and the principal user-interface guy, the CEO let the engineering manager deter-
mine his list in his own way.)

The point is that productivity is not simply something between a developer
and a software problem—it has to do with management skills and realistic goals.
Investment at proper levels is very rare in American software companies. Fre-
quently I hear of companies going to market with products that the developers
themselves say are not ready—this is especially devastating when the products are
targeted at developers. That developers are so out of the business loop sometimes
amazes me when they could be such an asset to business planning. Alas, they
don’t have that crucial ingredient: a business education. (This point is interesting
with regard to abstraction: American companies are almost universally run by
people educated in business schools rather than in schools that teach the content
of the business area. Executives learn about locating and developing market-
places, managing money, and handling managers, marketing people, sales people,
people who produce the goods sold, people who service the goods, people who
ship the goods, and so forth. In other words, executives treat their own companies
as a set of abstractions whose insides they never know. In the United States, 80%
of all CEOs of engineering-based companies are trained in business, whereas in
Japan 80% of all such CEOs are engineers trained in the business domain area.)

Developers are salaried employees, and during parts of a project, in order to
make the deadline, they are called upon to work 60 to 90 hours per week. How-
ever, they are not granted overtime for this extra work. In my experience, devel-
opers average 60 hours a week year-round. When the projects are fresh and
exciting, working these hours can be not only acceptable but not noticeable to the
developer. Inevitably, though, this leads to burnout, and the developer moves on

PRODUCTIVITY: IS THERE A SILVER BULLET? / 125

to the next exciting project at another company. It seems to me inhuman to
expect 60-hour weeks unless there is a routine bonus program or overtime.

� � �

Now let me tell you a story about a development group I heard about. It is the
Borland Quattro Pro for Windows (QPW) development group, and I am taking
the story from a paper by Jim Coplien entitled “Borland Software Craftsmanship:
A New Look at Process, Quality, and Productivity” (1994).

This group developed a new, modern spreadsheet specifically designed for the
Windows environment. The team included two people who had experience with
the product area—one was an acknowledged expert on internal spreadsheet
engines, and another had experience with implementing user interfaces of a sort
similar to what they needed. The other programmers were of very high caliber—
as the group itself put it, they had professionals not hired guns. The core develop-
ment team consisted of four people who developed the architecture and early
prototypes—two major prototypes were developed. Core development took
about a year, and then four more team members, more or less, were added, and
QA and documentation began.

The QPW group, consisting of about eight people, took 31 months to produce
a commercial product containing 1 million lines of code. This elapsed time
includes the prototypes, but the line count does not. That is, each member of this
group produced 1,000 lines of final code per week. Product reviews for the first
release were very good.

One of the most intriguing things about this example is that the team did not
use a standard software process or methodology. Rather their process was itera-
tive and partly prototype driven, and when they were asked what roles each devel-
oper played, they were able to easily describe that as well as what they were trying
to do and where they were along the way and what was next. So in some real
sense, they were really following a process.

The final coding was in C++, so although the language was probably not a
positive productivity factor, it provided a mechanism to separate implementation
from interface, and this turned out to be important to the group’s productivity. As
I noted in “Abstraction Descant,” when implementation is separate from interface
in a complex object-oriented design, the ripple eff ect that results from changing
an interface can be devastating, causing many other interfaces and then their
implementations to change in response. This team recognized the problem and
adopted a process of almost-daily meetings to discuss architectural issues, inter-
faces, algorithms, and data structures. These meetings lasted several hours a day.
People who have a lot of experience with meetings tend to view them as counter-
productive, and indeed they are when the primary—often hidden—topic is turf
and protecting credit for good results. At these meetings, however, the team was

126 / LANGUAGES

able to minimize the interface-ripple problem by giving everyone a view of all the
changes—in this way the team members could immediately go off and change or
extend their implementations to accommodate the interface changes, thereby
quickly validating (or rejecting) them. Moreover, by keeping the architecture
public, it did not get swept under the rug. Instead, it was gradually improved and
extended. That the language supported the separation of implementation from
interface was important because it meant that there was a clear line between what
was discussed in the meetings and what was not.

An additional benefit of the frequent meetings was that all members of the
team knew exactly what everyone else was doing and how their own pieces fit into
the picture. This also contributed to a rich communication pattern among the
group members.

The QPW group rarely used code reviews, and code reading and walkthroughs
were rare or nonexistent. Each member of the team had tremendous faith in and
respect for the abilities of the other team members. After a year, the team was
filled out with technically savvy individuals, even in management and marketing
positions.

During the first year of development, system-related technical issues—rather
than marketing and sales issues—determined the architecture and design: Early
decisions never appeared in marketing collateral and early customer visibility
discussions.

The schedule was realistic and largely determined by development needs,
though there was pressure to get things done quickly. This is unlike most compa-
nies I know about in which the marketing, sales, and upper management accept
as the real date the earliest date they hear a manager utter, usually in the context
of a bonus discussion. I have even heard of a marketing head and a CEO cutting
18 months off the development manager’s schedule—the result was the predict-
able disaster.

Of course, you should recognize that QPW’s process was inherently iterative
with a series of increasingly stable prototypes until the product was completed.

Of particular interest is the relationship between how the QPW group saw
what it was doing and the concepts of habitability and piecemeal growth we’ve
been exploring. Habitability was encouraged by the frequent interface meetings
in which the eff ects of changes in the necessarily global interface space were made
public. Team members were naturally aware of what was public and private in the
system, and patterns could emerge gracefully. About this, one of the team mem-
bers said, “software is like a plant that grows,” and Coplien interpreted this team
member’s comments like this: “You can’t predict its exact shape, or how big it will
grow; you can control its growth only to a limited degree” (1994).

When I asked Coplien what he thought was a good average for US software
productivity, he said that many organizations can “muster 1,000 to 2,000

PRODUCTIVITY: IS THERE A SILVER BULLET? / 127

non-commentary source lines per programmer per year,” and that this number
was constant for a large in-house program over its 15-year lifetime—so that orig-
inal development and maintenance moved at the same pace: slowly. Note that this
estimate is lower than mine. Since Coplien has been studying process and pro-
ductivity somewhat rigorously, let’s use his numbers.

A thousand lines a year is about four lines a day. There is a software crisis. But
is there a silver bullet?

The experience of the QPW group indicates that it is possible to achieve sev-
eral orders of magnitude improvement over the industry average using common
tools—C++ and a simple environment. Granted that the team in question was
talented beyond that available to most organizations—but still of the several
orders of magnitude perhaps a few factors, say three to five, should be available
for ordinary programmers—this is asking only that programmers be able to pro-
duce 12 to 20 lines a day. The programmers in the QPW group did about 200 a
day.

The way to approach this is, I think, as science. High-productivity develop-
ment organizations are a natural phenomenon. The QPW group sits at the far
end of a productivity spectrum; I have personal experience with several groups
that demonstrated similar productivity levels. For example, during protracted
development, I watched Lisp programmers produce 1,000 lines of Lisp/CLOS
code per month per person, which is roughly equivalent to 350 to 1,000 lines of
C++ code per week. Therefore, such productivity is not isolated, and we should
figure out how to improve.

Unfortunately, to do this science requires doing some simple but expensive
and time-consuming things. Here is a partial list:

• We need to determine goals, which can include higher productivity, higher
quality, lower maintenance costs, better documentation, and easier extension
and improvement (habitability and piecemeal growth).

• We need a reliably measured productivity baseline so we know whether we are
making progress—we need well-documented numbers.

• We need to study rigorously the eff ects of programming language choice on
productivity; that is, we need numbers from controlled experiments. Earlier I
claimed that Lisp/CLOS provides a factor of 1.5 to 4 in productivity over
C/C++. I based this on my personal experience with several large projects—in
both Lisp and C++—but I did not perform rigorous measurements.

• We need to study the eff ects of various kinds of tools on productivity—envi-
ronments and faster computers, for example. It seems offhand that good tools
make for better productivity, but is this really true? And if so, how much does
this contribute?

128 / LANGUAGES

• We need to study all existing development methodologies and determine the
factors that contribute to productivity. We must do experiments to find the
best ones. I suspect that management in many companies will not like studies
that assume it is possible that the best development processes do not mix with
tight management control. Furthermore, tradition, law, government policy,
and conventional wisdom probably do not sit well with this assumption. So
we must allow neither engineers nor managers nor tradition nor law to influ-
ence the outcome or the experimental setup.

• It’s possible that we cannot achieve all the goals for “productivity” at once—
perhaps high productivity means a little lower quality. This may not be a fatal
flaw if we know precisely what the trade-offs are, so we need to study the rela-
tionship between productivity and our other goals.

• Perhaps the best processes have not yet been discovered. So we should study
new, perhaps wild alternatives such as those implied by the work of architect
Christopher Alexander.

• If a proposed ideal methodology is developed, it should be tested with con-
trolled experiments and numbers gathered. We should determine the relative
contributions of the diff erent factors in the process.

• If there is a proposed ideal methodology, we should develop the technology to
support the infrastructure for it and figure out how to introduce it to industry
in such a way that it will take hold. This could require a large investment clev-
erly designed and implemented.

I expect there to be surprises, surprises that the establishment will not like. For
example:

• Only some aspects of programming languages will matter for productivity but
not by more than 30% better or worse. My experience with C++ development
started with a group just learning C++ and ended with quite an expert group.
At the start I estimated the productivity advantage of Lisp/CLOS over C/C++
at a factor of three to four; at the end I set it at 30%. But I think this 30% is
inherent in some languages, an advantage due to unpopular characteristics of
those languages, such as dynamic types. I expect a lot of language designers’
egos to get thumped when we learn that what they consider important for lan-
guages is trivial or counterproductive. I think ill-placed concern is the inevita-
ble result of letting mathematicians design programming language principles,
although I dearly love mathematicians and I’m sort of one myself.

• We’ll find that traditional software development methodologies are among
the least productive and possibly produce the lowest quality. Such methodolo-
gies are governed by the need for management control and repeatability—that

PRODUCTIVITY: IS THERE A SILVER BULLET? / 129

is, management wants costs to be predictable. On the other hand, developers
want revenues to be predictable, too, but for some reason, this is not possible
to achieve.

• We’ll find that traditional management has a crazy view of what motivates
developers and that motivation is one of the larger productivity enhancers.
The first thing that I think will fall is the view that management is there to tell
developers what to do, to set schedules, and to act as a conduit for upper-man-
agement-supplied “team-player” dictums. A manager should be like the
sweeper in curling: The sweeper runs ahead of the stone and sweeps away
debris from the path of the stone so that the progress of the stone will be
smooth and undisturbed—does this sound like your manager? The traditional
view of management seems to be based on military-style thinking. The best
managers, in my view, are those that combine a strong desire to help his or her
developers with strong leadership abilities. In fact, I believe that leadership
will prove more important than management. Very few managers are good
leaders, and I feel that American MBA programs and large corporations do
not produce leaders. Here is a quote from Ken Haas, who started as corporate
lawyer at IntelliCorp, became its CFO, and then became its president and
CEO:

Shortly after I joined IntelliCorp, I became perplexed by the fact that
a couple of managers in the product development group got terrific
results from their people (in terms of adherence to schedule as well as
innovation) without apparently doing much managing—planning,
organizing, controlling. Although I did not realize it at the time, these
managers were practicing the art of leadership, creating a vision for
their group, aligning their group behind that vision, and motivating
them towards it. . . .While management and leadership skills are both
important for the well-rounded executive, American companies are
over managed and under led, so there’s a premium on the latter. For
years, I learned from my peers in product development and their
ornery crew (“strong leaders choose poor followers”), and I even tried
to implement some of their techniques within the administrative
groups reporting to me. Although I believed in my heart that vision-
ing, aligning, and motivating could not have much success in the
highly structured realms of accounting, human resources, and facili-
ties management, I was absolutely wrong, Leadership is for everyone,
even CFOs. (Haas 1993)

The second thing that will fall will be the attitude that motivation is purely
based on reward. There is a CEO I know whose motto is “Tell me how I’m
measured and I’ll tell you how I’ll act.” His view is that if a developer is told
that following the schedule set by some manager will result in a bonus or a

130 / LANGUAGES

raise, the developer will follow the schedule. A lot of times a manager-set

schedule assumes that there will be no architectural changes. Even though a

detour to repair the architecture will often result in no lost time or even saved

time, management that rewards developers based on following schedules

might very well get what they want—a product developed on schedule. But

also they will likely get one that cannot be extended, improved, and grown,

and which does not fit the market’s actual needs. If you want someone to be

more of a developer, try being more of a manager.

• The physical environment will prove a larger factor than previously believed.

Alexander believes this, but management seems to think that a one-time sav-

ings in setting up offices, computers, and so on is more important than recur-

ring productivity losses. If your organization is pooping along at four lines a

day per person but you saved $100,000 by using those cheap cubes, and mine

is humming at 200 per day, who is laughing all the way to the bank?

• We’ll find that very frequent, large meetings to settle interfaces will prove to be

helpful. Some developers will find this distasteful.

• The goal of total design before implementation will prove to be very unhelp-

ful. Piecemeal growth will prove the right way to go—that “software is like a

plant.”

• Reuse will prove to be a factor in only limited ways and limited situations.

Some of the reuse guys won’t like this too much. Reuse is important, but it is

important to piecemeal growth. Many people hope there will be a way of stor-

ing up pieces of code in a library that can supply a basis for arbitrary reuse.

Sadly, although I once believed this myself, I have abandoned that hope. Even

with fairly common operations like sorting, it is difficult to come up with a

piece of code suitable for all sorting applications. Some of the problems have

to do with language choice, data structure choice, performance characteristics,

names, and calling conventions. On the other hand, patterns of sorting rou-

tines are handy and popular, giving credence to the hope of the patternists

such as the Hillside Group.

The real basis for reuse is frameworks. A framework is a model for the basic

operation of some aspect of your problem space or business. When this model is

properly implemented in an object-oriented manner to do certain tasks, it is easy

to add additional tasks by reusing the framework and its code. For example, if you

write software to track purchase orders from receipt through shipment and main-

tenance, you can easily add code to grab addresses for marketing mailings.

Another way to put this is that object-oriented programming encourages you to

model the entity not the function, and entities, not functions, are reused.

PRODUCTIVITY: IS THERE A SILVER BULLET? / 131

• The result of this research will be a silver bullet: We will find that productivity
and quality can be increased by two or three orders of magnitude averaged
over a long term. This will be fabulous, but I fear industry will not easily
accept the means to achieve it.

This last point is sad. What I expect to find is that the mechanisms that do
work will work best over a longer period of time than is traditional in American
business circles. Therefore, they will not be adopted because the traditional way
results in short-term savings at the expense of long-term growth. Furthermore,
although the QPW group had management accepting whatever it took for good
development, very few companies are as open-minded. My experience is that
management distrusts developers and feels held hostage by them. I have heard
many discussions in which software-company CEOs look forward to the day
when software development does not require hiring those pesky programmers.
They would rather not spend all that money buying better computers, putting in
home equipment, supplying private window offices, and providing caff eine-laced
drinks.

Yet the saddest thing of all is that there are no sources of funding for such
work. I recently attended a meeting at which a government agency was seeking
ideas for projects aimed at economic improvement in the software area—and
there was $20 million to $200 million available per year for it. However, the
requirement was that there be a technological barrier to the improvement, in addi-
tion to an unwillingness or inability for any given company to fund the work.
That is, the ultimate goal was enviable but ultimately aimed at funding the same
old tinker-toy sorts of technology-busting boondoggles.

You know, sometimes it’s a people problem, not a technology problem.

PART III
�

WHAT WE DO

135

�
What We Do

Every now and then, I think, it makes sense to sit back and think about what we
do. By “we” I mean computer scientists and especially those working in object-
oriented technologies. It seems to most of us that we are doing good things for the
world and propelling it forward, easing the drudgery of day-to-day life, providing
technology that enriches people’s lives and makes them happy.

But this isn’t always the case. Think of the scientists who worked on nuclear
fission just before the start of the Manhattan Project—especially think of the the-
oretical physicists working long before. It’s likely only few of them thought deeply
about the destructive uses of the application of their work; and if they had
thought about those uses, perhaps they would have thought twice about it.

We don’t think much about the uses of our work partly because we are never in
a position to hear valid criticism of that work. Sure, we hear things like computer
databases are misused by corporations and individuals, and sometimes we hear
people say that by increasing productivity in the workplace we are indirectly
denying people their jobs. These problems, though, are indirect: If people did not
have greedy or other ignoble motives, databases would not be misused; if the
economy were in better shape, increased productivity would result in more prod-
ucts and jobs, not layoffs or fewer jobs.

Networks and hypertext are examples of a technology we developed that is
regarded by a number of people as dangerous and detrimental to entire industries
and culture as well, even when those technologies are used exactly the way we
intend by people with lofty motives.

In August 1993 I was at the Bread Loaf Writers’ Conference in Vermont. While
there I was just another poet sitting in the Burgess Meredith Little Theater listening
to poets, fiction writers, editors, and publishers read their work and talk about it.
Up on the mountain in central Vermont during cool, dry, early autumn reflecting
at an unhurried pace about one’s work and passion—we as computer scientists

136 / WHAT WE DO

should do things like this. While there I heard a speech by Paul Zimmer, director of
the University of Iowa Press on two topics. One was his battle with the NEA
(National Endowment for the Arts) over prior restraint and censorship during the
recent Frohnmeyer regime there. Zimmer led the way in protest, refusing to follow
the restrictive new rules (since lifted) and we all saw him as a hero.Then he turned
his attention to networks and hypertext.

There is a storm on the horizon he told us. With computers now able to dis-
play text reasonably well on the screen, with screens becoming better and smaller
and more portable, with networks being better and more available, with authors
being able to write and produce their own texts and to send them out over net-
works, the role of the editor and publisher could vanish. Soon there could be no
intermediaries between the author and his or her audience. Worse, distribution
could become a matter of software distribution companies providing floppy disks
containing unedited and unselected stories, books, and poems.

Zimmer added that part of the repulsion for him is the thought of people not
being able to sit quietly in a warmly lit room in a comfortable chair reading words
beautifully written and nicely typeset on real paper—the texture and the feeling
of thick sheets of paper between the fingers, the visible thickness of the ink all
would be gone. You could see Zimmer shudder behind the podium at the vision
of people sitting with small computers on their laps reading poetry.

He argued that not everyone would want to read books on computers, but
enough would—because of the potentially lower price—to force up the price of
real books to the point where the market might completely vanish. He did not
think that the benefits of computer-assisted reading—searching, annotation,
cross-referencing—justified the elimination of the university presses and possibly
even some commercial publishers. He also worried that the implied elimination
of the editor—the selection process—would eventually diminish the quality of
writing to a point where people would not want to read anymore.

It seems obvious to me on reflection that publishers should be eager to
embrace new technology as long as there is a place in it for them. Certainly I don’t
look forward to trying to find the few good books among an unselected, unedited
morass of self-published trash. We couldn’t expect reviewers to take on the task of
slogging through such large quantities. Therefore, it would seem that the role of
the publisher/editor would reemerge in perhaps a diff erent format, and I, for
example, would gladly subscribe to a group of publishers/editors for reading
material if that were the alternative—perhaps reviewers would be willing to
review material selected and edited in such a form.

So even though I can see that its role is necessary, the publishers and editors
are too spooked by the technology to think it through. Maybe if we were able to
communicate better the limitations of our technology we could reduce the panic
or at least encourage a dialogue with people like Paul Zimmer.

WHAT WE DO / 137

He went on to talk about hypertext. At first I didn’t understand what he was
getting at: He said that hypertext meant that books and stories would become
disjointed incoherent jumbles, barely comprehensible and unrecognizable as
literature. From what I knew about the uses of hypertext in documentation and
programming environments, this just didn’t connect with reality. Then I started
to read about hyperfiction in which “text spaces” are linked together in a variety
of ways, by the author, by the reader (or both), or by a process, often a random
process. This implies that each text is actually a group of texts and that various
stories or plots emerge from a single source.

To Zimmer this could very well be a necessary result of the technology—that
disconnected texts are what we intended the technology for. Of course this isn’t
true. Like many accidental media, artists are bound to try to use each new
medium as well as he or she can. There are at best only a few writers right now
who are capable of putting together any text that can be viewed in multiple ways,
and though there may be a curiosity factor today that compels people to read
such texts or though there may be a feeling of poking through someone else’s life
while reading a text in which the hypertext allows the reader to explore (or not
explore) diff erent parts of the created world, the art must rise to a level deserving
a larger readership.

Right now, as best I can tell, the art is at a stage similar to that of early synthe-
sizers. The emphasis is on playing with the technology and exploring its limits
rather than making the technology subservient to the art. At the current stage one
can rightly ask, “what art?” Remember those early synthesizer recordings with
beeps and sighs and bubbling burps? It was fun and entertaining to hear sounds
we had never heard before, but once we had heard them, the novelty wore off. So
it is with hypertext.

And Paul Zimmer, how can he really know that this is what is going on? How
can he fail to put the two technologies together, seeing the unchallenged shallow-
ness of current hyperfiction, seeing that there would be no useful role for an edi-
tor of such work because it is so bad, seeing that the world is being led by the nose
by technology to a future with no quality, no literature, only a future with people
playing with technology the way some people mindlessly channel or net surf?

I think it is our duty to help people understand our technology and our inten-
tions for its use. Of course, our intentions are only part of what determines how it
is used, but unless we get people like Paul Zimmer to see its good uses and to help
shape the future, they may resist it and appear foolish in doing so. And perhaps
this will help Paul’s nightmare scenario come true.

I believe we have more of a duty to represent our technology to the world than
we have assumed until now. For example, the public doesn’t really know what
software is like, what we think about when we do our work. Think of the books
on computers. For the most part there are user guides, extravagant books about

138 / WHAT WE DO

the promises of artificial intelligence, and books that talk about 1’s and 0’s and
how simple logic drives computers. Does this sound like what you do for a living?
Do you push bits? Do you use simple logic? Do you have much to do with the
promises of artificial intelligence or user guides? No, we deal with complex pro-
gramming languages, inheritance, polymorphism, abstractions. Think about how
much people know about physics and evolution based on popular books. No one
could find out what we do at that level from the books out there today.

For technology visible to the public we should provide exemplars, we should
talk about the best uses and clearly explain and illustrate them. We should seek
out those professions and industries that are most aff ected take the time not only
to explain what we are doing but also to invite them into the process early on.

At first I thought that Paul Zimmer hadn’t taken the time to read up on the
technology and his position silly. But then I looked at his evidence, and his con-
clusions made sense, because we had not given him the facts. Let’s think a little bit
more about what we do.

139

�
Writing Broadside

I just came back from a week-long nature poetry workshop at Squaw Valley

(California) with the Squaw Valley Community of Writers (1993). At that work-

shop, Gary Snyder—nature poet, essayist, and former Beat poet—delivered a

broadside on nature poetics. In it he encouraged writers to not only push on

their writing but to embrace science—get the science right. A number of scien-

tists attended the workshop, most notably geologist Eldridge Moores, the

human hero of John McPhee’s Assembling California (1993). It was fascinating to

see poets, fiction writers, and essayists sitting on the edges of their seats listen-

ing to scientists, trying to get the science right, trying to learn what to read and

what to do to be more science literate.

We could sit back and chuckle, knowing that it is a lifetime’s work to get the

science right in the sense of becoming a scientist, but I admire the writers who

realize that they cannot shut off their left brain while trying to be nature writers.

These writers are trying.

Over the years I’ve tried to push scientists to work on their writing skills, and

judging by what I read—or more correctly, judging by what I cannot read—I’ve

not gotten far. As computer scientists we are writers, probably half-time writers.

Many computer scientists spend nearly all their time writing, and some of them

are pretty good. But a significant number of these decent computer science writ-

ers are decent in the same way that someone who picks at a guitar for 5 or 10 years

can eventually play something that resembles a tune—they are persistent dilet-

tantes.

If you spend more than 25% of your time writing or a crucial part of your

résumé is a list of publications, you are a writer. More than 2,300 years ago

Thucydides wrote:

140 / WHAT WE DO

A man who has the knowledge but lacks the power clearly to express
it is no better off than if he never had any ideas at all.
(Thucydides 1981)

If your writing is unreadable, you will limit the number of people who read
and understand your work. It’s hard to believe you would choose to limit your
readership. Some computer scientists I know tell me people should and will work
to understand their results.

This spring I was on the ACM OOPSLA program committee, and I tried to
read all the papers—actually I failed and read only about 75% of them. In order
for a paper to be considered by the committee as a whole at the face-to-face meet-
ing, each reader had to rate the paper well. Did your paper fail to get into OOP-
SLA? Could it be because I couldn’t read it and gave it a low mark? How many
other people have put aside your paper because it was poorly written? How many
of those who persevered won’t say a good word about you because you write
poorly? Sadly, if this is the case, it is likely that you failed to take your career seri-
ously.

Now the broadside. A broadside is a forceful argument or something printed
on one side of a single sheet of paper. This is a broadside in both of these senses: I
am arguing forcefully that you should take writing seriously, and at the end I will
present a short list of things I believe you should do to improve your own writing.
You can print those points on one sheet and put it over your desk.

I have a number of familiar suggestions for what to do and one or two very
unfamiliar and maybe controversial ones.

First, read a book about how to write. The traditional and expected suggestion
is to read Strunk and White’s Elements of Style (1979). I never found this book to
be useful except to inspire me to think about writing. People who read it come
away inspired by its most forceful rule:

Omit needless words

I have read almost every book on writing there is. I have studied writing as
hard as I’ve studied anything in my life. And I say to myself, yes, this is good advice
because after years of study I know what omit needless words means.

It is definitely good when people say about your writing that it contains no
needless words, but how would you go about eliminating them? How would you
know a word is needless? In Zen and the Art of Motorcycle Maintenance
(Pirsig 1984) we learn that there is a point you reach in tightening a nut where you
know that to tighten just a little more might strip the thread but to leave it slightly
looser would risk having the nut coming off from vibration. If you’ve worked
with your hands a lot, you know what this means, but the advice itself is meaning-
less. There is a zen to writing, and, like ordinary zen, its simply stated truths are

WRITING BROADSIDE / 141

meaningless unless you already understand them—and often it takes years to do
that.

Sure, read Elements of Style and every book on writing you can get your hands
on, but there really is only one I’ve seen that tries to teach what it means to omit
needless words, to write clearly and simply. That book is Style: Toward Clarity and
Grace by Joseph M. Williams (1990). Williams seems to know what makes writing
clear and graceful and he can explain it. Sometimes he explains where bromides
like avoid passives come from and tells us how to figure out when to ignore
them—for example, when it’s a good idea to use passives. He does this by provid-
ing a theory of clear writing that we as scientists can use. If you decide to read
only one book on writing, this is the one.

You need to learn grammar. There are many ways to do that and many books
that can help you. Chicago Manual of Style (1982), Modern English Usage

(Fowler 1987), Transitive Vampire (Gordon 1984)—they all do the job. Pay attention
to grammar; it’s not hard.

Read a lot. And not just science. In 1990 I read an essay in the New York Times
Book Review that said that to really appreciate good fiction writing and to
improve your own writing, you should read poetry. I found this intriguing and
started reading the works of the five or so poets mentioned: W. H. Auden, Mari-
anne Moore, Elizabeth Bishop, William Butler Yeats, and Robert Frost. Of these I
found Frost the most illustrative and accessible. The point to reading poetry is in
several parts.

First, modern and contemporary poetry is about compression: Say as much in
as few words as possible. Poets avoid adjectives, adverbs, gerunds, and compli-
cated clausal structure. Their goal is to get the point across as fast as they can,
with the fewest words, and generally with the constraint of maintaining an easily
spoken verbal rhythm.

Second, poets say old things in new ways. When you read good poetry, you will
be amazed at the insights you get by seeing a compressed expression presenting a
new way of looking at things.

Third, poets love language and write sentences in ways you could never imag-
ine. I don’t mean that their sentences are absurd or unusual—rather, the sen-
tences demonstrate the poet’s keen interest in minimally stating a complex image
or point. I’ve seen sentences that state in five words something it would have
taken me 20 words or more to say.

Fourth, the best poets balance left- and right-brain thinking. This might come
as a surprise to some, but the best poetry is not new-age sentimentality. More-
over, contemporary poetry rarely requires a knowledge of Greek mythology or
obscure tribal myths and traditions.

After I had read poetry for a year or so, my technical and scientific writing got
much better. I would say that nothing improved it more than did reading poetry.

142 / WHAT WE DO

Since then I have developed a keen interest in contemporary poetry, and my writ-
ing skills have continued to improve (I think) ever since.

The best writers in computer science have a strongly developed knowledge of
writing. The best writers include Guy Steele Jr., Don Knuth, and Stanley Lipp-
man. Lippman studied creative writing as an undergraduate. All three scientists
write technical material that is a joy to read. It is easy to find examples of bad
writing. One of the most influential computer scientists in my field (program-
ming languages) wrote a crucial paper that I have never been able to read.

Next, practice writing. Document the last program you wrote. Use a real type-
setting system—Tex or Framemaker—and produce real documentation. Describe
something in a paper you just read. Spend an hour or two a week just writing—
anything. Answer your e-mail carefully—edit it, revise it. Writing takes practice.
Do you think a violinist listens to music and reads a book and then steps onto
stage to perform? Professional writers are always writing, so it’s no wonder they
are good.

The best way to understand a subject or idea is to write about it. A good way to
practice writing is to write about something you don’t understand. If you don’t
understand inheritance or encapsulation, write about it. You will both learn the
subject and improve your writing.

My last piece of advice is something I’ve never heard of in the sciences, and to
be honest, I’m not sure how well it would work there. Here goes.

How do you think fiction and poetry writers become good? Naturally it
includes a lot of writing practice and studying good writing and working with a
teacher, but established writers also use workshops.

A workshop is a group of people who periodically get together and read and
critique manuscripts by fellow workshoppers. Usually the workshop group stays
together a long time, although this isn’t necessary. But, the longer a workshop
group is together, the better their comments will become, and the better each par-
ticipant will become at knowing which comments to ignore and which to attend
to.

Participating in a workshop is better than giving your work to individual peo-
ple, because a person tends to soften critical comments, particularly if he or she
has a long-term relationship with the writer. In a workshop there can be a feeding
frenzy when comments are harsh, and, although this might be tough on people
with frail egos, it is crucial to producing accurate comments and feedback, and
the writing (and the content) can rapidly improve.

I recommend that we all start workshops, particularly around conference-
paper submission time. Find people who are in your subfield and also in nearby
subfields or even in unrelated ones. Hand out the material a few days in advance,
but not too far in advance—real readers rarely take a long time to try to figure out
your paper, so neither should the workshoppers. Start the comments by having

WRITING BROADSIDE / 143

someone summarize the paper. Then have people state what is new to them, what
works about the paper. Finally, let people start saying what they didn’t under-
stand, what isn’t clear. Talk not only about the contents of the paper but also
about the writing. Make specific suggestions—for example, propose rewrites of
specific passages.

If the paper contains a major result, be harder on the writing: An important
result deserves to be widely read, and wide readership implies less knowledgeable
readers. You can provide a lot of background material if you know how to com-
press—remember, poetry teaches you compression.

Start a workshop in graduate school, particularly at dissertation time. Learn to
write while you’re in school. It is your profession; act like a professional.

This year’s OOPSLA program committee chairman, Ralph Johnson, proposed
that the call for papers require people who submitted papers to show them to
someone else, preferably an OOPSLA-published writer. This proposal was
rejected, and so were 91% of the submitted papers.

Work on your basic skills.

144 / WHAT WE DO

• Your profession includes writing, so learn how to write. No one is natu-
rally talented enough to get by on instinct alone.

• Study writing by reading books on writing. I suggest Style: Toward Clar-
ity and Grace by Joseph M. Williams.

• Study writing by reading good writers, and not just science writers.
Read Knuth but also John McPhee and Rick Bass. Try to understand
how they do it. Think about the good writing you read.

• Learn proper grammar; there are zillions of books on grammar.

• Get a couple of good dictionaries and use them. I have about a half
dozen I use routinely. Some poets look up every single word in their
poems to make sure they are using language accurately.

• Learn to revise and edit; there are books on this, but I suggest work-
shops.

• Read poetry. Nothing teaches you better the power of good writing and
the skills to write compressed sentences. Poetry workshops are full of
fiction and essay writers who are there to learn language skills.

• Practice writing. Write every day. If you are a top-notch computer scien-
tist, you probably read technical papers nearly every day. You are a
writer too, so practice.

• Workshop your writing. Writers learn by workshopping. Every night
across the country writers sit in groups of 3 to 20, reading and critiquing
each other’s work. Not only are these professional writers but amateurs
who simply want to improve their diaries.

RPG’s Writing Broadside

PART IV
�

LIFE OF THE CRITIC

147

�
A Personal Narrative: Journey to Stanford

Some of my essays have been about software, architecture, productiv-
ity, and things technical or concerned with our profession; other
essays have been about writing and our day-to-day activities as com-
puter professionals. My goal in all these essays is to spark your think-
ing—perhaps you’ll think new thoughts or look at things diff erently.
This essay is diff erent—it is a personal narrative of part of the jour-
ney I took to get where I am today in my profession. I want to give
you, my dear reader, a better idea of where my views come from and
why I take pleasure in goring sacred cows. And I think it’s easier to
enjoy essays written by a person who is more than a picture and
words on the page. It took me a long time to decide to write this essay,
and a longer time to decide to publish it.

Throughout my life I have known people who were born with silver spoons in

their mouths. You know the ones: grew up in a strong community, went to good

public or private schools, were able to attend a top undergraduate school like

Harvard or Caltech, and then were admitted to the best graduate schools. Their

success was assured, and it seemed to come easy for them. These are the people—

in many, but certainly not all cases—who end up telling the rest of us how to go

about our business in computing. They figure out the theories of computation

and the semantics of our languages; they define the software methodologies we

must use. It’s good to have their perspective, but it’s only a perspective, one not

necessarily gained by working in the trenches or watching the struggles of people

grappling with strange concepts.

Worse, watching their careers can discourage the rest of us, because things

don’t come easy for us, and we lose as often or more often than we win. And dis-

couragement is the beginning of failure.

148 / LIFE OF THE CRITIC

Sometimes people who have not had to struggle are smug and infuriating. This
is my attempt to fight back. Theirs is a proud story of privilege and success. Mine
is a story of disappointment and failure; I ought to be ashamed of it, and I should
try to hide it. But I learned from it, and maybe you can, too.

Along my odd path I learned a valuable lesson: Good friends and hard work—
in that order—pay off. And you don’t need to be born a winner to become one at
least in small ways.

Just a few days ago I sat in my old friend John’s living room in Denver. He was
my best high school buddy, and we hadn’t seen each other since a smoke-filled
and uncomfortably noisy high school reunion a year before. I sat with him and
told him this story. He had forgotten the parts that overlapped with our friend-
ship. He’s now a psychologist, and he told me I should write it down, maybe for
people to see. Here is that story.

I grew up on a dairy farm in northeastern Massachusetts, just north of the
Merrimack River in the town of Merrimac. I was born in 1949, and at that time
this region was remote. Our farm was several miles from anyone else, and I was an
only child growing up on a farm where there was always work and chores to do.
The Merrimack Valley back then was depressed by the shutdown of many of the
shoe factories along the river. While I was in elementary school and high school, a
lot of people were out of work or changed jobs frequently. Because the tax base
was poor, the schools were not very well funded by property taxes, and they were
pretty lousy. I remember at one point hearing that my high school was the worst
in Massachusetts in terms of the percentage of people going on to college and that
you had to look to places like rural Mississippi to find worse schools (no off ense
intended, Mississippi).

My parents never sent me to kindergarten, so when I went to first grade I was
put in the class for “slow” children. There was a class for “normal” children, but
none for “fast” children. After six months or so they moved me to the normal
class.

Whatever happened in elementary school doesn’t matter much except to say it
made me a wise guy—as people who bent the rules and made a lot of jokes were
called—and by high school I was a first-class wise guy. My ambition was to become
a writer. Schoolwork was generally pretty easy, but mostly that was because the
curriculum was so backward that there was not much most kids had to do to keep
up. My parents thought that writing—especially poetry and fiction—wasn’t a real-
istic alternative, so they pushed me into mathematics. Their thought was that I
could always write if I had a real job, but I couldn’t always have a real job if I wrote.
Because my father was laid off several times and had to take jobs like apple-pick-
ing, he was concerned that I would not have even the advantages he did. So when it
came time to apply for college, I applied to schools where I could study mathemat-
ics: Harvard, MIT, and Northeastern University.

A PERSONAL NARRATIVE: JOURNEY TO STANFORD / 149

Northeastern was my safety-net school. I was ranked first or second in my
school—which was ranked last in Massachusetts—and there was some hope of
getting into Harvard or MIT given my SAT scores, which were OK, but I and my
parents considered me a long shot for them.

My senior year in high school was the beginning of a long and painful journey
which ended nine years later when I got into Stanford as a graduate student.
Everyone in senior class was required to take a course called Contemporary Civi-
lization, which was a civics class. This class was taught by a an ex-Marine named
Joe Sherry. He was Irish and his temper was a little short, and he was the first
teacher we had who treated us roughly. He insulted people and made fun of them,
but not—we thought—in a malicious way. He singled out a small group of us
whom he thought were a little uppity or snotty and he ragged us. I was one of the
ones he felt would always get in trouble by wising off.

We had to write a term paper first semester—jointly supervised and graded by
the ConCiv teacher and the English teacher, Ronald Fenerty. They taught us how
to choose a topic, make an outline, do the research (using index cards), write a
draft, and write the final paper. We had until the beginning of the second semes-
ter, which gave us over Christmas break. I chose for my topic the megalopolis, the
giant city. In 1966 the concept of a giant city stretching from Washington, D.C., to
Boston or from LA to San Francisco was new. I had read something about it at
MIT when I was there visiting, and it seemed fashionably obscure and sociologi-
cal.

Through the fall I worked on it, but it was a background activity for me—the
pace of deadlines was slow enough to make sure the average student could keep
up. In November I was accepted at Northeastern as part of its early acceptance
program to try to attract good students. Northeastern back then was almost
exactly in the middle of overall college rankings in the United States.

In December I got what I thought was great news. A Harvard committee to
assess students’ scholarship potential sent someone to visit me and my family.
The discussion revolved around which scholarships I could qualify for—based on
national origin, family income, and special qualifications for privately funded
scholarships. When we asked the guy whether this meant I had been accepted he
said it was almost certain because the committee did not want to spend time with
families whose children were not going to be accepted. He said that the commit-
tee told him that I would be accepted unless something unusual happened when
my application was completed but that I had been screened into a pool of stu-
dents almost certain to be accepted and with financial difficulties.

Feeling my oats, I decided to press quickly ahead with the term paper and I fin-
ished it in mid-December. With time on my hands I thought it would be nice to
indulge my writing desire and planned to write a preface that would make con-
crete the abstract things my paper said about the megalopolis—the isolation, the

150 / LIFE OF THE CRITIC

dependence on TV instead of on live entertainment, the long commutes. I asked

the teachers if I could do this and they said I could not, but I could write a one

sentence dedication.

It’s hard to understand why a teacher would reject a proposal from a student to

do extra work and to write a more interesting paper. I suppose it’s because real

essays or research papers needed to have a specific form to be acceptable.

What is a wise guy? A wise guy is a person who when told that he could write

only a one-sentence dedication when he had planned a long preface would simply

turn the preface into a dedication—one, very long sentence.

So, I wrote a 3,000-word, one-sentence dedication. I dedicated the piece to a

typical resident of the megalopolis who is battered by shallow culture, poor jobs,

fast pace, and low reward, someone whose life is barely worth living and whose

creative and living juices are throttled by the routine of surviving in a place that is

crowded to near-death—he is a man unfortunately trapped by the horrors of con-

temporary civilization and made less a man, less a person by his circumstances.

Proud, I submitted it just before Christmas break instead of just after.

A few days after the break ended, the English teacher, Mr. Fenerty, called me

into a private office after school to talk to me about my paper. He held it as we sat

down and told me that he was very impressed with it and had given me the high-

est grade the principal had allowed. It seems silly now but I remember counting

the seven plus signs after the A: A+++++++. This seemed fair and just to me—I

had worked very hard on the paper and had tried to make it something worthy of

a future Harvard student.

Mr. Fenerty said he wanted to ask me about the paper before we talked about

the grade some more; he asked me to explain what the paper was about, and I did;

then he asked me to explain the dedication. I told him in the unsophisticated way

that a senior in high school can that it was a concrete realization of the abstract

discussion in the paper—that the paper started with generalizations and abstrac-

tion and moved through implication to the personal and that the dedication

started with the concrete—a story—and proceeded to the abstract by generaliza-

tion: two approaches to the theme. He agreed that that made sense to him but

maybe we should go over the dedication phrase by phrase. I read each phrase and

explained it, and he nodded each time.

Then he asked me if I thought someone could have taken it personally. No, I

answered. Then let’s go over it again, he said. When we got to the phrase about

contemporary civilization, he asked whether I could see how Mr. Sherry might

have locked onto that phrase and so felt that the description was of him—that he

was that low brow person. It might seem strange to anyone hearing this story

now, but it all dawned on me right then that he could take it that way, even

though it wasn’t what I had intended.

A PERSONAL NARRATIVE: JOURNEY TO STANFORD / 151

Mr. Fenerty knew I really wanted to write and that I had done show-off things
in writing before and that a sentence that long—the longest sentence I or he knew
of in published English—was just showboating. Because I fixed the moment in
my mind that day, I can still remember the thought I had when I wrote “contem-
porary civilization”—what a neat hack!

He told me he had given me the ridiculous grade to balance the one that Mr.
Sherry had given me: an F. I was shocked for a moment and then told him that if
Sherry had taken it that way, I was glad I wrote it that way. The average of the two
grades was a C–.

I thought it was a pity but felt no danger in the situation, and Mr. Fenerty said
I should talk to Mr. Sherry. I went to him and explained that I hadn’t meant it the
way he took it, but he told me this: He felt I had been out to make him look the
fool in his class and now he had the chance to get me for it. He said that he had
been asked by the Harvard admissions committee to write an evaluation of me,
that they always asked the civics teacher to assess how aware students were of the
world and that it was a way to get a statement from someone not selected by the
student. Furthermore, because every high school senior at that time was required
to take civics, they could get a recommendation for every applicant from the same
type of teacher.

He let me look at a copy of the letter he had written to them. It said that I had
no ethics or morals and that he and other teachers suspected that I had cheated in
school on many occasions—my destructive attitude would not only damage my
likelihood of success at Harvard but would also hurt other students. He explained
to me that his goal was to prevent me from going to Harvard and to destroy my
future as much as he could.

Harvard did not accept me, and neither did MIT.

If this happened today, I would own him: My family would have sued and his
financial situation would have been ruined. But in 1967 you didn’t sue—it just
never occurred to anyone in the Merrimack Valley. We appealed to the principal,
to the school board, and to Harvard and MIT, but they turned away. I was to go to
Northeastern.

I called Northeastern and asked what the real requirements were for me to be
admitted; for example, did I need to graduate with a high grade-point average?
No, just a diploma was all I needed. I asked the principal of my high school what
would happen if I flunked all my courses for the second semester, and he thought
I might get C’s for them for the year but that I would still end up with one of the
top averages for the four years.

So I decided to go on strike: I told each teacher that because the law required I
attend classes every day that I would do that but that I would bring a book, sit in
back of class (or in my assigned seat) and not disturb anyone but that I would not
participate in the class. Some teachers had trouble understanding it and they

152 / LIFE OF THE CRITIC

would call on me in class to answer a question; I would answer that I was not pay-
ing attention and that I did not know the answer. After a while they caught on
that I was serious and gave up.

I failed each course that semester and I also quit the debating club and the
math club and so did some of my friends, and those clubs lost all the competi-
tions they were in for the rest of the year. I started to grow my hair long in protest,
but the school board decided to let it go.

I don’t know now whether this rebellious streak was already implanted or was
caused by this incident, but it certainly became a strong aspect of my personality
and approach to life—I became the cynical and caustic critic, and whatever was
expected, I did the opposite.

Some teachers didn’t want me to graduate, but the principal pointed out that I
had the second highest average in the class and that there was no basis for such an
action. They pressed him not to allow me to march on graduation day, but I
didn’t care about it so I didn’t fight. However, I was to get some awards and the
teachers giving them out protested that it was a tradition to make a big deal of
these awards at graduation, and so I was finally allowed to march through gradu-
ation with my class.

Northeastern is a five-year cooperative school, which means that you alternate
school with work in order to build a track record for getting a job. Going on to
graduate school from Northeastern was generally not expected. The school was
not great at the time, but I was not really prepared to worry about the future
beyond undergraduate school, with five years of it ahead of me. I slogged my way
through and had an interesting cooperative job in which I learned to program
computers—something I had never considered before.

I studied pure mathematics, and all I cared about was proving theorems. My
interest in writing faded after the first year. At Northeastern, math students got
programming co-op jobs. My programming job was at a little company in Carlisle,
Massachusetts, called Parke Mathematical Laboratories—what a weird name and
place. There were about five mathematicians, physicists, and acousticians who
took contracts, usually subcontracts from local government-funded labs. When I
first saw a computer, I was completely blown away. I was helping a young woman
programmer run some simulations on an IBM 1130; she showed me the problem
they were trying to solve, the simulator setup, and how to watch what was happen-
ing to make sure nothing went awry. It seemed like a miracle: You put in your
problem and through a process you didn’t have to think about, the right answer
came out. I was floored by the apparent power of the thought process in this wide,
low, blue-and-gray box—its flashing panel an artificial furrowed brow. I wondered
how to apply the brain power in the box to my personal problems.

So I started taking philosophy of mind courses to try to unravel what the
mind could be that this machine could be like one. By the time I graduated from

A PERSONAL NARRATIVE: JOURNEY TO STANFORD / 153

Northeastern I was a so-so mathematician, an OK Fortran and assembly lan-
guage programmer, and I had no clear idea about the rest of my life except that I
wanted to try for grad school. I had applied to the usual places for someone who
thinks he has half a chance—MIT, Harvard, Berkeley, Wisconsin, and Minne-
sota. All of these were in the top 20 in mathematics back then, and predictably, I
was rejected by MIT, Harvard, and Berkeley. The other two took me and off ered
teaching fellowships. This seemed like a step up from where I had been, but it
didn’t seem optimal to me. I had girlfriend for the first time and it looked seri-
ous, and she was going to go to school in Boston. I had to figure a way to stay in
Boston.

Some friends on the Northeastern mathematics faculty talked to me about my
interest in the philosophy of mind and programming, and one of them said, “Oh,
I see, you’re into AI!” After revealing I had no idea what she meant, she told me to
go talk to her old friend Patrick Winston, who was the associate director of the
MIT Artificial Intelligence Lab. He suggested that I take courses at MIT and see
what happened. So I applied for and was accepted as a “special student,” which
meant I was someone whose money they were willing to take and who they
expected would not detract from the education of the real graduate students.

I was “admitted” into the mathematics department, which gave me the feeling
that I might be able to get into a better graduate school later. I took a normal load
for a first-year math grad student, but weighted slightly toward artificial intelli-
gence and computability. You see, my idea of AI was that it was intertwined with
computability and decidability.

I learned something about competition at MIT. A couple of times I was sick
and could not attend classes, and when I asked some of the students if I could
borrow their notes they told me no. So I learned to not get sick.

I lived at home then and all during my undergraduate years. My parents left
me alone in general and I usually ate in Boston, so it was almost like being on my
own, but not quite. The commute was 50 miles each way, and in all I did that for
six years.

I noticed another thing about competition at MIT. Classes generally started
out with 20 to 30 students, and if the course was tough people dropped it rather
than take a bad grade. I stuck with every class and achieved an OK B+ average.
One course—Algebraic Topology—taught by a category theorist, started with 26
students and ended up with six. I got a B, which I thought a real triumph. The
teaching assistant told me he never saw anyone prove theorems the way I did,
convoluted but clearly original and certainly not copied out of a book. Left-
handed, no doubt, but I took it as a compliment.

The summer after that year I was given an office (shared by three) at the MIT
AI Lab on the strength of a highly philosophical and mathematical essay I wrote
that year on computer vision. I worked very hard on that essay, and it was 100

154 / LIFE OF THE CRITIC

pages of single-spaced type and lots of odd mathematical content and theorems.
That summer I met several people who would make a diff erence in years to come.
Among them were Patrick Winston, Guy L. Steele Jr., JonL White, and Scott Fahl-
man. I also met Dave Waltz, with whom I would make my next move.

Patrick Winston took me aside one day in mid-summer and told me that it
looked like the Lab would not be funded well the next few years, and though he
might be able to get me into MIT on a permanent basis, it was unlikely I would be
funded. He also hinted that his being able to get me in would be hampered by the
fact that he couldn’t fund me. He made a suggestion, though: Dave Waltz was
headed for the University of Illinois to start an AI lab—I could get in on the
ground floor at what could be a major new lab with good funding. I applied late
to the Illinois math department. But Patrick talked me up to Dave, who talked me
up to the head of the larger lab within which the AI lab would be built, who talked
the university and the math department into letting me in. I visited the Coordi-
nated Science Lab (CSL) late that summer, and my girlfriend, to whom I had pro-
posed that summer as well, agreed to move there with me.

We tried to start the lab but ultimately failed. In the meantime I worked toward
a Ph.D. in mathematics. I took a fair number of AI courses, but mostly mathemat-
ics. I had better luck than at MIT and achieved something closer to an A average,
but as time went on I became less interested in mathematics and more interested
in computers. I wrote a lot of programming environment code to try to duplicate
the environment we had at MIT, but it was hard to do single-handed, and we
weren’t on the net and ran a diff erent operating system, and thus it was frequently
not practical to get the code from MIT. After the first year it became clear that we
weren’t going to be funded the way we needed to be to get the new lab started—
ARPA (Advanced Research Projects Agency) was having its own funding problems,
and people were not that enthusiastic about AI at Illinois. Dave and I tried to start
up a multidisciplinary curriculum for those of us interested in AI, and it turned
out we would need funding and approval from the departments, the schools, the
deans, the president, the trustees, and the state legislature. We gave up on the idea.

At the start of the second year I started to worry about getting my own degree
more than about setting up programs and labs. I went to the math department
and asked them how I could get a Ph.D. in AI from them. After some thought they
came up with an idea—an idea like I’ve never heard before or since.

Their proposal was that I finish all the course and examination requirements
for a Ph.D. in math (from the department rated fifth in the United States and
upset they weren’t first), and then I’d have to write a dissertation that satisfied
them as to its mathematics. It would, of course, have to be approved as an AI the-
sis by my advisor and his department (electrical engineering, EE). And because
who at Illinois really is a senior person in AI, why not have the thesis approved by
MIT, say by Minsky and Papert?

A PERSONAL NARRATIVE: JOURNEY TO STANFORD / 155

This sounded pretty hard to me, so I was depressed about what to do.

Dave and one of the full professors of EE in CSL came up with another plan. I

should get my Ph.D. in EE! I asked some other grad students about this and

learned that I would need to pass a qualifying exam that had big sections on

antenna theory and physics. I mentioned to Dave and the other professor that I

didn’t think I could pass the test. The professor told me that the way the test

worked was this: You take the test. Then it’s graded and the grades are read at a

faculty meeting. If two professors, including a full professor, proposes you pass,

you pass. So, the plan would be that I would take the test, get some low grade like

0, then Dave would propose I pass and the other professor would second it, and I

would pass.

This didn’t sound to me like it was going to work, and I was concerned that

someday I might get a teaching job based on a Ph.D. in EE and wouldn’t really

have a good idea what a resistor was, except that you stuck them in odd places to

make a computer work and were quite colorful.

At the same time my wife decided she wanted to go back to school in physical

therapy, and the only two graduate programs available were at Boston University

and Stanford. So I applied to MIT and Stanford.

My adviser and friend Dave Waltz felt he had let me down a little by bringing

me to Illinois, so he mentioned that he had a friend at Stanford in the computer

science department from whom he would ask the favor of trying to get me in

there.

Around the same time I proved a very difficult result in group decidability as a

take-home examination for a decidability course. My proof was novel and cast

into doubt the only other existing proof of the theorem. The professor for the

course—a well-known mathematician—was notorious for giving very tough oral

exams, and given my history of not getting into the schools I wanted, I had no

confidence and was scared to take it. He off ered the alternative of proving this

tough theorem.

I spent several weeks on it trying what turned out to be the approach used by

the Russian mathematician who originally proved the conjecture. After a lecture

at which a visiting mathematician sat in I heard the professor telling the visitor he

had given this particular theorem as an alternative to his oral exam, and they both

walked out of the room laughing. I became discouraged.

Then I hit on using a new technique, which I called a simulation technique. I

wrote up the proof and gave it to the professor; the proof was 30 pages long. The

professor called me into his office to explain the proof, which took me two six-

hour sessions because the technique I used was unknown to him. At the end he

asked me why I hadn’t tried the approach originally used to prove the theorem,

and I showed him the counterexample that proved that technique flawed.

156 / LIFE OF THE CRITIC

The upshot was that this professor really wanted me to stay at Illinois, but he
wrote me a strong letter for MIT and Stanford.

This taught me something: An isolated good success can be better than a string
of mediocre successes. When I was first at MIT, the long-winded essay got me a
shot at the AI Lab, and that essay also proved important when Winston talked to
Waltz about taking me to Illinois. It was a combination of the right acquaintances
and a single noteworthy achievement that made the diff erence for me, both back
at MIT and at Illinois where it got me a strong letter from a well known mathe-
matician.

I was rejected again at MIT, but someone at Stanford whiteballed me in. A
whiteball is an absolute vote in favor: A faculty member selects a candidate and
announces he or she will support the student financially, and the admissions
committee admits the student. Each senior faculty member gets at most one
whiteball. I never learned for certain who whiteballed me because I was too
ashamed to ask, and sometimes assignments to projects are changed at the last
minute, so I couldn’t be certain the project I was originally assigned to was run by
the professor who whiteballed me.

Nevertheless, Don Knuth called me up in my office and said I was accepted,
and would I please come to Stanford? My wife got into Stanford too, so we went.
My career through Stanford was splotchy, but I finally got my degree. One of the
troubling things about my Stanford experience was that my adviser called me up
on the eve of my oral exams to tell me that he intended to vote against me. But I
had worked for four months straight on my oral presentation, with the help of 10
to 20 other grad students, and the strength of my presentation made it too hard
for him to vote against me.

I got my degree in January 1981.

� � �

Later that spring I traveled back to the Merrimack River Valley to visit my friends,
and I brought my hard-won Stanford Ph.D. diploma. I took it to my high school
one day after classes were out, and I looked up some of my teachers. I found only
one—Joe Sherry. He acted as if he had forgotten about the things that sent me
down the hard path. I reminded him and handed him my degree. I told him what
a bastard I thought he was and how he had diverted my education by four or five
years, but that I had finally achieved something he never could have. He smiled,
thinking he had helped me by increasing my persistence and resilience.

There are a couple of things I learned along the way. One is that once you get a
bad break in your education—or career, for that matter—you will have a tough
time getting back on track. Harvard, I’m sure, originally felt they were giving an
underdog a chance or maybe even filling a quota of disadvantaged students.
When that break was taken away and I was looking for a graduate school years

A PERSONAL NARRATIVE: JOURNEY TO STANFORD / 157

later, I faced difficult odds—I had gone to a lousy high school, had gotten only

OK grades (B+) there, had gone to a lousy university, and had gotten only OK

grades (B+) there. Furthermore, the people writing my recommendations were

generally unknown to the people making the admissions decisions. So the best I

could hope for was a medium boost up in school quality at each step.

The second thing I learned is very important: Being smart is largely learned

behavior. When I went to Northeastern—mediocre as it was then—I had a tough

time adjusting to the way people talked and how smart they were. Keep in mind

that every year only a handful of students in my high school went on to a real col-

lege, and so there was no pressure at all to be smart. I learned how my peers at

Northeastern thought and what I had to know to be like them. After a year I was

pretty comfortable there. When I went to MIT for that year, I never quite caught

up to the students, but I came pretty close—and I had an A– average, which was

respectable. At Illinois I took another step up, and, though it took me a couple of

years, I finally moved onto the same playing field as most of my fellow students at

Stanford. I feel as though I learned to be smart rather than having been born that

way. Maybe this belief is all wet, but I feel strongly that it is true, and I think it

should encourage people.

The third thing I learned is a little discouraging: The people you know matters

along with your relationship with them. I made friends at Northeastern who

helped me make friends at MIT, who helped me get to Illinois, who helped me get

whiteballed into Stanford. I think I had some talent and smarts, but those alone

didn’t help me as much as those relationships did. Now at Stanford I sit almost

every year on the Ph.D. admissions committee, and I see that unless you went to

perfect schools the whole time, got perfect grades, got walk-on-water letters of

recommendation from people whom the committee members know personally,

you don’t get in. Some of the friendships I made at MIT made a big diff erence to

me later, for example, Guy Steele, with whom I have worked on projects on and

off for the last 15 years and from whom part of my reputation descends.

The fourth thing is that every now and then you need to do something that

grabs attention. For me it was the long essay on vision, the new proof of a tough

result, and the well-rehearsed oral exam.

I recall when I got to Stanford, just about all the students there had gone to

top high schools (frequently university high schools) or private schools; had

gone to excellent universities like MIT, Harvard, and Caltech; and had breezed

into Stanford. Some of them failed, as I did, the early exams, and they had a hard

time recovering from those failures because they had never had to work hard

before from a position of weakness.

My message in this essay is that you don’t need to have a silver spoon in your

mouth at birth to make it. Even tough breaks can be overcome. If you have half a

158 / LIFE OF THE CRITIC

brain you can learn to be smarter, and if you work collegially, your friendships
could pay off. So hang in there.

159

�
A Personal Narrative: Stanford

While I was moving a few years ago from the trunk of my car—out of which I had

been living for the previous year—to a rental house on the Peninsula in northern

California, I found a copy of the literary magazine my high school put out while I

was a junior: Tergiversations. It’s a real word: tergiversate means “to change repeat-

edly one’s attitude or opinions with respect to a subject or cause.” It comes from a

Latin word that means “to turn one’s back.” What I noticed as much as the bad

writing was that I wrote about half the poems in it; some under my name, some

under a pseudonym, and the rest anonymously. One of the things I did when I

was on strike at my high school was to write a story, which I still have and which

isn’t really very good, that caught the eye of the man who wrote the preface to

Carl Sandburg’s biography of Lincoln.

Yet between 1967 and 1991 I wrote only two or three very short stories and no

poems at all. For some reason I turned my back on writing, even though I admired

writers in the meantime and I often fantasized about writing books or scientific

papers, even popular books on philosophy. Now I am back to writing in a big way:

I write essays like these as well as stories and poems (my passion). I am currently

enrolled in a master of fine arts (MFA) program at Warren Wilson College and

hope to become a real writer, a poet, some day.

1967–1991: that’s a quarter of a century—around a third of a person’s life.

The previous essay about my life started in the middle of my passion for writ-

ing and told a story in which this passion led me to start off my technical career

on the wrong foot. Looking back I feel that I could fold my life like origami into

three parts in which 1967 butts up against 1991, and it would be a continuous

picture of an aspiring writer trying to make it—and when I unfold it, the middle

24 years look almost like someone else’s life. I found I asked myself whether that

long detour—that lengthy turn of my back—was there just to prove that I could

160 / LIFE OF THE CRITIC

recover from the error I made, from Sherry’s wrath, from the switch from Har-

vard to Northeastern and the slow uphill.

When I arrived in California from Illinois to attend Stanford in late summer

1975 to look for a house, I was pretty amazed. For one thing, the sun was always

shining, and there was never a cloud in the sky. It was August when the East and

Midwest are stifling with heated wet air, but California was dry, dusty, and

smelled of exotic medicinal trees and rich herbs. For another thing, there was no

such thing as a two-bedroom cottage for $90 a month, which is what my wife,

dog, and I had been renting in Urbana, Illinois. As a grad student I was making

$650 a month at the University of Illinois; at Stanford I would make $330, and the

housing was easily three to four times more expensive. I was able to find a house

for $285 a month in south Palo Alto, and a few weeks later my troops and I got in

our red, 1973 Volkswagen Beetle and headed across country. We had spent part of

the summer in New England, so it was a true cross-country trip. We stopped in

Champaign-Urbana and visited friends for a week and then headed west. It was

the second cross-country trip I had taken, and there would be many more.

We weren’t interested in seeing the sights, so we drove with as few stops as pos-

sible—remember, we had a restless, 80-pound dog in the back of an un-air-condi-

tioned small car. It took us only three days to get across from Illinois to California.

We pushed very hard the last day to get there rather than stopping in Reno. I had

arranged with some friends to stay at their apartment in Sunnyvale (California)

when we arrived and we had called them a few days before, but when we drove up

at 11:30 p.m., we found a note on their door that they had gone to Yosemite; next

to their note was the key to our house, which they had picked up. We drove there

and slept on the floor our first night—an unrefreshing start to our new life after 20

straight hours of driving.

Stanford proved to be a little more than I expected. Back then the computer

science department admitted only 18 people (out of 600 applicants), and because

I was a whiteball, I wasn’t in their league, at least not at first. There weren’t many

undergraduate computer science programs, so almost everyone was from some

other discipline: mathematics, physics, music, psychology, chemistry, for exam-

ple. Four of the students were from the University of New Mexico, including two

brothers—it seemed odd that so many from one place would make it through

Stanford’s fine net.

I was firmly—obviously—at the bottom of the barrel.

I was assigned to a project directed by Ed Feigenbaum—every grad student

was guaranteed a research assistantship. I had hoped for an assignment at SAIL,

the renowned Stanford AI Lab. Disappointed by being assigned on campus, I

went up there to visit one day and talked John McCarthy into supporting me if I

agreed to TA his Lisp course that fall. I informed Feigenbaum, and he survived.

A PERSONAL NARRATIVE: STANFORD / 161

The computer science department was located in “temporary” buildings which
still exist just west of the quadrangle. The AI Lab, on the other hand, was located
about five miles southwest down Arastradero Road, a eucalyptus-lined two-lane
that winds through the low foothills behind the main bulk of Stanford. Eucalyptus
are very tall, shag-bark Australian trees imported as windbreaks. The bark tends to
shed from the trunk leaving smooth bald dull-rainbow patches sometimes cover-
ing half of the surface area of the trunk. The leaves are long, dark green—aromatic,
used as a medicine. On either side of the road beyond the eucalyptus were dusted
gold-brown hills, a kicked-rug thrown back from the Bay with a high fold between
the Bay and the ocean.

At a curve in the road, a driveway forked right up a steep driveway to the
Donald C. Powers Laboratory—the Stanford AI Lab. The driveway flowed up the
best gradient line and then circled the Lab, a partial redwood annulus with an
asphalt volleyball court in its center. From the ridge north just beyond the park-
ing lot you could see the Bay and San Francisco 35 miles to the north. Looking left
from this view were the hills, a high redwood-topped ridge running south from
just south of San Francisco to Santa Cruz and beyond. Mornings and afternoons
the fog would push up on the ocean side and droop down on ours.

The air held the scent of eucalyptus and tarweed—tarweed is an oily, short,
thin-stalked gray-green plant that grows plentifully only after wet winters; it has a
strong sweet smell. The combination of eucalyptus and tarweed on the wind
makes the smell of northern California unforgettable.

The Lab sat high above the thicket of suburbia that the Penisula was quick
becoming. In only a few years from the ridge above the Lab you would be able to
see the brown edge of the top of the smog layer that would dominate hillside
views for the next 15 years. The Lab is where I wanted to be from my first sight,
and in a rare outburst of boldness after eight years of hiding in the shadows I
approached John and got not only his promise of support but also an office in the
annex, behind the main part of the Lab. At the top of the next page is what the
Lab looked like. I say “looked like” because around 1989 it was torn down and the
land leased for stables.

Originally the building was to be a complete annulus with a bridge linking it to
another, smaller one on the hill just to the upper left of the diagram. The driveway
went all the way around the building, and the main parking lot was to the right in
the diagram.

The Lab was away from the rest of Stanford, and a lot of the grad students—
there were no computer science undergrads at the time—envied those who “lived
on the hill.” John McCarthy is the father of Lisp, the only language I had used in
years, and all my AI work was done in it. I used a dialect of MacLisp, and my job
after being a TA for John was to port MacLisp from ITS (Incompatible Timeshar-
ing System) to WAITS (we called it the West-Coast Alternative to ITS). Actually,

162 / LIFE OF THE CRITIC

the operating system was just a variant of TOPS-10, the operating system that
DEC provided with its PDP-10s and KL-10s. SAIL had a PDP-10, which would be
upgraded to a KL-10 in the mid-1970s, a few years after I arrived. The KL-10 was
the DEC adaptation of the Super-Foonly, a computer designed at SAIL just before
I arrived. All these computers were timesharing computers, and we were on the
ARPANET, which was the precursor of today’s Internet.

Among the unexpected things I found at SAIL were these: There was a large
sauna and showers in the basement of the annex; the terminal system was based
on a video display system in which the computer executed display programs that
deposited video on a large disk which was then directed to green-phosphor mon-
itors, providing amazing capabilities; there was a volleyball game just about every
day throughout the year; there was a computer-controlled vending machine
called the Prancing Pony. When the people and machines at the Lab moved onto
campus, the KL-10 was kept running until the late 1980s to continue supporting
the Prancing Pony because no one had time to build the custom hardware needed
to interface it to a UNIX machine or to write the software.

The display system deserves more mention. Remember, I am talking about
1975, and this system had been in place for five years. The video rate was 19.2kb
and you could display green-scale on it; there was a video switch which enabled a
single person to “own” up to 32 channels or separate screens; this video switch
allowed people to observe other people’s screens, which helped people work
cooperatively without walking from office to office and helped new people learn

my office

N

annex

volleyball court

my office

N

annex

volleyball court

my office

N

annex

volleyball court

A PERSONAL NARRATIVE: STANFORD / 163

the system by quietly observing; three TV stations were piped into the video
switch so you could watch TV while things compiled or ran; six radio stations
were piped into an audio switch so you could listen either to the radio or the TV
sound channels while you needed to view the screen.

It looked like my dreams might be coming true.

You see, not only did this seem an ideal place to work, but I had worked fairly
hard on my research directions, and my goal—which turned out to be unrealis-
tic—was to blow through Stanford as fast as I could. I felt I could do this because
I knew my topic (I thought) and had been in grad school for three years already,
though in mathematics. I planned to get through in record time.

To do that required passing two tests, writing a dissertation, and defending it.
One of the tests was a comprehensive exam which tested one’s breadth of CS
knowledge. This test was broken up into several parts: numerical analysis, hard-
ware, analysis of algorithms, theory of computation, artificial intelligence, and a
programming problem. This test had to be passed within two years and could be
taken only three times.

The other test was the qualifying exam in your area of expertise. It was an oral
exam that tested depth of knowledge—whether you knew enough to do research
in the area. This test had to be passed within a year of passing the comprehensive.
Once you passed the qual, another clock started ticking on how long you had to
complete your degree.

I planned to take both tests the first year, and I did.

Meanwhile, there were finances to worry about. My wife was enrolled in the
master of physical therapy program and was a full-time student. We lived in a
two-bedroom house that consumed all but $45 of our monthly income, so we
started looking for housemates. The first one we found was Bill Scherlis, who
remained my friend for many years until a scandal split us apart. Bill was one of
the silver-spoon guys. I’m not sure he went to a private school, but he went to
Harvard and had been admitted the previous year to Stanford, but had deferred
one year to spend that year at the University of Edinburgh, a well-known com-
puter science and artificial intelligence school. His family was rich—his father was
a physician at Johns Hopkins, they had a summer home on Martha’s Vineyard,
and Bill had traveled extensively in Europe and Africa. His tastes were impeccable
and expensive. He took the second bedroom.

Kathy, my then-wife, found another housemate, Nancy, who moved into our
living room, using a curtain across the living-room/dining-room boundary for
privacy. This way, and with the help of my parents, we were able to eat.

The qual that year was unique: Ed Feigenbaum was working on a handbook of
AI which would present short introductory essays on AI topics. He also chaired
the qual committee for AI. He decided that people taking the qual that year would
write 13 short essays for the handbook—some selected by the individual and

164 / LIFE OF THE CRITIC

some selected by the committee—and the essays would be judged to determine
whether you passed. Because I preferred written to oral tests, I signed up.

The comprehensive had a long reading list, which I started going through—
remember, I had no real CS background. Course work was not very demanding
because the rule was that to get a Ph.D. you needed a certain number of units or
course hours, and those units had to be spread among at least four diff erent pro-
fessors. One of the popular courses was Reading and Research, and which was
really supervised thesis research.

The comprehensive exam was to be held in late spring, and the qual was dur-
ing that same spring quarter, which was 13 weeks long. This meant writing more
than one essay per week for the qual, because the comprehensive exam took a
week.

The reason it took a week was the programming problem, a week-long take-
home. The problem was gauged to take more than a normal week’s effort, so you
had to plan on spending 18 hours a day on it—sort of a rite of passage.

During spring quarter my wife’s stepfather died, and we went back to New
England for the funeral. This interrupted both my essay writing and studying for
the comp. When we returned I finished the essays and took the comp.

The test was open book, so I brought a trunk of books—you were limited by
how many books you could carry: one load. The test was hard. After it was over,
we had a free night before the programming problem.

I was a good programmer, but for some reason I had a lot of trouble with the
problem we were given. It was to write a program that would invert a very large
sparse matrix. I figured out a good approach and went at it up at the Lab. People
working there were warned we’d be using the timesharing system, and so preven-
tive maintenance was suspended for the week. Because of my relative unfamiliar-
ity with the implementation and dialect of Lisp used there and a deep panic, I
thrashed for several days on some simple bugs. To catch up I stayed up all night
for several nights.

Part of the problem was to provide documentation and a description of the
algorithm and some analysis of it. I managed to finish but had slept only about 15
hours for the whole week.

Grading the qual took most of the summer, and I believe that no one actually
looked closely at the essays. The pressure was on to publish the handbook which
had dragged on for several years—the reason Ed gave essays for the qual was to
make some progress. Eventually three months later he declared that everyone who
had taken the qual had passed. I know that one of the students who took the test
and passed wrote all the essays within a one-week span, so I suspect he simply
passed everyone rather than try to find people to read them carefully.

I found out about the comp much faster: I failed. Bill, who took the test at the
same time, passed. I went into a deep depression. I knew by then that I was not up

A PERSONAL NARRATIVE: STANFORD / 165

to the level of the other grad students, and it seemed like my dream of finishing
was over. Bill moved out later that summer, partly because I was too embarrassed
to talk to him much and he felt that I was upset with him for some reason.

It took me most of the summer to recover, and in the fall I started reading
again: 8, 12 hours a day in preparation to take the comp again in the winter.
Another classmate, Ron Goldman, moved into Bill’s old room, and Nancy left as
well. Ron had failed the comp, too, and so we studied together a bit. We retrieved
all the old comprehensives from the department and worked them; we quizzed
each other on arcana.

The test was in January, and it seemed pretty easy. One of our other classmates
had taken it twice already and failed, so he had to pass or he might be removed
from the program. The programming problem was a lot easier too, and I man-
aged to finish in four days. Our classmate had not quite passed the written part,
so he needed a high pass on the programming problem; he spent 20 hours a day
writing a knockout program, one that used natural language input.

We all three passed, but I can’t remember if I got a pass or a high pass—regular
pass, I think.

But my case came up with the faculty: The normal course of events was that a
student passed the comp then the qual; I had done it the other way around.
Because they couldn’t think of a reason that it was a problem—and anyhow it
wasn’t forbidden—they ruled I was OK. Except, of course, that the clock was tick-
ing on other deadlines according to the date I passed the qual, which meant I had
lost nine months.

I switched from (robot) vision to natural-language generation and Terry
Winograd agreed to be my adviser. I hooked up with Cordell Green’s research
group which needed a simple natural language-generation system. I did some
reading in the area and found that almost no one had done any work, so I set off
on my own.

Terry had been the wonderboy of the MIT AI Lab. At a time when AI was lan-
guishing and money for AI research was tight, MIT needed a charismatic figure.
Terry was the answer. Handsome, well spoken, smooth and compelling as a
speaker—Terry wrote the famous SHRDLU program, a natural-language under-
standing system hooked up to a simulated robot that would move cubes, pyra-
mids, and spheres of various color around according to written questions and
commands. They made a film of it and it is sometimes still shown on PBS.

After MIT, Terry became a scholar more than a researcher, though he still did
some research, it never amounted to as much as SHRDLU had.

I turned my attention to writing my thesis program, and I took a large dose of
Advanced Volleyball to fulfill my courseload requirement. Life was grand.

Then some things started to happen.

166 / LIFE OF THE CRITIC

Kathy graduated from her program. She and I and a classmate had jointly
written a computer-aided gait diagnosis program for her thesis, and then she
started working. She wanted to start a family soon, and I had told her I would be
done with my Ph.D. after three years. That meant I had one year to go. I, of
course, didn’t meet that deadline—it had taken me almost two years to pass the
tests.

My friends back east at MIT told me that my marriage was the ideal of the CS
world—well, they meant the AI lab world of MIT, Carnegie-Mellon University
(CMU), Stanford: Most married couples they had known had broken up, and
Kathy and I seemed such a pair, what with our eccentric ways and our two Sibe-
rian Huskies that gave all our visitors fleas.

After another year Kathy got pregnant and I panicked—we had the pregnancy
terminated. Kathy never seemed to recover from that experience, and my delays
in finishing just pushed her further and further away. My parents felt doubts
based on my inability to finish quickly, and they started telling their friends that I
had dropped out of Stanford and become a plumber. They said they did this
because it became too embarrassing to them to explain to their friends why it was
taking me more than the three years I told them it would. To those friends and to
my parents grad school was like any other school: You were on a schedule of
classes (and other stuff), and if you didn’t graduate when you were supposed to, it
meant you were being held back, like being held back in second grade.

Soon my whole family was recommending that I simply give up and get a job.

In 1979 our son was born. Because I had flexible hours and Kathy worked fixed
hours, I worked from home over a phone line and took care of the baby that first
year while trying desperately to finish. Later, Kathy would say she left because I
did not want our child and would not “happily” take care of him.

I had started at Stanford in the fall of 1975 and in 1980 was ready to prepare
my orals. To do this I wrote a draft of my dissertation. The system I wrote as the
topic of my thesis was able to generate English descriptions of an internal repre-
sentation of an automatically generated program. My system was part of a larger
system that accepted English input concerning what a program should do and
produced that program, including doing somewhat sophisticated complexity
analysis. My part of the system was to take as input the program that was devel-
oped and describe it in order to convince the user that the program generated
corresponded to what was desired. I guess the general idea of the research project
was to fulfill John McCarthy’s advice-taker goal: If a program is to be able to do
something by figuring out what to do, it should be able to be told what to do.

I thought the thesis was about natural-language generation—after all, that’s
what the program did. However, like many AI folks—Winograd included—I
designed and wrote a complete programming language and execution environ-
ment that made the actual programming easier—today we would say I wrote a

A PERSONAL NARRATIVE: STANFORD / 167

framework and a sample system using it. Two of the things I was particularly
interested in were being able to have the style of writing vary and to have the com-
petence of the system increase by adding relatively small pieces of knowledge.
Given that I spent most of my time working on the language and execution sub-
structure, the actual work on generation was not very interesting and at best rep-
resented a simple demonstration of the power of the framework.

It took me a while to understand this, however. I wrote a draft and put together
a presentation. The orals are an examination in which the candidate presents his or
her thesis to the public including a four-person orals committee. The presentation
is followed by public questioning. After that, the orals committee meets in private
with the candidate and questions him or her extensively. Finally, the committee
gets together and decides whether the candidate should pass. All this happens in
the space of a morning or afternoon.

So the presentation I put together was my orals dry run. I presented it at SRI
International in Menlo Park to their AI group and it bombed—it bombed badly. I
gave it a couple of other places, and it had the same eff ect. I got together a group
of my friends—other grad students—and presented it to them, and it bombed.
Fortunately for me, Ron Goldman was one of them.

We sat down, and he asked questions that tried to get at what I was saying,
what were the ideas, how should the material be presented, what did I really do. It
was during this process that I realized that the bulk of work was on system build-
ing not natural-language generation. We refined the presentation and I gave it to
the group again. And again and again and again.

I think we iterated on the presentation 20 times over the summer.

Meanwhile, Terry was reading my draft. I was in a tough position because this
was around the time he was trying to get tenure and I was the first of his real stu-
dents to graduate. There had been another, earlier student, but Terry became the
chairman of his thesis committee during the quarter the student graduated and
Terry arrived at Stanford from MIT. The way we all thought of this first student
was that Terry had stepped down the aircraft stairway and signed the thesis as he
reached the tarmac.

So I was to be the first of his actual advisees to graduate, and I was graduating
some six or seven years after Terry arrived. This was not good for either of us. My
draft emphasized natural language, even though the bulk of it was about the way
the system and framework were put together. After reading it he told me he
thought it stank and he recommended I not do my orals in September.

One of my traits is that I cannot accept praise, because I fear rejection. If there
are no high highs, then the lows will be less low. When I failed the comprehensive
exam, I was down for six months; I was unable to socialize or even really be with
people. I would sit in my living room and just listen to music all day, dreaming
about what I would do with my life given my most recent failure.

168 / LIFE OF THE CRITIC

My favorite was to picture myself living in rural western Kansas, farming a
small spread with a wife who would have come from some mysterious place from
which she was running. I had been through Kansas twice, and the images of Tru-
man Capote’s In Cold Blood, which is about a murder in southwestern Kansas in
1959, had stuck in my mind since 1965 when I read the book. I would picture my
wife and me holding hands looking westward toward our small farmhouse, tall
cottonwoods in a line in front of it, the sun dipping behind and the sky smeared
red. She would have very long blonde hair, and we wouldn’t be so much in love as
we would care for each other in our deep unvoiced sorrow. Our old, separate
friends would be wondering where we were—were we still alive? A suicide dream
of sorts.

Dreams like this one were how I dealt with most of my failures. After a rejec-
tion I would dream sad and tragic dreams like this and eventually they would turn
into triumphs. For example, after Joe Sherry cast me out of Harvard Heaven, I
dreamt of sublime obscurity until the dreams turned into me walking across a
prestigious university as a revered professor. A dream like this is dangerous,
though.

Because, when you think about doing something, you tend to do it. For exam-
ple, if you think about getting better at grammar, you will get better even if you
don’t study it at all. This happens because you—partly consciously—try to steer
away from sentences you’re not sure about and toward ones that you’re certain are
grammatical. You pay more attention to edited writing like newspapers for mod-
els. Just thinking about it makes it true.

I wanted to be a writer, but the dream of walking across campus took over, and
I made my goal academic success. In a lot of ways this is a good trait: I fail at
something, I dream, I get better at it both through the eff ect I just described and
by studying, practicing, whatever. But sometimes you fail at things you don’t
really care about. I suspect I tried to become an academic because I happened to
fail at an attempt to become one that was really half- or quarter-hearted. Then I
dreamt, then I acted.

Terry’s comments sent me down, but Ron picked me up. We continued the
practice. I told Terry that the thesis was going to be more about systems than lan-
guage, and in fact, language would be just one of several examples of the use of
the framework. This calmed him down a bit.

Undoubtedly Terry heard of the failed presentations at SRI and other places,
and he continued to phone me as I worked at home to tell me I was on the road to
failure. But every time he said no, Ron said yes.

An orals committee is made up of one’s thesis committee, someone outside
your area within the department, and an outsider in the university who is the
chairman of the orals committee. The three people on my thesis committee were
Terry, Cordell Green, and Dave Waltz (my adviser and friend from the University

A PERSONAL NARRATIVE: STANFORD / 169

of Illinois). As September grew closer, Terry’s warnings increased in degree and

frequency. I began to panic.

I asked a woman friend of mine who once had had difficulty with anxiety to let

me have a couple of Valium pills just in case, and she agreed. My wife and parents

had long since given up on me. Perhaps they had heard enough of my extreme

worst-case scenarios. When I went into my rejection-reaction mood, I always

painted the worst picture possible. Of course, that picture never came true, which

was part of how I survived—I knew rationally the worst-case scenario could never

happen, though emotionally I believed it must, so when it didn’t I was bolstered

emotionally. When I told my family that my adviser was not confident, they

thought it was one of my pessimistic scenarios.

The day before my orals arrived. I had given my talk five times in a row with

only minor corrections needed. It was a two-projector presentation in which one

projector carried the breadth of what I had done while the other provided depth.

Dave would arrive the next morning on the red-eye from Japan. That afternoon

Terry called me up and told me he intended to vote against my passing. Ron said

not to believe him, but Ron was not on my committee.

I can’t remember whether I slept that night, but I know I could not have with-

out artificial help. The orals were at 1:00 p.m. At noon I took the Valium, perhaps

twice the normal dosage. I arrived at the classroom and prepared the projectors. I

paced the room and made it familiar, a ritual I still follow when I give talks. Ten

years after my orals I gave the keynote address at a conference held at Cambridge

University—this happened to be one of the dreams I had had at the end of my

Northeastern days—and as the audience walked into the hall and seated them-

selves they saw me pace at the foot of the theater, up on the stage; they saw me sit

and dream in the front of the room, stage left.

At 12:45 the audience arrived and 10 minutes later my committee. Refresh-

ments were served as a matter of convention—chocolate chips prepared by the

woman with the Valium, a woman with very long blonde hair.

The chairman of the orals committee—the outside guy—started things off.

I started in, oddly calm, induced probably by the Valium. Dave Waltz seemed

to be dozing. The blonde woman, who went to school in Berkeley, sat and smiled.

Somehow I was confident—how Ron accomplished this I don’t know. I still feel

this confidence when I speak. I am always panicked, nearly to tears, before I

speak, but once I start I am fluent and cogent as at no other times except some-

times when I write and the material just takes off on its own.

The two-projector idea worked great. Most students practiced their orals talks

three or four times, so it was unusual to see a talk practiced and refined as many

times as I had. It went very smoothly. When the questions started coming, each

one had been answered five to ten times already in practice sessions. The eff ect

170 / LIFE OF THE CRITIC

was that it seemed I was invulnerable. In many cases I had slides already prepared
with the answers. I used humor and engaged the questioners.

The public and I were dismissed while the committee discussed my presenta-
tion and the strategy for the private session. This was the part I dreaded most. I
had heard stories about such private sessions at MIT in which people were asked
such things as to compute the gravitational constant from whatever general phys-
ics knowledge they had (this was for computer science orals).

I sat outside while people in the audience filed past and congratulated me. I
told them the real test was about to start.

I sat there for 15 minutes, still calm but that calmness evaporating. I was alone
in the hall. The door opened and Terry stepped out—had he voted no already?

He said, “Congratulations, you passed. That was the best presentation I have
ever seen.” He walked away. The rest of the committee stopped to congratulate
me. I never stood up.

As I recall, the orals were on my wife’s birthday: September 12, 1980. I had told
her I would drive up to the Lab for a while before coming home.

It was a day just like the first day I visited the Lab: dusty, with the sharp fra-
grance of tarweed splattered on a background of eucalyptus; hot and dry; hazy
and dusty, a few wands of fog wandering behind the hills. I stood on the rise
across the parking lot to the north of the Lab and just sat and stared. The nights
’til 2:00 a.m. sitting in the annex listening to music piped in over the terminal sys-
tem, walking between the back building and the front to the Pony to get drinks,
snacks. Afternoons filled with volleyball announced “Now hear this: Bounce!
Bounce!”

I spent an hour and drove home.

I never learned what happened in the room after my public session. No one
before or since has escaped the private orals session. I still imagine they talked
about the stress I was under and Terry talking about how he didn’t think my thesis
was good but it was good enough and how he had tortured me with threats of
failing so why not just spare me the humiliation and pass me without further tor-
ment since they would eventually pass me anyway? I waited 13 years to ask them
what happened, and they didn’t remember except vague recollections of thinking
I had done an impressive job. But 13 years later I have a name and what’s the
point of bringing up old opinions?

I handed in my dissertation three months later and started my marginalized
career believing I had sneaked out with a degree. It didn’t feel the way I thought it
would—there was no victory, no sense even of having been successful. More like I
had stolen something and that I had no allies but Ron and the woman with very
long hair, that the committee would just as soon forget what happened. Perhaps
they felt I would amount to nothing, and so their mistake would not be devastat-
ing.

A PERSONAL NARRATIVE: STANFORD / 171

Sometimes when you read a résumé, it seems that there is a constant upward
motion of one success after another, one grand title followed by one even more
grand. What you don’t see is that the steps are sometimes achieved with difficulty
or only barely—that the toll is high and the sacrifices almost too much to bear.

But also you don’t see the résumé for the other parts of a person’s life: We can
see the professional climb, but how did he handle his mother’s death, she her
failed marriage?

Climbing is hard and rarely is the trail constantly upward.

PART V
�

INTO THE GROUND

175

�
Into the Ground: Lisp

When you leave school, you face the treat promised for perhaps decades: the real
world. This is the place where what you’ve learned not only can be applied but is
supposed to make sense. But think about it: How much like the real world you
met was the world of school? I started in 1955 in the first grade, spent six years at
Merrimac Elementary School, six years at Pentucket Regional High School
(including seventh and eighth grades), five years at Northeastern University, one
year at MIT, two years at the University of Illinois, and five years at Stanford, and
when I finished it was 1981, I had been married and was on the way to divorce;
and I had a two-year-old son. I started with Eisenhower, ended with Reagan, and
passed through Kennedy, Johnson, Nixon, Ford, and Carter; I started with the
Korean War just ended, witnessed Vietnam, the protests, the humiliation of
Nixon, the rise and fall of liberalism, the fall and rise of conservatism; we had
decided to go to the moon, done it, and all but abandoned the space program; I
started a young boy and ended near middle age.

When I was but a few years into this trek, they told me that I was part of the
future and whatever I needed to be a productive member of society was the most
important thing of all. And when I finished about to realize that all-important
productivity, my son’s future became most important and I was secondary. When
was my time? I’d spent 25 years preparing, only to turn to prepare the next gener-
ation. No one told me that what I was preparing to do was to prepare someone
else.

School is a world where failure is hard but not fatal—money can be lost, but
for me it was the furtive money of scholarships and cooperative earnings, fellow-
ships, soft money. People’s careers could be damaged or even ruined, but rarely
did they die, did they shuffle off in shame; everything could renew next quarter,
restart in a semester or next fall—you could retake a course, change advisers,
transfer to another school, reapply in the winter, hire a tutor, even cheat.

176 / INTO THE GROUND

So after school and after my wife drove off to New York with my son and my
red ’73 Beetle, I stayed for three years in academia because it seemed so easy and
familiar. Later, after an exhilarating ride starting and running my own company, I
would try my hand at failure.

� � �

After I graduated from Stanford in 1981, I spent a couple of years working for
John McCarthy on the Advice Taker project and for Lawrence Livermore National
Laboratories (LLNL) on implementing a dialect of Lisp for a supercomputer they
were building. The Advice Taker was an artificial intelligence project based on the
premise that it is not possible to program a computer to figure out how to do
something unless you could program it to be told how to do it.

I worked with a philosopher named Lew Creary who was a jazz guitar aficio-
nado and would talk for hours about jazz greats, strange fingerings, unusual
chords and voicings, and his particular brand of philosophy of knowledge, based
on the work of Frege. He thought up the ideas, and I implemented them in what I
thought was a simple and eff ective arrangement that minimized the need for a
heavy intellectual investment from me. My experience getting my degree had not
been very wonderful, and McCarthy’s remark after he read my thesis before he
hired me was, “it’s not very good.” Nevertheless, he needed a hacker, and I was
certainly more of that than he had had in a long time if ever.

I socialized with Lew a bit, and though his wasn’t a world-beating personality,
he had enough quirks and texture, enough raw stuff, to make for a good compan-
ion. He seemed like he was wired into the late ’40s or ’50s—he looked pretty
straight and even a little worn round the edges, though he wasn’t much older than
me.

Lew was always making a clever, very small joke and laughing silently while
watching your face for any sign that you got it. He eventually went off to Hewlett-
Packard (HP) Labs and I lost track of him after a few years.

The group at LLNL actually was a group of ex-Stanford and ex-Berkeley stu-
dents out to build the world’s most outrageous multiprocessor, the S1 Mark IIA. I
was hired to implement a version of Lisp called NIL (New Implementation of
Lisp) which was designed by Jonl White and Guy L. Steele Jr.

The Livermore group that I worked for was a spin-off from the O Group,
which was the special projects group in physics, and was led by Lowell Wood, the
bad-boy physicist. Lowell did things like charter jets when he missed the sched-
uled flight to the Nevada Test Site or pick jetway locks when he missed the flight
to DC where he would meet with White House officials to convince them of the
need for Star Wars.

The O Group was filled with tremendous young physicists who were con-
vinced that all that stood between peace and war with the Soviet Union was their

INTO THE GROUND: LISP / 177

brains, which were locked in battle with their corresponding numbers in bomb
labs in the USSR and China.

One of the guys at the Lab had two pictures—a geographic map of the Soviet
Union and a geographic map of the moon, labeled “before” and “after”. Some of
them carried arms in their cars for protection against the KGB and terrorists. One
carried a .357 and once was up at Lowell’s giant log house showing it off—11,000
square feet on 100 acres on top of a hill above the Lab. A group was standing
around in a quarter circle when he shouted, “look, a rabbit!” He pointed the gun,
apparently at the rabbit, and tracked it as it ran behind the group, and it didn’t
require a lot of thought to realize that the gun pointed at one knee followed by a
thigh or a waist. When the rabbit emerged from behind the group and started to
head down the hill, a shot ripped out—“damn it, I missed.”

Out of the LLNL experience I would start a company in 1984 that folded in
1994—Lucid, Incorporated. This experience was unlike anything in my life before
and perhaps unlike anything that could ever happen again—I raised nearly $16
million of venture capital, I signed OEM deals with IBM, DEC (now Digital),
Sun, HP, and almost all the other major computer manufacturers of the 1980s, I
hired dozens of top-notch developers—the company grew to 75 at its peak—I was
the president of it for four years, I was the de rigueur charismatic leader of the
company, I hired and fired CEOs.

There was nothing like it: I worked 60- to 90-hour weeks—because I loved it.
We hired fabulous people who were the most talented I’ve seen, who loved work-
ing together toward a goal we felt worthy. We had three or four rock bands, we
had parties at work and away, we had an extended family which, two years after
the death of Lucid, still has picnics and potlucks, and still has an active mailing
list.

A company, though, is like a working gold mine: A prospector, a man with a
vision, finds a vein of gold in a desolate area; a company of men smart in the ways
of building sluices, constructing extraction facilities, and minding books and
deliveries uses the man’s vision to create wealth, a part of which is shared with the
visionary. The man who puts up the grubstake takes more gold than the finder
does. It is not enough to build a mine that employs 90 men well, it also must pro-
vide wealth for a handful.

Because of that, all I have to show for the work are two extra-large tee shirts
with white lettering on black that says:

I founded a Silicon Valley startup in the 1980’s, and all I got was this
lousy tee shirt.

When the board of directors decided to close down the company, it employed
60 people and had a yearly revenue of $5 million to $6 million. If you consider
that each employee takes about $100,000 per year to support, this revenue figure

178 / INTO THE GROUND

is close to breakeven, meaning that the company was not that far off from being

healthy enough to continue, perhaps indefinitely. The previous quarter was a

record in the primary product line, and sales for that product were growing by

nearly 30% per quarter. Deals were being made, and the company was nine

months away from AT&T adopting one of its products as its official product. The

primary product had just won the Jolt Cola Programmer Productivity Award

from Computer Language, a computer magazine, and things, except the bottom

line, were looking good.

One day in late June 1994, at 4:00 p.m., Bill Goerke, the interim CEO, called all

the employees onto the second-story porch where most of the company meetings

were held. It was a few days before payday, and he told them,“don’t bother coming

to work tomorrow, we can’t pay you.”

Robert J. Hoder, the designated representative of the Credit Manager’s Associ-

ation of California, the official liquidator, stood at the front of the Menlo Park

council chambers and told the gathered creditors: “In the 20 years I’ve been doing

this job, I have never seen a meeting where there was even a single employee.

Every other company was savvy enough to know two weeks in advance of when it

was about to run out of money and would let the employees go after their last

paycheck.”

In 1985 when Brentwood Associates was wooing Lucid, Brad Jones pulled his

BMW 700 series over to the side of the road and told Tony Slocum—Lucid’s

CEO—and me that Brentwood was the kind of firm that stuck with its compa-

nies. “Once we had to shut down a company, and Mr. Warren personally made

sure that each employee got a full month’s pay. We will take care of you through

success or failure.”

The company kept a couple of people to answer the phone in case customers

called support and to ship product if that was required and to collect receivables.

But to customers who had recently bought one of the company’s products and to

the employees, the company simply disappeared for no reason at all.

I think this is a story of business incompetence built on top of technical excel-

lence—I don’t assume any credit for that excellence, except that I happened to

have hired extremely talented people. Perhaps there are lessons to be learned for

the ’90s from this story.

I forgot to mention, when the company was about nine months away from

folding, the then-current CEO read Crossing the Chasm by Geoffrey Moore (1991)

and learned one thing: When a company is trying to move beyond the early

adopters to mainstream customers, sometimes the technical founder must go, so I

went. After Lucid’s demise I read editorials about how the company could never

grow out from my shadow (Binstock 1994) and how the company was “blinded by

science” (Deger 1995).

INTO THE GROUND: LISP / 179

Since then, as VP of Development at ParcPlace Systems, Inc., I learned that the
general belief, at least among executives and venture capitalists (VCs) is that
Lucid failed because I did. Perhaps I did fail, and it certainly felt like it. Blame is
not something worth ascribing in most cases, and in this one blame can get
passed around like a flu. I learned, though, a lot about business practices in the
United States, and it seems to me that the “blame” for Lucid’s failure lies squarely
at the feet of American business education, exemplified by Lucid’s next-to-last
CEO: Bob Kadarauch.

� � �

The story started when some of the guys I worked with at LLNL had the idea that
we could start a company by spinning out the technology we had developed at
LLNL for the S1 project. The original project was to construct a CISC (Complex
Instruction Set Computer) multiprocessor, and the uniprocessor for it was suc-
cessfully constructed by a small team in a short time (the S1 Mark IIA). However,
the lesson of CISC was quickly learned: It is hard to write a compiler that takes
advantage of the complex instructions and addressing modes, because that
requires the compiler to recognize that these complex operations apply while
looking at a number of program statements, and it is hard to make devices to go
fast when you have to fetch and execute a lot of simple operations along with the
complex ones. Hence, RISC (Reduced Instruction Set Computer) was revalidated
and the next version of the S1—the S1 Mark IIB—was a RISC processor; this was
the one we wanted to spin out.

On top of this was laser pantography. The idea was that the chemical process
that deposited semiconductor subparts on a silicon wafer could be activated by a
laser. In eff ect, rather than a photographic process we could use a drawing pro-
cess. With laser pantography we could build and test a wafer-sized chip in a cham-
ber and, to some extent, repair it. The idea was to combine the RISC design, this
technology advantage, and our superior talent—cough, cough—into a super-
computer company.

At the time I was consulting occasionally for a venture capital group in New
York headed by Bill Scherlis’s Uncle Sid—remember, Bill was the guy who rented
a room from me the first year at Stanford. Sid and his assistant Victoria would
send me a business plan for a company in the Bay Area, and I would read it, visit
the group, and assess the technical likelihood for its success. Of course, I knew
nothing about business, so I could really assess only the technology.

For example, the first company I looked at had developed a simple ethernet
local area network (LAN) for fast food joints. Each cash register would be a node
on the network, which would download its transactions to a backroom com-
puter every few minutes, thereby making it less likely for one of the poorly paid

180 / INTO THE GROUND

hamburger salespeople to rip off the franchise. In fact, the design of the register
itself made it almost impossible to steal from—the keyboard was bulletproof!

This sounded good to me, but I was concerned that their very slow communi-
cations software and hardware coupled by the slow backroom computer would
bog down during peak periods like lunchtime in large food emporia. I dutifully
and diligently visited potential customers (franchise managers) and asked about
peak traffic and did calculations based on the technical specs of the proposed
products. I also quizzed the hackers about what happened when there were too
many collisions on the ethernet and consulted my networking friends at Stanford.

I reported all this on a conference call. Sid and Vic listened carefully and asked
probing questions. Then Victoria said, “Well, this is all very interesting, but it is
clear these people have no business sense.” This didn’t seem clear to me because
the business plan was thorough, they had researched their market and inter-
viewed many potential customers. She continued, “Everyone knows that the way
kids working in hamburger joints make money—given they’re paid the same or
less than waiters but without tips—is by stealing from the cash register, and man-
agement plans for the amount, which they expect to be around $20 per day per
employee.”

Gleep, no, Victoria, not everyone knows that. How foolish these people were to
design a theftproof cash register and to log transactions almost as soon as they
were made. No venture capital for these naïve souls.

Armed with this newly found business acumen, I called up Victoria and talked
about our plan. She came out to visit, and we explored the idea. I wrote a series of
business plans for the Livermore group. It turned out that when faced with the
potential of getting a few million bucks to get started and to commit to actually
trying the venture outside the comforting chain-link fences at the Lab, away from
the full weight and authority of not only the University of California but also the
U.S. government as well, my colleagues declined.

But along the way, constructing the business plan, I had made the case that the
rise of artificial intelligence (AI) in the marketplace, coupled with the need for
commercial implementations of Common Lisp—the de facto Lisp standard I had
initiated and politically led—on standard hardware was significant enough that it
was a focus of the full-spectrum computer company we proposed. Victoria sug-
gested that that part of the business plan was interesting to her and Sid.

I was surprised, but I looked around for additional folks for the venture and
lined up 10 founders, two of which would be silent. One was Bill Scherlis and the
other Scott Fahlman, who led the Common Lisp group—during the definition of
the standard I did the backroom politicking with research and government
groups.

Sid and Vic coached me on how to be a founder and what would happen. One
of the disturbing things was that Victoria said that regardless of how things went,

INTO THE GROUND: LISP / 181

one of the key founders would leave the company in a bad way within a year or

two—forced out, shamed into quitting, or in a huff over a disagreement. I looked

at the founders and only one wasn’t a friend, and I wondered who it would be

who would leave in disgrace.

Tony Slocum would be the CEO. He had been the CEO at Intellicorp who took

it public and then he was forced out. His strengths were building a company from

nothing to about $20 million a year, finding a reason to go on when things were

bad, and off ering wise counsel. Although a weak visionary, he could sell vision

like crazy. He corralled almost all the large hardware companies as OEM’s for the

company. He was a terrific negotiator and had a very smooth delivery that was

sincere and adapted well to the level of the listener.

Slocum came from New England, and one of his relatives was the Slocum who

was the first person to sail around the world alone. Tony was always smiling and

putting the best face on things, but he was ready to help solve a crisis. I would

have to replace Tony after a few years for not being able to work through a crisis

with the marketplace. I replaced him with Bob.

Jussi Ketonen would be vice president of engineering. He had been my office-

mate at Stanford and worked with John McCarthy. We had become friends over

the years, and he was interested in making money at some point, and perhaps this

was it. He was dogged in researching the business plan, spending days in the busi-

ness school library. He was a mathematician and logician from Finland. His

father was in the government, and Jussi was a child prodigy, receiving his Ph.D. in

mathematics from the University of Wisconsin—an excellent math school at the

time—at age 19. He was a celebrity in Finland, and he was often interviewed at

the airport when he went home to visit his parents. His only weakness was that he

tended to play by the book or by rules of honor; because of this he could come off

as cold or impersonal when in fact he was neither.

Eric Benson was the main technical guy—he made things work. He was from

the University of Utah where he worked on Portable Standard Lisp (PSL), which

at least doesn’t sound far off from Portable Common Lisp, which was what our

company would do. He had worked at HP commercializing PSL and was working

at the Palo Alto office of Symbolics, a hardware-based Lisp company. Before we

decided to try starting a company, he and I tried to get the Portable Common Lisp

project funded within Symbolics, but it didn’t work and he quit to become a

founder. Eric could do brilliant prototypes and could press ahead toward a com-

mercial product when required, though it wasn’t his first choice. Every now and

then he came down with the “bright, shiny object syndrome”: When working on

one thing in the boring stage of getting the details right, he would get distracted

by the next exciting project. Even so, he was our go-to guy for most of Lucid’s

years.

182 / INTO THE GROUND

Rod Brooks was another main technical guy, but he couldn’t join the company

full time. He wrote the compiler for us while getting tenure at MIT as a celebrated

roboticist. His idea was to create artificial life by layering intelligence on top of

instinct, kind of a series of meta levels each modifying or operating on the one

below. Rod needed to become famous, and he wanted to become rich. To accom-

plish both, he took many jobs: At one point he was teaching at MIT, consulting 40

hours a week for me, and consulting some number of hours a week with someone

else. He was at Stanford when I was a student there but he entered two years after

me—he and I graduated the same time. Rod, Guy Steele, and I worked together

on the S1 NIL project—Rod at MIT, Steele at CMU, and I at Stanford.

Rod got himself into a divorce situation in which his ex-wife and three chil-

dren got all of his MIT salary and all the money I paid him, and he lived off the

other consulting he did. Hard as it is to believe, Rod pulled off achieving his need

and became famous and worked four jobs and got tenure.

Erik Gilbert was in the same Stanford class with me—we entered in 1975. He

took a little longer than I did but had a much more solid thesis and ended up

working with me at LLNL. He turned out to be the most loyal person at the com-

pany and the one who had the most common sense. He knew computer science

cold, and I turned more to him than anyone else for advice on anything from

technology to personal matters.His weakness was not wanting to take risks at all.

We called him “Galloping Gilbert” because the last thing we could imagine was

him galloping off to wage a hasty war.

Jim McDonald was at Stanford and a close friend of Jussi’s. I didn’t know him

all that well when we started the company, but he was responsible for the Lisp

stuff in Pat Suppes’s group. He was very thorough at debugging things and wrote

elaborate code that aspired to handle all the obscure cases. His only problem was

that he overdesigned and overengineered his programs, and so although it was

tough to get them to work completely, they had the right architecture. He

couldn’t accept doing the minimal amount of work to get things to work well.

The balancing benefit was that his code would usually anticipate cases and situa-

tions that the simpler solutions would not, and it was a matter of getting the code

for those obscure cases to work rather than redesigning the program from

scratch. We typically gave him the thorniest problems to solve.

Then there were the silent founders, Bill Scherlis and Scott Fahlman.

Bill we already know—it was his uncle who was the venture capitalist who ini-

tially funded us. He and I were in the same class at Stanford, and we graduated at

the same time. He was on the faculty at CMU, and he contributed the reader for

the interpreter. The reader tokenized and parsed Common Lisp expressions for

execution. He delivered it late, but I think we found only one bug in it in the 10

years of its use.

INTO THE GROUND: LISP / 183

Scott Fahlman was the leader of the Quinquevirate, which was the group of
five who pushed the Common Lisp specification to completion in 1983. He was
recognized as the leader of Common Lisp, and he spoke and consulted extensively
on Common Lisp. It seemed important to get another Common Lisp big name in
addition to me, especially when I was unable to get Guy Steele, the author of
Common Lisp the Language (CLtL) (1984), the authoritative specification for
Common Lisp. Steele and I were close friends, but at that time, he didn’t want to
live in California, and he was unsure of the company’s viability. Scott provided
one or two words of advice and help with a major contract.

We put together a business plan that had basically these points:

• AI was taking off and used Lisp as its language.

• Lisp machine companies were doing great.

• There was a new standard for Lisp—Common Lisp.

• Two of the designers of Common Lisp were founders of the company.

• Workstations were fast enough to run Lisp as well as Lisp machines did and at
a fraction of the cost.

• We had the best team.

• We were friends with DARPA (Defense Advanced Projects Agency, formerly
ARPA), which was planning to buy a lot of Lisp over the next few years.

This plan got us $600,000 in seed capital and a commitment of three comput-
ers from Sun Microsystems, the local up-and-coming workstation company. We
had one year to deliver a beta of Common Lisp written from scratch on the Sun 2,
which was a Motorola 68010 workstation. DARPA provided (to me) three Sym-
bolics Lisp machines—a 3670 and two 3640s. And we found a building, a law
firm, a bank, a business card firm, a used furniture place, and off we went, incor-
porated in July 1984 in Palo Alto, California.

In that first year we hired around 15 people, including all three employees of a
very small Lisp company in San Diego. We established ourselves as competitors of
Symbolics, Lisp Machine, Inc. (LMI), and Franz, Inc., a small company based in
Berkeley that was selling a Lisp dialect called Franz Lisp (get it?).

Many of the people we hired were either brothers or married—not only was
the company like a family, it employed parts of families. There were Eric and Peter
Benson (brothers), Jim and Bill McDonald (brothers), Leonard and Jan Zubkoff
(spouses), and Harlan and Carol Sexton (spouses).

We used what many people thought was an unusual development methodol-
ogy. We spent the first months planning our attack on the problem. Common
Lisp is very large: The informal specification is 600 pages long and contains

184 / INTO THE GROUND

almost 800 functions. We needed to start from scratch so that there would be
clear ownership of the code—the venture capitalists demanded this.

Each of us had written at least one Lisp system before, so there was no doubt
we could do it. We decided to write a Lisp in Lisp, which meant that the bulk of
code was written in the language being implemented—a bootstrapping issue. We
used Franz Lisp with a Common Lisp compatibility package as the implementa-
tion dialect. We used a similar compatibility package for the Lisp machines.

The underlying system understood how to manipulate raw data using special
operators, so we could code essentially at the assembly language level for almost
everything. This meant that the memory manager and all sorts of low-level parts
of the system could be easily written and debugged.

The compiler turned these operations into specific machine code that we
understood.

We used inlining as the basis for coding those parts of the system available
from the interpreter. For example, there is an operation on binary trees called
car, which takes a binary tree and returns the left-hand branch. This function
must be available from the interpreter, and the compiler must compile it
efficiently. So the interpreter’s version of the function is written like this:

(defun car (x) (car x))

It looks a little puzzling, but the compiler open codes the call to car into a
series of machine instructions, and the eff ect of the defun is to register the exist-
ence of a function accessing that series of instructions.

We divided up the system into modules and assigned them to various people.
The modules were carved out of an architecture and initial design for the system
based on brainstorming meetings about how to implement the system and finally
on the detailed low-level design done by Eric Benson.

Each module was assigned to a developer and a buddy. The buddy would par-
ticipate in the detailed design of the module, design reviews, code reviews, test
plan reviews, and test code reviews. The buddy was someone to talk to and also
someone who could step in if the main developer was incapacitated.

No coding could start until a design document was created and reviewed by
the buddy and a group of developers. Code was reviewed by the buddy and a
review committee, as was the test plan and the test code. We used a simple config-
uration management system and formal ways of checking in and testing parts of
the system.

Within six months of turning on the computers after a month of design, we
had a basic Common Lisp system running. In that first year we managed to raise
roughly $3.5 million of venture capital from SRK Management, Pacific Venture
Partners, Bechtel Investments, and Crown (the venture arm of a Canadian insur-
ance company). We also signed up as OEMs Sun, Apollo, and Prime. In all the

INTO THE GROUND: LISP / 185

years of trying to sign OEMs, we failed to sign only Tektronix, which signed with

Franz and then disappeared as a Lisp vendor.

In the summer of 1985 we showed our early version of Lucid Common Lisp

(LCL) at IJCAI, the big AI conference in Los Angeles. At that time we had the

OEMs mentioned and a relationship with Symbolics to provide a development

environment for Lucid Common Lisp on Symbolics computers based on the one

we used for developing LCL. Recall that before starting Lucid, we had pitched the

idea of a stock hardware Lisp to Symbolics, but they did not show interest. It

turns out they had estimated that on the next generation of Sun workstations—

the Motorola 68020-based Sun 3—Common Lisp could run no faster than 17

times slower than on the Symbolics 3600, which was a custom microcoded Lisp

machine.

At that time HP was just getting seriously into the workstation market and had

decided to base their Common Lisp off ering on Portable Standard Lisp, which

was developed at the University of Utah by Martin Griss and his students, includ-

ing Eric Benson. HP made its debut at IJCAI.

We had around 25 employees by then, and nearly all of them made it down to

LA—it was only an hour away by a $70 round-trip ticket. One of our employees,

Rob Poor, had a friend who made movie jackets for Hollywood production

crews—she made the Raiders of the Lost Ark movie jackets. Rob commissioned

her to design and make enough movie jackets for every employee. They were

black satin with a white Lucid across the back and the person’s name in the inside

pocket. There was a little bit of blue trim around Lucid.

We were to pick up the jackets in Hollywood when we got there. The day

before the conference started, we had to set up. The exhibit hall was UCLA’s gym,

and this was the first year of big AI. The big companies—Sun, Apollo, Intellicorp,

Inference, Symbolics, Texas Instruments (a Lisp machine company), Xerox

(another Lisp machine company), HP, DEC (now Digital), Gold Hill (a small

Massachusetts Common Lisp company)—had enormous booths, some 50 feet

tall, covering in some cases hundreds of square feet. We sat right next to Symbol-

ics, which had a two-story booth made of black metal, curved at the front with

monitors arrayed from the upper deck around the front for easy demonstration

access. Some called it the Deathstar, others the Battlestar Symbolica.

The day before the conference started, the booths started to show up. Ours was

modest but required a day of setup coordinated with the teamsters manning the

loading docks. There were perhaps 50 exhibitors, and the floor was a mess. The

jackets arrived and we tried them on. They were fabulous. We wore them around

the floor chatting with our friends at other companies as they set up. The next day

before the doors opened we decided to walk around the floor with our jackets on.

The show started, we left them on.

186 / INTO THE GROUND

One of our people was a break-dancer. To gather a crowd in front of our small
booth, Zach would put down a piece of cardboard, turn on a boom box, and start
spinning on the floor. Then he would get up and put on his black Lucid jacket and
give a demo.

We talked about benchmarks—the standard Lisp benchmarks were called the
Gabriel Benchmarks, which I had published in a book that year (Gabriel 1985).
The results presented in that book, gathered in confidence over the previous year
from the Lisp vendors and providers, was presented at the 1984 AAAI conference
(the US-only sister conference of IJCAI) in front of a crowd of 3,000. We had to
move from the 500-person hall to the theater to accommodate the way larger-
than-that group that showed up.

I knew our benchmarks were better than almost anyone else’s, and within
shouting distance of Symbolics, too. We tried to pry out the newest numbers from
other vendors, but they wouldn’t budge. We displayed my benchmark book and
the Common Lisp book, of which I was one of the five front-cover-listed contrib-
utors, and told the story of how I was the father of Common Lisp—more or less
true—the father of benchmarks, and the architect of Lucid, the only company
deserving of black movie jackets.

We made an impression that day but not an entirely good one. We became the
bad boys of the marketplace, out, apparently, to bring down not only the Lisp
machine companies but any company that dared to enter the Lisp arena.

It was a good show.

� � �

Later in 1985 we moved into the old Intellicorp offices which occupied part of the
basement and the entire second floor of Menlo Park city hall. The joke about this
was based on expert-system technology in which simple logical rules like if-
then statements are strung together along with observed facts to make simple
inferences. The joke was that Lucid decided where to move using an expert system
with two rules: You can’t fight city hall; if you can’t beat ’em, join ’em.

That year we came up against a force far stronger than city hall: IBM. IBM was
developing a RISC computer. Of course, this was a rumored project, but IBM’s
practice was to keep such things officially secret. We knew, though, that Scott
Fahlman’s Lisp group at CMU was porting their Lisp system, Spice Lisp, to the
RT-PC (RISC Technology Personal Computer).

Scott, a Lucid founder, finally steered IBM to talk to us about doing the com-
mercial version of Common Lisp. There were some problems.

One was that because Spice Lisp was designed to be the basis of a Lisp machine,
it had a full environment—an editor, debugging and development tools, and a
window system—and IBM would expect the same for the commercial version, and
we had decided not to provide such an a extensive product to our other OEMs.

INTO THE GROUND: LISP / 187

The other was that Scott was a Lucid founder and IBM would not want any taint
on any of their business deals.

IBM had a release date in mind of approximately 18 months to two years out
from when they decided to approach Lucid. However, the legal department
wanted to make sure Fahlman’s connection and actions were above board. It took
until 12 months before the deadline for the OK to come down, and then IBM
approached us. They perhaps had carefully thought about how much work
needed to be done and thus chose with deliberation when to make the approach,
but the 6 to 12 month legal delay messed up their timing; the end date did not
change. Nor did the requirements: a full Lisp system, equivalent to Symbolics’s.

We could not pass up the deal because the RT would perhaps be the fastest
workstation and would rival Symbolics for dominance in the AI market. We took
the contract and ramped up with 13 people—all but a couple of our developers—
on the project. We tried to reuse the Spice code and succeeded with some of it.
But what they say about university code is true: It is not developed to a commer-
cial standard, and certainly not to IBM’s standard. And the fact that Lucid had an
extensive test suite was part of the attraction to IBM. We needed to bring the
CMU code up to snuff, and in some cases it was easier to just adapt our own or
write from scratch.

The practical aspects of the deal were difficult. We got two machines which had
to be locked in inaccessible rooms in the basement, chained to the concrete floor
by a sort of digital chastity belt, with motion detectors for when no one was work-
ing with them. Also, it was secret who was working on other software and what
that software was. One particular secret piece of code was a symbolic assembly
language debugger. This program looks at machine-language instructions and
displays them in mnemonic form, places breakpoints, and things like that. We
knew through the grapevine that another independent software company had
developed this for the RT, but we could not get it because then we would know
who they were. So we had to develop our own. Same story with the window sys-
tem. IBM was planning a window system, but it would not be available in time for
us to use, so we needed to do our own. This meant, for example, that we had to
track the mouse ourselves!

Another oddity was the documentation requirements. IBM had their own
standard format, and all documentation had to conform to it. If the product was a
language product, that had to conform as well. The format required one page per
“function”. It didn’t matter that there was a commercial book—Steele’s book—
that defined the language and was suitable even as a user’s guide. We had to do
our own—the same information, in our words, in IBM’s format.

There is a story by the Argentinian writer Jorge Luis Borges entitled “Pierre
Menard, Author of Don Quixote” (1962) about a writer who wanted to write Don
Quixote. But, because Borges was fascinated with hermeneutics, he made this

188 / INTO THE GROUND

writer want to reproduce Don Quixote word for word, but not as a transcription.
The writer’s name was Pierre Menard. Menard wanted to get into a context in the
mid-twentieth century in which he would happen to write the same book as
Miguel Cervantes had. The story talks about other projects Menard did and how
he was able to write Chapter 15 word for word, and Borges talks about the diff er-
ent meanings that the same words had when written on one hand by the seven-
teenth century Cervantes and on the other by the twentieth century Menard. I
quote a bit of it because it’s so much fun:

It is a revelation to compare the Don Quixote of Menard with that of
Cervantes. The latter, for instance, wrote (Don Quixote, Part One
Chapter Nine):

[. . . truth, whose mother is history, who is
the rival of time, depository of deeds, witness
of the past, example and lesson to the
present, and warning to the future.]

Written in the seventeenth century, written by the “ingenious lay-
man” Cervantes, this enumeration is a mere rhetorical eulogy of his-
tory. Menard, on the other hand, writes:

[. . . truth, whose mother is history, who is
the rival of time, depository of deeds, witness
of the past, example and lesson to the
present, and warning to the future.]

History, mother of truth; the idea is astounding. Menard, a con-
temporary of William James, does not define history as an investiga-
tion of reality, but as its origin. Historical truth, for him, is not what
took place; it is what we think took place. The final clauses—example
and lesson to the present, and warning to the future—are shame-
lessly pragmatic.

Equally vivid is the contrast in styles. The archaic style of
Menard—in the last analysis a foreigner—suff ers from a certain
aff ectation. Not so that of his precursor, who handles easily the ordi-
nary Spanish of his time. (Borges 1962)

We hired someone to write the book, which we called the Pierre Menard Edi-
tion of CLtL.

This project damaged Lucid, maybe irrecoverably. We had about one year to
do two to three years of work. Because we were then on many platforms, there
was a push to get all this on all the platforms at about the same time, and some of
the contracts with the other vendors required it.

A development organization cannot produce that much quality software in so
short a time even with plenty of manpower. Some of it was reworked university

INTO THE GROUND: LISP / 189

software that we didn’t really understand all that well. We had strapped ourselves
with an albatross.

What’s worse, IBM’s requirements forced us in the direction of duplicating the
Lisp machine environments rather than trying to interoperate with standard OS
and development environments. Lucid bet early-on that standard platforms,
including software, would win out over customized ones, that the value of Lisp lay
in the language and its incremental development paradigm, which could be sup-
ported with more standard components like text editors. Rapid prototyping
could have been a perfectly fine niche for us. But our relationship with IBM,
which paid well and led to further agreements with IBM on their other platforms,
forced us to abandon part of this philosophy.

What’s worse was that the RT-PC sold poorly—it was actually a flop. It was an
eviscerated cousin of the fast 801 RISC processor attached to a PC chassis, which
meant that it was underpowered and underfeatured. A lot of the software pro-
vided for it was green. It was too expensive and too slow by a wide margin. IBM
made a fast recovery, for them, releasing the RS6000 less than five years later, but
it was already too late for Lisp and Lucid.

� � �

Lucid was run well by Tony Slocum (and me) during these years, in the sense that
we largely followed our business plan and achieved all our goals. The employees
of the company found the environment invigorating, and it seemed like success
was just around the corner. We raised an additional million or two, adding the
prestigious venture firms Dillon Read Venture Capital, Brentwood Associates, and
Trinity Ventures (which took over the Bechtel investment). We attracted talent
that frankly, I have rarely before or since seen at a software company.

It might seem odd today that artificial intelligence and Lisp were hot items in
the mid-1980s. AI promised to eliminate the drudgery of using computers, to
bring human-level intelligence to computers and hence to companies. Take, for
example, Schlumberger, one of the largest, if not the largest, oil exploration com-
panies. Schlumberger faced a real problem in that it made a lot of money by help-
ing oil companies decide where to find oil and how to drill down to it. Often wells
would need to be several miles deep, and the details of how to get to the oil often
could not be determined by external tests—rather, you had to drill a bit, look at
what the rock was like on the way down, and make adjustments. When you drill
an oil well, you don’t go straight down, you curve and bend—maybe later when
you find the reservoir, you will drill straight down, but not during exploration.

The way to figure out where to go is to pull out the drill and drop down an
instrument called a dip meter, which records the slant of the strata and, to some
extent, their contents. The result is a long strip readout that an expert would ana-
lyze.

190 / INTO THE GROUND

Here are the problems: It can cost millions of dollars to get a dip meter read-
ing: You have to pull up maybe five miles of drill rig, drop down five miles of dip
meter rig, pull that up, and then put down the drill again. Schlumberger had only
one truly eff ective dip meter reader, and he was nearing retirement. AI and expert
systems in particular seemed to be a solution. An expert system is a way to capture
(the simplest) parts of expertise. It can work remarkably well, but it can be hard
to tune for accuracy because people use all sorts of common sense and judgment
along with strictly codifiable rules.

It was the realization that expertise was precious and aging or expensive and
slow (compared with a computer) or hard to clone that helped lead to the popu-
larity of AI in the 1980s. Compounding this was the hype put out by the AI com-
pany founders.

The AI companies were founded almost exclusively by AI faculty from univer-
sities—MIT, Stanford, CMU, USC, for example. Academics have an interesting
view of business: They equate business with war. A company wins because other
companies lose—a classic misunderstanding of evolution (see my later essay
“Money Through Innovation Reconsidered”). A company keeps everything a
secret. A company tries to spy on other companies. A company cannot trust any-
one not part of themselves.

Because of these beliefs, AI companies rarely made strategic partnerships. A
partner, learning of your plans, could move into your business, couldn’t it? That
partner could steal your ideas, right?

AI academics didn’t have a good idea of how AI technology would spread to
the mainstream. They made the mistake of assuming the technology was in the
mainstream when a company that is considered mainstream was using it for
something. Companies serving Wall Street were considered the most mainstream
companies around, even though every company has an advanced development
group or groups dedicated to exploring the eff ectiveness of new technologies. So
just because Morgan Stanley has an AI project does not mean that AI is being
used in Morgan Stanley’s day-to-day operations.

In addition, Wall Street companies—the ones that serve stock markets—are
the most radical companies around, willing to spend a fair amount of money on
new technologies that might have an impact on their results, which are as lever-
aged as anything can be. That is, a 1% performance advantage when multiplied by
all the trades made per year can mean many millions of dollars in profit.

The AI companies had no realistic plan to move their expert systems into the
mainstream. They were using a large standard language (the smallest Common
Lisp system requires several megabytes for its implementation); they had large
tools (KEE, Intellicorp’s primary product required another four to eight mega-
bytes of implementation code); and the systems built were large because the
ambition level of the early adopters was high (remember, early adopters are trying

INTO THE GROUND: LISP / 191

to hit a home run with new technology to make the career moves or corporate
improvements they crave).

Most of the development was done on Lisp machines, special-purpose hard-
ware costing around $100,000 per machine. The Lisp machine companies
expected people to deploy on these workstations. In fact, they expected people to
use these workstations instead of Sun’s, Apollo’s, or whatever. Part of Lucid’s
business strategy was to recognize that people would need to deliver on standard
platforms, namely, the ones they already had. So our goal was to provide a path
from the Lisp machine to the standard workstation.

What we understood intellectually but not viscerally was that customers were
not willing to purchase additional RAM to run these large Lisp-based applica-
tions. When Sun told the customer that the four-megabyte Sun 3/50 diskless node
was plenty computer, that was that. No one bothered to mention that the operat-
ing system and window system for that platform required 3.5 megabytes and that
paging over the network was something that worked best in the abstract.

Many of the companies that could have warned us of these requirements
decided not to, some through neglect, others through explicit decisions. For
example, the CEO of one of the AI companies told me that they would not tell us
their customers’ requirements because they didn’t want us in touch with them
should we decide to move into the AI market at some point. Besides, business was
a Darwinian affair, after all, and if we were to survive, we would discover or
understand those requirements ourselves. Help was not part of the equation.

By the way, this company was a close partner of Lucid’s. You can see that the
concept of working together or partnership was alien to the academic AI compa-
nies. Naturally, these companies were disappointed that the stock-hardware Lisp
companies didn’t provide exactly the product they wanted.

Let’s review the plan before we examine how it went wrong. This was the con-
text:

• AI was coming out of academia; that software was written in Lisp.

• The Lisp machine companies were doing great.

• AI was grabbing all the headlines; AI companies were using Lisp.

• Lisp machines were not a cost-eff ective way to deliver

• Essentially all the computer companies wanted to get on the AI bandwagon.

• There was a new standard dialect of Lisp, called Common Lisp.

• DARPA, the Department of Defense research arm, seemed ready to use Com-
mon Lisp for a lot of its AI work and was planning to support a large group
purchase.

The strategy follows from this:

192 / INTO THE GROUND

• Become the Common Lisp provider through OEM relationships with as many

standard platform companies as possible.

• Provide a path from Lisp machines to these platforms.

• Provide the most faithful-to-the-standard, reliable, high-performance imple-

mentation we could within budgetary constraints.

We achieved all these business goals with OEM relationships with Apollo, Sun,

HP, Digital (Ultrix, VMS, VAX, MIPS), IBM (all platforms), Prime, NCR, Intel,

and Bull in Europe, with a full development environment and with the fastest

Lisp system in the industry and the reputation for reliability as the “Maytag of

Lisp.” We also had a few dozen value-added resellers (VARs) like Thinking

Machines, Inc.

What didn’t happen was the marketplace. In 1986 it became evident to me that

the AI companies were overpromising and underdelivering and that the early

adopters were not succeeding as well as they had hoped and therefore there was

little movement toward the mainstream. About this same time Lucid’s revenues

were approximately $6 million per year and growing at a modest rate, but not

nearly so fast as we had hoped and planned for. The company was up to 75 peo-

ple, almost all technical—we did almost all our sales through OEM royalties and

development contracts, so we didn’t really need much marketing or sales. In fact,

we considered ourselves the OEMs’ development arm.

It was nearly impossible to talk to customers directly because the OEM han-

dled all the sales, marketing, and first-line support. The VARs similarly guarded

their customer lists, and so many of our activities like newsletters and booths at

trade shows were designed to find out who they were so we could talk to them.

Some companies, like Sun, explicitly expressed their dislike of these practices.

Therefore, it was not easy to determine what we needed to do to the product to

make customers successful. The OEMs were perfectly happy to put together their

“AI configuration,” which was heavy on RAM and disk.

When we were able to talk to our customers, an ugly picture emerged. Lisp was

too big and too slow for real applications. Applications needed to comprise a mix-

ture of Lisp and other code, and the membrane between the two languages had to

be thin—they wanted to manipulate Lisp data directly from C, for example.

The AI companies, facing their own serious problems from overhyping their

technological potential, were quick to blame the Lisp companies for not under-

standing customer requirements, and when that didn’t work, they blamed Lisp

itself. Never mind that we had been pleading for customer contact and that any

discussions of using a subset of Common Lisp or a smaller dialect were met with

cries concerning the workload to port to another Lisp.

INTO THE GROUND: LISP / 193

Soon some of the AI companies started to move toward C as a way to show a
commitment to the mainstream, and those lovable C programmers were easier to
find and cheaper than pesky Lisp guys.

We also had our ups and downs with some of the OEMs. For example, the tech-
nical people at Sun were fonder of the Franz developers than of us—we were arro-
gant. A key problem was the environment that IBM paid us to implement and
which we tried to palm off on our OEMs. Sun was creating their own environment
with a large development staff, and they seemed to want to use the environment-
less Franz Common Lisp (called Allegro Common Lisp).

Sun would give to Franz alphas and betas of our releases to Sun, thereby pro-
viding Franz with early access to our technology. Whenever we tried to buy a
Franz product or get a report from a customer, Franz refused to sell and threat-
ened to sue.

In 1986, Sun decided to switch to Franz, but in 1987, Bob Kadarauch acted to
reverse the decision as his first duty as new CEO.

� � �

Tony Slocum was puzzled about why AI and Lisp were not taking off. He had been
careful with our money, had worked well with the investors, was a brilliant nego-
tiator, and was just about the most decent guy you could imagine. He was very
good at solving people’s problems. But the market wasn’t happening—I had
coined the phrase “AI winter”—and he simply didn’t know what to do. He told
me, “I just come into work and sit there and I feel powerless. I don’t know what to
do. I don’t think I can do this job anymore; you have to help me get out of it.”

We had several offsite meetings to try to figure out a strategy, but the enthusi-
asm around the table was for making Lisp win somehow. But the market was tell-
ing us that our implementation approach couldn’t work for them and that
perhaps Lisp was the wrong answer anyway, with the Lisp machine companies on
the decline and the AI companies flocking to C. That enthusiasm came from the
investors, and we came up with no real new strategies for either Lisp or anything
else.

Tony’s depression continued, so in early 1987 I contacted the board, all of
whom were investors except Tony and me, and told them the situation. The inves-
tors immediately removed Tony as the CEO and started a search. Rigdon Curry,
one of the investors on the board, took over as temporary CEO. Tony stayed on as
the Chairman of the Board.

This period was full of upheaval as developers and other employees looked for
someone to blame. Many of the key developers started to blame Jussi, who was a
firm taskmaster but who relished the organizational details. He got all our many
coordinated releases out on time with the budgeted staff. But he had favorites and
wasn’t very adept at keeping that to himself.

194 / INTO THE GROUND

I came under criticism for my laissez-faire role, and people talked to Rig about
it. One day I became paranoid about it and asked Jussi if he had been speaking ill
of me to Rig, and he said he hadn’t been. But even the suggestion of dishonor was
enough, and Jussi left in disgrace, just as Victoria had predicted, though he was
the last one I would have picked.

� � �

What would have happened had Lucid been a typical start-up? It might have tried
to make some changes to its products to increase their salability, and the revenues
would have peaked and then declined or maybe stayed flat, and the venture capi-
talists would have sold out to the employees or asked the company to check back
with them in a couple of years.

We didn’t do that—instead, we came up with a new product line and did a
restart, something that a start-up almost never gets to do.

195

�
Into the Ground: C++

When we saw the candidates for new CEO, all of them were boring except one,
Bob Kadarauch. I met Bob at Buck’s, a restaurant in Woodside, California, which
fashions itself as a horse town of the mostly English variety, smack center on the
Peninsula whose tip is San Francisco. Horsefolk can ride to Buck’s and rein their
mounts to a hitching rail, they can ride the horse paths all through town and chat
with Joan (Baez), Shirley (Temple Black), or Billie Jean (King). If you ride down
to the flats, you can meet Joe and Jennifer (Montana), and up the hill to La Honda
there’s Neil (Young).

I was living in Portola Valley up on a hill overlooking Atherton and the Bay
with a far view of The City. It was my dream at last of owning land and a home,
which I hadn’t before, and growing up on a farm lends warmth to the idea of land
that’s yours.

It was a Sunday brunch in the spring. Bob smoked heavily—no one else at
Lucid did—and he seemed to never stop talking. He spoke of his 18 years at HP
and how he transferred here and there taking this or that assignment, finally end-
ing up on John Young’s staff as a marketing specialist. He went to Stanford in the
MBA program and built up a business unit in the UK, Pinewood. We talked for
four hours and I gave the board a favorable report.

Bob seemed to have done a lot of things and knew a lot about software devel-
opment organizations and had a lot of valuable knowledge of HP, which was our
favorite OEM because of its professionalism.

I was left a little puzzled by the meeting, however, because there were times
when Bob’s monologue wasn’t particularly focused, and I had a hard time follow-
ing what he was saying. But I laid it at the feet of my trying to evaluate and appre-
ciate him at first and his nervousness.

We checked his references at HP who said things like he was a great technolo-
gist. Tony liked him and so we hired him.

196 / INTO THE GROUND

Bob immediately set up appointments with every employee to find out what
was up.

While all this was going on, we had been having a series of all-hands meet-
ings—mostly developers—to try to find a new product direction. I asked every-
one to come up with as many ideas as they felt were good and we listed them on
one of the all-wall whiteboards. Then the proponents of each would make a small
presentation of the product idea, their feelings about the market, and a quick take
on how well our expertise matched up. We started with about 150 items on the
board, and after three weeks we had worked through them all.

What we knew about were low-level implementation, languages, and develop-
ment environments. What we thought the market was up to was a shift toward
object-oriented development and C++ in particular. We identified two potential
products: one was a development environment for C++ that was based on a ver-
sion of Emacs, a text editor, customized for the job, and the other was a develop-
ment environment for C++ that was based on more of the features we knew
about in the Lisp world. We called these the Hitchhiker and Cadillac products.

After a fair amount of discussion, we decided to try to pursue the Cadillac ver-
sion, but not to try to go too far in the high-tech direction. Bob allowed us to put
together a small investigatory team from some folks less busy than others—I put
together a three-person team to look at the issues.

This group designed a simple transcription of a Lisp-like environment ported
to C++, including the facility to put information about the program into a data-
base. The environment would provide incremental development, certain types of
safety nets, browsing capabilities, and team tools. We tried to peddle it to some
potential partners, because Bob’s philosophy was to try to raise money from part-
ners rather than from VCs.

Meanwhile, Bob was trying to save the Sun relationship, lower expenses, and
get Lisp back on track. We did a layoff in January of 1991, which was one of the
hardest things I’ve done. Maybe I should have taken the hint, but the day of the
layoff, Bob got sick and didn’t come in to work. So the first-line managers and I
told those who had to leave.

When we were about to make Bob his off er, I noticed that the board was talk-
ing about his being CEO and president. This raised an interesting problem—all
development groups reported to me in my role as president. This meant that the
minute Bob took over as president, these groups would have no managerial join
point. The board never discussed any reorganization or any particular role for
me, yet I was reviewing the letter that threw all that into question. I wrote the fol-
lowing letter and delivered it at the board meeting in which we were to decide to
hire Bob:

This letter is being sent to inform you that I am resigning as President
of Lucid, Inc., eff ective September 29, 1987. It is my desire, however,

INTO THE GROUND: C++ / 197

to retain the title of Chief Technical Officer. Although this resignation
has the eff ect of forfeiting my managerial responsibilities and author-
ity, I will provide direction for those groups and individuals assigned
to me at the time of this resignation until the Chief Executive Officer
has either reassigned me within the organization or has designated a
successor or successors to manage those groups and individuals.

The board was taken aback by this letter and asked me why I was sending it. I
replied without emotion or surprise that the board’s next action was to authorize
an off er letter hiring someone right on top of my position. Still puzzled by it, the
board pressed on. My conclusion was that though I had the title of president, it
had meant actually nothing to them. Perhaps I was not being taken as seriously as
I thought.

Even though some of us were operating under the assumption that Lisp reve-
nues would decline at some point, actually they were merely growing more slowly
than we had hoped. Almost all the investors believed that Lisp would recover with
only some more perseverance, and Bob was acting that way too. It made sense to
try to maximize the return and not only keep the revenues up as long as possible
but also to position us to take advantage of any possibility of an upturn.

But it was clear that we had built the wrong product. In the end, Franz would
claim that because they had to struggle to stay alive, they simply did whatever a
customer wanted and therefore they built a friendlier product. However, the
diff erences actually were that they could not afford to do as much as we could,
and in particular they did not build a Lisp-machine-like environment but a low-
tech one like the Hitchhiker environment we considered for C++.

With a reduced staff and a slight upturn in the Lisp market, we were profit-
able in the fourth quarter of fiscal year 1988, and we all got black tee-shirts that
said In The Black.

The next year saw the first leveling off and decline in the Lisp market. During
the summer of 1988 Bob let me hire a couple of people for Cadillac: Patrick Dus-
sud and, the next year, Matthieu Devin, both French though Patrick was born in
the United States and was a citizen. This lent a European flavor to the group: We
had “French lunches” every month or so and occasionally indulged in Parisian
café squatting during design sessions. Having a group identity helps form a work-
ing team.

I was surprised to be able to hire Patrick who was the primary architect of the
Texas Instruments (TI) Explorer Lisp machine and an incredible designer. It
turned out that he had been interested in building a C++ environment and that
this sounded like a good opportunity.

We met at an X3J13 meeting in Boston. X3J13 was the ANSI standard commit-
tee for Common Lisp. I quizzed him about TI, which appeared on the decline in
the Lisp market and his interest in Lucid, and he said he wasn’t interested. I then

198 / INTO THE GROUND

started talking about Cadillac, and he said he was ready to hire on for that—he
had not expected we were doing something like that.

He worked for TI in Austin, Texas, so we flew him out for a week to interview,
and we made him an off er right away.

Patrick is about 5 feet, 6 inches with dirty blond hair and a low, French
drenched voice—some people had trouble understanding the combination of
bass and accent, and at first so did I. He wanted to come out to Lucid to work for
a month or so while his family—Veronique and his kids Stephanie and twins
Cedric and Fabrice—was vacationing in France. He wanted to have his car, a 1984
Corvette, available, so he decided to drive out, and I volunteered to drive with
him.

Patrick’s thing was fast cars. He did some racing with his Corvette, and the sur-
prising thing was that his wife kind of liked the idea of fast cars. Later, after he had
been at Lucid for a few years, she got her own 1964 ’Vette.

I flew to Austin, we grabbed a hamburger at McDonalds, and away we went.

The ’Vette had a radar detector and Patrick drove it hard the first two to three
hours, from early evening until 10:00 p.m. or so. I took over. I had never driven a
car quite like it. Around 270 horsepower, but my experience with other cars since
indicates that the ’Vette had high torque so that acceleration was sharp. We drove
through the night talking alternately about cars and Cadillac. I learned about the
Corvette’s advanced design and engineering and steering neutrality, its victories,
and how it was banned in some races because it was too powerful or handled too
well.

Through the night through west Texas across New Mexico we explored diff er-
ent ways to present program information in Cadillac, and we focused on hyper-
text. Incremental compilation through a semi-interpreted implementation, a
database of information, a multiuser version all were part of it.

Near dawn I dozed a little and I recall the orange haze along the dark base of
mountains as we neared Roswell, the first moment when I saw clearly the low
creosote and thistles, saltbush, fluffgrass.

Through Roswell past the two UFO museums and toward Ruidoso Downs—
but we turned just past Tinnie through Lincoln, where Billy the Kid hung out,
through Carrizozo to San Pedro where we stopped at the Owl Café at 8 in the
morning to get a couple of green chili cheeseburgers, which one of the writers at
Lucid had recommended. We took this odd route between Austin and San Fran-
cisco just to get these cheeseburgers. Both Molly, the writer, and Erik Gilbert had
strong ties to New Mexico—Erik grew up there and Molly went to school there.
There is something about the hard dry desert, the dark distant mountains, the
rock formations and the spirituality, the danger of Billy the Kid riding through
the low scrub pine, the Native Americans at every turn. It’s the fresh but olden

INTO THE GROUND: C++ / 199

cast of the sun on the sand, and sun-cleaved separateness of the rock, your life in
context.

Years later I wrote a poem about Lincoln and Billy the Kid, using language of
the 1880s. In the 1980s we were only 100 years away from the kind of land where
death and escape were commonplace. American law enforcement comes from
this background where we have the bullies who prey on us and the bullies who
save us by catching, sometimes killing, those other ones. In the West of the 1880s
it wasn’t apparent from the color of a man’s hat whether he would save you, rib
you, buffalo you to the ground, or tip his hat. Our system of justice may descend
from England, but our system of capture is our own. American business, does it
derive from the same roots? Perhaps, and perhaps that’s why there is no Lucid
today.

A few years later when we were previewing Energize, the marketing name for
Cadillac, at OOPSLA in Phoenix, we drove Dussud’s 1990 Corvette from Menlo
Park to Phoenix, and we visited Tombstone on a day trip. Although Tombstone is
more of a tourist attraction than Lincoln is—Lincoln is a little more of a historical
museum—Tombstone still has that same feeling of a land that could nurture you
toward imagination or toward hate and violence. On the way to Tombstone from
Tucson we passed through St. David, which is an oasis of New England oaks,
elms, tall green grass and cool air, and Tombstone to the south rests on a high
rocky bluff, feels a continent and a century away.

Patrick adopted some of my new-found love of the Southwest during his years
at Lucid, and this was just one of the many curious things about his stay. He
seemed a devoted friend and adviser, and maybe even an admirer. He sat and
stood close to me whenever we were together. And through the years we repeated
the essence of our Austin-to-San Francisco death ride as we called it with drives
from Hollister to San Miguel on Highway 25 near Salinas, through a narrow val-
ley. Part of the road is about 1.5 lanes and paved beautifully with nice banked
curves and a few one to two mile straightaways. On one we got his new ’Vette up
to about 150 mph. Once we spun out on a curve and ended up going backward
around the curve at 70 mph with no injuries or even excessive dust on the cream
white car.

Coming from Austin that first trip, we headed toward U.S. 40 and the direct
way to San Francisco—or at least the main road. But because the traffic was so
heavy and the pace so slow after our 100 mph run from Austin, we decided to
head up through Nevada and across the Sierras. We played tag with a Beretta and
got a speeding ticket (only 95 mph because even with instant-on radar our detec-
tor gave us enough time to drop from 125 between the first and second readings).
We were on a long descent into town when we were hit, and we were the victims
of local fundraising.

In Nevada we stopped to sleep for the night, 24 hours away from Austin.

200 / INTO THE GROUND

The next day we crossed through the southern basin and range of Nevada
across to Bishop and Tioga Pass and into the San Joachim Valley, the Central Val-
ley of California, an ancient inland sea now cropland growing wheat and corn
and rice, nuts, fruits, and berries in more abundance than almost any other place.
A hot place and dry. The promised land for me and Patrick who longed to make a
diff erence acting on his love of good design and attention to detail.

From Livermore to Portola Valley we were under constant k-band illumination
though the California Highway Patrol was supposedly not allowed to use radar, so
we set the cruise to 65 and acted just like any other grandma on her way to
Thanksgiving while lesser cars sped past.

By the time we got back we had a good idea of the starting point for Cadillac.
The team would change quite a bit over the next few years as those members who
did not come up with a compelling architecture and design fell away to other
projects, and the core team anchored by Patrick grew.

Being an OEM company, Lucid didn’t have a true marketing department,
though the few marketing people we did have were good marcom (marketing
communications) people and good executors. We had neither the resources nor
they the interest in finding out about the marketplace for C++ (forgive the mis-
nomer).

We needed requirements because we were not C or C++ people ourselves.
Many of the criticisms of Lucid as a technology-happy company stem from the
belief that Cadillac was a purely engineering-driven product. It was, in the sense
that all the marketing research, product strategy, product marketing, product
management, as well as the architecture, design, and implementation were done
by engineering.

I had recently written and presented my paper known as “Worse Is Better”
(1990) in which the problems with over engineering and over designing were
played out, and we therefore adopted the “stubby pencil” approach, which was to
be as low tech as we could in both our approach to the problem and our solu-
tion—the simplest way, the fewest features, the most straightforward implemen-
tation. We moved the group downstairs into the basement to have the worst office
space, taking over the old RT-PC area which had no windows—there were four
walls between us and a small window. My desk was extended to form a larger flat
area with a scrap of outdoor plywood duct-taped between two desks. Whenever
one of us would start talking about a new feature or an advanced technique, one
of the others would toss him or her (there was a woman on the project) a stubby
pencil sharpened with a knife.

The way we gathered requirements was this: We put together a foil-based pre-
sentation of the product with details of the architecture and hand-drawn screen
shots to show what people would see, what they would get at diff erent points dur-
ing development.

INTO THE GROUND: C++ / 201

What we were trying to build was a development environment that would pro-
vide tools for the construction and long-term maintenance of object-oriented
C++ systems. C++ is a rudimentary object-oriented language descended from C
and designed more or less single-handedly by Bjarne Stroustrup, a Dane with a
Cambridge University Ph.D. who was working at Bell Labs in New Jersey. In the
MIT style of off-naming things (like You Despair for USAir), we called him “Bar-
ney,” which, when we accidentally let it slip during one of his visits, was met with
a smile and perhaps a hint of camaraderie-based approval.

We took our presentation to potential customers, approaching them by saying
that we thought OO was the coming thing, that C++ was the coming OO lan-
guage, and that the complexity of the language made a development environment
necessary. We told them that our philosophy was to do things in the open rather
than under nondisclosure; that we would be talking about the outside view of the
product, its design to any level of detail, the technology to any level of detail, that
we would leave copies of the slides; they could take any notes; they could use any
of the ideas; they could tell anyone about it; and that all this would be in exchange
for an honest critique from their C or C++ developers and a presentation of how
they did development in their shop with emphasis on how Cadillac could better
fit in.

We visited hardware companies, software companies, embedded software
shops, consumer-oriented programmers, scientific computing shops, compiler
companies, Fortune 500 companies, big ones, tiny ones, garages. We visited two
to four a week for around nine months. After each visit we tried to absorb what
we had learned, and every week we updated the presentation with ideas and
refinements. I think we visited over 100 potential customers, and in the end, the
presentation was almost completely unlike what we started with, and the architec-
ture was sleek and simple.

We played to enthusiastic audiences because they were ordinary developers
surprised by our open approach to them. Not only weren’t they getting a market-
ing pitch about a planned product—take it or leave it—they were getting a
hacker-to-hacker discussion that seemed designed to take into account what they
said, no promises of use required, no nasty lawyer things to deal with, just a dis-
cussion among developers. We were frequently praised for our unusual and
commonsense philosophy. And this helped us get the comments we needed.
When you go in with your ideas, ideas so valuable legal steps were being taken to
present them, the natural reaction from the audience is to fight back and criticize
not critique. We got brainstorming instead.

The interesting eff ect was that because of NIH (Not Invented Here) the com-
panies we visited that were in markets similar to those we were headed toward
never used our ideas—ours were clearly inferior to theirs. Our philosophy was
that if other people adopted our approach to environments, it would be easier for

202 / INTO THE GROUND

us to thrive because the environment—our marketplace—would be predisposed
to our way of doing things.

But the critics of Lucid were right: We did not do marketing the traditional
way, and it was just an engineering-driven project.

� � �

Cadillac was an attempt to build an environment with same the degree of integra-
tion as the single-address-space Lisp and Smalltalk environments had in the
1970s and 1980s while separating the tools from the application.

The idea was to reduce the number of physical tools as much as possible and to
layer information onto those few tools. Basically we had a text editor and a gra-
pher. These tools were able to handle descriptions of the sorts of things they can
display along with descriptions of annotations. Annotations are a generalization
of hypertext. An annotation is an object along with an associated set or sequence
of other objects. An annotation acts as a link among those other objects. Each
annotation is an instance of a class to which methods can be attached. An exam-
ple annotation is the simple link associated with a sequence of two objects. When
both objects are text, the annotation is merely hypertext.

Annotations and other information about the program under development
are kept in a database and managed by a kernel. The kernel and database act as the
single address space where everything is known. The tools know nothing.

An annotation is active: Methods are attached to annotations by being associ-
ated with a class. When someone clicks on an annotation, the tool asks the con-
nected kernel to look up what actions are available, which are passed back for the
tool for display and selection.

With annotations you can take an ordinary textual display of a program and
decorate it with error messages, with breakpoints, with connections to related
code, to classes, to methods, and so forth. Instead of a number of browsers there
is only one textual browser and one graphical browser. These tools display the
same objects, and all action takes place in the kernel. The objects in the kernel are
in a persistent object store, so information lasts over multiple sessions.

When you click on the textual representation of any object, you get a pop-up
menu with a list of actions. This is nice because it makes you feel that you are
interacting with objects directly instead of through the intermediary of a tool.

The kernel learns about the programs by listening to a stream of data about the
program sent by the compiler which annotates the source with language elements,
a sort of generalization of programming language constructs. This implies that
the environment is language independent.

The whole user interface was aimed at exhibiting a characteristic called ready-
to-hand. A tool is ready-to-hand when its use submerges below consciousness. A
hammer is the best example: You use a hammer as if it were an extension of your

INTO THE GROUND: C++ / 203

arm—you don’t think about how to use the hammer, just as you never think
about using your hand, you simply use it.

We described Cadillac in more detail in “Foundation for a C++ Programming
Environment” (Gabriel et al. 1990).

� � �

In 1989 we got enough money in venture capital to hire some more people.
Matthieu Devin, a Frenchman from Paris, came by apparently to demo some of
his software. He had been working for one of Lucid’s Lisp competitors, and it
wasn’t clear why he was coming by. We watched his demos and talked to him,
and around 3:30 in the afternoon he mentioned he was visiting to get a job—he
had heard about Cadillac and wanted to join up. This was fine but he was leav-
ing at 4:30 for a 6:00 p.m. flight back to Paris. Erik Gilbert and I huddled, chat-
ted with Bob, and wrote out an off er letter on the spot. Matthieu became the
other key with Patrick on the design team. His specialty was user interfaces.

In 1990 and 1991 we ramped up development with $5.4 million in venture
capital based on a prototype (actually the fourth prototype of the kernel) and a
business plan. By then Lisp revenues had started to level off, and the board was
intrigued that we could have put together another product prototype on a shoe-
string. Bob had told one of the developers that he “would be damned” if he was
going to be the CEO of a company growing at 15% per year. At that stage, 15%
growth in Lisp looked pretty good.

One of the things that Bob did was to cash cow the Lisp business. I don’t know
whether cash cow is a standard term the way we used it, but to us a cash cow was a
product that made a lot of profit at the expense of moving it forward. To do this,
we stopped all development on our main products and kept only the smallest
support crew including a handful of developers—at the peak 40 developers were
working on Lisp, but at that point it was down to eight or so. This meant that the
product was very profitable, and those profits were poured into Cadillac.

I had argued that Cadillac would have the best chance if it were spun off with
new management. But the board wanted to make sure that its share of the com-
pany would be such that its loss on Lisp could be recouped.

The people in Lisp who were no longer needed were off ered positions in the
Cadillac group. This was good because they kept their jobs, but it wasn’t good
because most of the people in the Cadillac group were Lisp people to begin with,
and it was tough to see people half-forced into a project and language they didn’t
care for while the language and projects they loved were being bled dry.

Bob’s reasoning was based on assuming that Lisp was a mature market declin-
ing away. It certainly isn’t large in 1996, but there still are thriving Lisp companies,
some of which have grown since then. Bob’s interest was partly like the board’s: He

204 / INTO THE GROUND

wanted to win either financially or by being the CEO of a successful company. He
actually didn’t care what the company did, and he didn’t particularly care about
the people in it, except to the extent they could help his plans. Or at least this is
how it seemed to me and to many others. So. when he started cash-cowing Lisp,
people started leaving and grumbling about Bob.

Bob had a lot of bad qualities. He smoked a lot. We had a nice large second
floor porch with a roof over about half of it, the middle half. There was a phone
out there and Bob spent the whole day—8:00 a.m. to 5:00 p.m.—out there on the
phone smoking or meeting with his direct reports. I never knew who he talked to
on the phone, but there were few tangible results except for his financings.

It was unusual for me, who had helped raise the first $6 million, to be left out
of the fund-raising. This should have been the same situation as the earlier fund-
raising activities to which my comments and help were central. But Bob wanted
to do it alone, probably so he wouldn’t have to share the credit for any success.

I had learned since our first meeting that the reason he talked the way he did
was that his speech apparatus was almost always connected to his thought process
and what I was hearing was his thinking out loud. This partly explains why I
could understand only about half of what he said. Others thought he was pretty
smart, and maybe he was, but it was hard for me to tell. I don’t think I’m a partic-
ularly stupid person, but many conversations with him were mystifying to me—
and interminable. He would talk for hours on end, rambling about while he tried
to unravel a thread of reasoning or solve a problem. At first I took what he was
saying as an explanation or an answer—it was more like a dream.

Bob cared a lot about saving money, and so we called him Bottom-Line Bob.
Others less kindly called him Bob Requires a Human Host, after the evil character
in Twin Peaks.

� � �

We needed to have a close connection to a compiler because we had to modify it
to annotate source code. We made a no-cost deal with Oregon Software in Port-
land and with Sun for the Free Software Foundation C++ compiler called G++.
In both cases we were able to get a proof of concept going, but not much more.

We tried to get Sun, AT&T, and other compiler companies to go along, but
they were rightly not interested in doing a lot of work for a development environ-
ment with no obvious (to them) market. So we decided to buy a compiler com-
pany, called Peritus. It was a local company that had produced a compiler with
very good compiled-code performance. It took six to nine months to get the
entire deal done, mostly because the lawyers took so long. The tried and true law-
yers we had hired early on who were told to protect us from mistakes with OEMs
weren’t told anything diff erent about this deal and so tried to protect us. After

INTO THE GROUND: C++ / 205

that Bob fired them and went with one of the Palo Alto–based Silicon Valley–style
law firms.

Peritus was a small 12-person company with some OEM revenues and a shoe-
string operation. When the deal was done we moved them to our building and
placed them at the center, physically, of the Cadillac group. They were highly
paid—nearly off our scale—but their knowledge, talent, and work ethic surpassed
ours, which surprised me.

On the editor front we tried to work with Free Software Foundation (FSF) to
modify Emacs to support our editor protocol. The guy from FSF was a bust. We
were also using FSF’s GDB as the debugger, and we worked with Cygnus Support
on that front.

In the end we had to do all the work ourselves because it simply wasn’t getting
done or was done so poorly that the results were unusable. We wrote our own
grapher, which we handed over to NCR when they became a partner. In all, the
work went slowly.

The Lisp guys who were turned into C++ developers suff ered about a factor of
three decline in productivity for about the first six months to a year, which
improved to only about a 30% loss in the steady state.

Tony, who stayed on despite the humiliating demotion, became our primary
business partner negotiator. He finally nabbed DEC (now Digital) when their
Lisp group folded because it could not compete against our direct-sale product.
Although he didn’t negotiate the final details, he got them turned around. He
patiently negotiated the NCR relationship over an 18-month period. NCR
wanted a good C++ environment on their Tower line of 386-/486-based UNIX
computers.

I relied on Tony for lots of difficult things. When Bob arrived, he had the habit
of using very foul language in meetings. At Lucid we had a fair number of female
managers, including the director of marketing, most of the development manag-
ers, and the documentation manager. They found his language extremely off en-
sive, and the rest of us merely shifted in our seats when he let one fly.

I asked Tony to speak to him about it, and it stopped.

� � �

We had really bitten off a little more than we could chew with the tasks of modify-
ing code that we had not written and which was maintained by volunteers—the
FSF stuff.

In October 1990, I asked Carol Sexton to run the Cadillac development group,
and she carefully made a detailed schedule which had Cadillac ready for Beta in
April 1992. Bob and the marketing director told me “wrong answer, we need it in
a year.” They didn’t like the fact that Carol took into account vacation and sick

206 / INTO THE GROUND

time. Although we tried to cut back on functionality, there was little to cut. We
had not yet experienced the problems with Emacs and GDB.

Bob became more nervous, but when we previewed Energize at OOPSLA in
October 1991, it was the runaway hit of the show. People lined up to see demos.
We started ramping up a sales force and a support department—we had never
before done serious sales ourselves. We had thousands of leads from OOPSLA
and things looked rosy. The financial projection of the sales vice president were
unbelievably good.

Then troubles with Emacs hit, and we needed to move over more of the Lisp
guys to help out. Troubles with GDB and the grapher NCR took over caused more
problems. Then there was the bug curve. People took vacations and got sick.

Then there was the Object Design Inc. (ODI) problem. We had selected ODI’s
ObjectStore as the OODBMS to implement the persistent object store when the
simple one we implemented wasn’t fast enough. But we were the first customer of
ODI’s with a commercial product, and installation of the server required root
privileges and was just plain hard and dangerous.

We shipped Energize in April 1992, two weeks after the date Carol Sexton had
originally planned. We had thousands of leads, but the orders took a long time to
get because by that time Centerline (formerly Saber) had a product or people had
already started projects with ad hoc tools. Not the least drawback was that AT&T
was talking about its own development environment.

Anyhow, the orders did not come in at a rate to keep us afloat according to our
plans. We got a $1.3 million bridge loan.

At the end of the summer (1992) I took a partial leave of absence (half time) to
work at Stanford, though it was actually mostly at Lucid. I took one of the Cadil-
lac guys with me. We thought this would help save money when we did our sec-
ond layoff in September. I remember thinking that we needed to adjust our
strategy and assess where we were before we could eff ectively lay people off. Bob
didn’t think so, so the Lisp marketing guy and I tried to come up with the best
idea of what we would do with the now rapidly declining Lisp revenues.

On the Lisp side the OEMs were doing poorly because they had no incentive to
push the product, so Bob negotiated back the rights back to almost all the vendor
lines. This increased the amount we got per sale, but that was more than offset by
the lowered volume because we had no sales force, really, to handle Lisp.

Bob also believed that marketing was not worth building up—perhaps because
he was a marketing person himself and thought he could do all we needed. No
one really even knew we were still in the Lisp business.

We laid off about 20 people, some of whom were near founders who had lost
heart. Included were the vice president of sales and a drunk that Bob hired as
CFO. Bob got sick that day and didn’t come in.

INTO THE GROUND: C++ / 207

I went on leave and watched events from afar. Before I left, I negotiated a new
position with the company—Lucid Fellow. For a while I had been engaged in
mostly marketing activities by writing articles and columns and appearing at
shows and as a speaker. Part of my deal was that my activities for a quarter were
reviewed and if what I was doing was not what the CEO thought was important,
there would be further negotiation and a new plan put in place.

To replace me as eff ective vice president of engineering we hired one: Warren.
Warren was a very well known Lisp guy who had run a large group at a large hard-
ware company, but he had been moved out and went on to a smaller hardware
company. His management skills were poor, but I was unable to figure that out
from his references and the other checks I made. When I talked to him, he told me
the right things about how to run development. Bob was very enthusiastic, and
the only negative I heard from Warren’s references was that he often sided with
the engineers too much. We hired him.

I returned full time to the company when it was in a very bad state. During the
previous year the developers had rejected Warren, and I had partially returned to
solving problems for them. This was not good for Warren, but his behavior was
bad, too. He really didn’t like having A players around him, and he got into fights.

In June 1993, just before Bob took off for his two-week golfing vacation in the
UK he told me he wanted to measure the developers by their effort alone. I argued
that results were the right indicator, but he said, no, he wanted me to identify the
top 10 lowest-effort people and warn them that they had until September to
straighten out or they would be fired. He told me that effort was equivalent to
hours put in per week.

We had a lot of people with digital lines into their homes, and they worked
odd hours particularly on weekends, so it was hard to establish how many hours
they worked.

It was easy to figure it out for Patrick, though, who was the chief architect and
technical director of Energize. He was a strong family man and worked precisely
40 hours per week unless there was a crisis or a release coming up. I found out as
best I could how much other people worked, and Patrick topped the list of “slack-
ers.”

When Bob returned I showed him the list, and he dropped the issue.

� � �

Bob had an interesting view of developers, one that I think is shared by a lot of
CEOs in high-tech companies. Bob felt that developers were lazy and coddled,
thought everyone else in the company was stupid or incompetent, never made
schedules, and always overengineered or padded their plans. His disdain became
apparent when we faced the prospect of Matthieu Devin quitting about a year
before Lucid folded. Bob took Matthieu out on the porch and launched into one

208 / INTO THE GROUND

of his speeches. He told Matthieu that he believed that Matthieu thought he had
extraordinary skills as a developer and was therefore indispensable. But in fact—
Bob said—he (Bob) would be able to get 200 developers on the porch by nine the
next morning to fill Matthieu’s position and that each one of those developers
would be smarter and more talented than Matthieu.

What Matthieu possessed, Bob argued, was unique in-depth knowledge of
Enegerize, and therefore Matthieu should take a sales position where he would
earn a handsome commission.

� � �

What happened to Energize? It never took off though it was doing reasonably well
when the VCs gave up on Lucid. Energize was, I think, an excellent product that
might have done better under diff erent circumstances. In 1993 it won the Jolt
Cola Programmer Productivity Award. Here is what kept it on the ground:

• It used too many computing resources. It was a true three-tier architecture
with a database server, an application server (the kernel), and the clients
(Emacs, the grapher, and so on). Because the database server was essentially
performing a virtual memory function, there could be network performance
problems at times. The clients were pretty fat, and when you tried to put the
kernel and clients and compiler on the same machine, you had paging prob-
lems.

• We had problems with quality because we were using public-domain software.

• We had our own compiler on only a few platforms. Until the end we had a
product only on the Sun product line.

• C++ had its own problems, being a complex language where interest in OO
languages came mostly from COBOL programmers and shops where the level
of language competence was not on par with what was needed to conquer
C++. C++ itself suff ered a strong backlash beginning in 1993 and lasting at
least until mid-1995.

• The complexity of the C++ compilation model made incremental compila-
tion difficult when you also tried to use truly compiled code instead of a Lisp-
like or Smalltalk-like implementation that could support more runtime-based
processing.

• Lucid had a small sales force and no marketing activities, so it was a push sale.

� � �

In 1992 I started to get back to writing—fiction and poetry. I was attending a few
local workshops and classes. I applied to some national workshops and got into

INTO THE GROUND: C++ / 209

three, including Bread Loaf. After Bob dropped the effort thing, I went to the
workshops, and at Bread Loaf I was taken under the wing by Mark Strand, the
1990 U.S. Poet Laureate. He strongly encouraged me, hinting at potential great-
ness. I decided at that point to give it a serious try. Bread Loaf was a heady experi-
ence because Strand denigrated just about every poet in his workshop, and I was
the exception that caught people’s attention. I stayed in New England a few days
after Bread Loaf to visit friends and haunts. Victoria Hamilton said she was com-
ing up to Boston one day and suggested that we get together for lunch.

We met at a place in Cambridge and chatted a bit. The board had asked for
Bob to save $500,000 over the next six months, so I knew there would be a layoff.

After we ordered and I talked about Bread Loaf, she told me Bob wanted me to
leave, and if I didn’t do it gracefully on my own he would lay me off.

I was a little shocked, since I thought our agreement covered exactly this case.
Anyhow, it turned out the graceful exit he wanted was a leave of absence. I didn’t
take the whole thing very well and contacted a lawyer. The lawyer and I worked
out a good deal leaving me as chairman of the board. I stayed on the payroll until
December and got some other concessions. It took me about three days to find
another job when I got back from New England, at ParcPlace Systems, Inc., with a
nice bit of stock. ParcPlace went public nine months later.

Bob either was not a very good long-term planner—long term being a few
months—or was contemptuous of the board. When you lay off people your
expenses go up for the month of the layoff if you off er a severance package. Then
the savings start the following month. In September, the layoff month, expenses
went up, and in October they went down. But in November Bob started hiring
people again, and Warren, in particular, hired some of his favorite B and C players
to replace the ones laid off. In November, salary-related expenses were back up to
their August levels.

On the day of the layoff Bob got sick and didn’t come in. It was either a lung
problem or a heart problem, and he went to have an EKG. He asked me to oversee
the layoff in his place. I thought about his smoking, and I wasn’t sure what I
hoped would happen. He had laid off a number of my close friends, the ones he
thought were slacking off.

In May 1993, six months earlier, the board had started trying to sell the com-
pany, and in December they received a $3 million to $4.5 million off er from
Borland. The board rejected it even though, with what I learned about the OO
market and the C++ market at ParcPlace (also in the C++ market), my advice
was to take it. Later, Lucid got a $1 million off er from Veritas that it then pulled
off the table.

At the February 1994 board meeting, I mentioned to the investors that Bob’s
September layoff hadn’t netted anything. At the next board meeting in April they
fired him and brought in a shutdown artist, Bill Goerke.

210 / INTO THE GROUND

On Bob’s last day—oh, they let him quit for show—I told him that ParcPlace
had asked me to be vice president of development for a while. He said I should do
it and to ask for a corner office with windows facing two directions—and a big
couch. That way, he said, when those engineers come in, they’ll know right away
who the boss is. “Ha, ha, ha,” he said.

� � �

What was the immediate cause of Lucid’s shutting down? Bob had signed some
“standard” prepaid royalty contracts with HP, IBM, and Digital. For Lucid a stan-
dard prepaid royalty contract was one in which the hardware vendor paid a fee for
us to do work and they did the marketing, and if sales went south, well hey, we
both took a risk and too bad. Bob’s deals had payback clauses. I called them loans.

Bob was not good at negotiating contracts. For one thing, people found him
uncouth and obnoxious. Once I set up a negotiating session with ParcPlace’s
chairman, Adele Goldberg, who was the one who hired me three days after learn-
ing my plight at Bob’s hands. ParcPlace had a C++ environment. She and her vice
president of marketing came prepared to drop their product and pick up Energize
as the one they would sell. Bob wouldn’t even let her get to the point of proposing
the idea. He had decided early on that this competitor had to be shown how reso-
lute we were, and besides they couldn’t have anything to off er us anyway. So he
talked and talked and smoked and laughed.

Furthermore, once he had the contracts he wasn’t good at managing them. In
1992, we got an ARPA contract to modify our C++ compiler and loader to be able
to load C++ code into Lucid Common Lisp so that interoperability was inexpen-
sive and automatic, that is, you could subclass C++ within CLOS.

The contract was predicated on cost sharing: ARPA would pay us $250,000,
and we would put up $250,000 worth of additional labor. In the spring of 1993
Lucid needed around $180,000 to make its plan. Bob told the developers to charge
to ARPA anything that even vaguely could be considered work for them. We were
in the process of trying to get our loader to work for Sun—part of a deal with
them—and so that work was charged to ARPA. When we had gone through all
ARPA’s money, the ARPA project was shut down.

We did not deliver on time and didn’t plan to. We were lucky ARPA decided
they wanted the work done rather than see us in jail or make us pay for one of our
competitors to finish the work—both possibilities. They had granted contracts to
other parties based on getting the results of this project. This was the last gasp for
ARPA to use Lisp for anything. Bob not only killed the Lisp market, but also
salted the field, as one developer told me when Lucid was shut down.

Bob told me and others on many occasions during the last years that it didn’t
matter what the Lisp market did because within a year “either Cadillac would
make us rich or else we’d be out of business.” He felt that this justified eating up

INTO THE GROUND: C++ / 211

the Lisp market and our position in it. The image I had was that from the Back to
the Future movies in which the time machine DeLorean was accelerated to mod-
erate speed, at which point the time eff ect would kick in. For maximum tension
the DeLorean would usually be accelerated toward some obstacle like a building
or a chasm, and the time eff ect would kick in right at the last instant. This is how
Bob ran the company the last few years. He accelerated Lucid toward bankruptcy
because either richness or bankruptcy would kick in. He felt this was the right risk
to take.

Bob had accumulated $4.5 million in debt against something like $4 million to
$5 million per year in revenue and $4.5 million to $5.5 million in expenses. The
board did not want to keep Lucid afloat by paying back the loans, and that’s why
Lucid folded when it did.

But Bob didn’t own exclusive rights to sleaziness. Bill Goerke had his own
endearing streak of it. In November 1993 Lucid signed a deal with INS, a Japanese
company that wanted to distribute a Japanese version of Energize in Japan. The
development would cost $1 million with around $700,000 up front. By the time
June rolled around, the work was nearly complete and was staff ed by three Lucid
developers and two on-site INS developers. The president of INS came to visit on
June 8, Bob’s last day, which was to be the day that Bob and the INS president
finally met and “completed” the agreement by shaking hands and looking each
other in the eye. The INS president would be meeting Goerke instead.

Goerke needed the remaining $300,000 from INS to support a reasonable plan
for long-term survival, or at least $150,000 to survive until September. Of course,
INS knew what was going on because the INS engineers were around, and they
knew that a layoff was imminent. One of the INS developers met with the presi-
dent and Goerke and Warren. The conversation went like this.

The INS president said that he would pay the $300,000 if he knew that the
project would be completed on time and that because he had been an engineer
(or knew a lot about engineering) he knew that the project would not be com-
pleted on time unless the very people on it remained on it until completion. Bill
looked him in the eye and said, “I give you my word today that no Lucid engineer
on that project will be laid off.”

Two or three days later, all three were laid off. Warren didn’t like these particu-
lar engineers, and one can only speculate on what the motives were and why
things were done the way they were. But INS decided not to pay and that was the
last straw.

To some American businessmen, one’s word means nothing when money is
involved. Besides, one’s word only signals intention at the moment—it is not a
promise like a contract carefully reviewed by lawyers and signed in front of wit-
nesses. Except, in some cultures it is a promise.

In December 1994 in UNIX Review, Andrew Binstock wrote:

212 / INTO THE GROUND

Certainly, many failures within Lucid persisted long past any reason-
ably excusable period: the late delivery of the Energize programming
environment, its daunting installation, the lack of upgrades to the
compiler, and an inability to move out of the shadow of its founder,
Dick Gabriel. By the time Energize shipped and Gabriel was
replaced, the company was already mortally gored. However, these
two factors, while important, were not the primary cause of Lucid’s
downfall. The central cause was that Lucid underestimated how dra-
matically the market for UNIX development tools has changed. That
change can be summed up in one word: SunPro. (Binstock 1994)

This article goes on to point out that capitalism is like evolution, that only the fit-
test survive, and that SunPro produced the best environment. Objective compari-
sons showed this not to be true, that in evolution a species survives when it has
numbers, not when it is the best.

In March 1995, Renee Deger wrote the following in an article entitled “Blinded
by Science” in Venture Capital Journal:

The créme de la créme of software engineers had flocked to Lucid and
thrived in its academic, think-tank-like corporate culture. Even when
the company ran into some financial problems, forcing it to lay off
some developers, several of them continued to work for free. . . .

An argument could also be made that Lucid management and
their backers were slow to recognize their miscalculations, letting the
company’s formidable technical accomplishments blind them it its
market missteps. (Deger 1995)

This magazine tells the stories of companies from the VC’s point of view, and nat-
urally the venture backers were not to blame, even though they had held a major-
ity share of the company since 1985 and a majority on the board the whole time.
They were kept up to date with numbers and research at the board meetings,
which were held every month for the first seven years and every six weeks after
that.

Sure, we made mistakes—lessons from them are in the next essay, “Money
Through Innovation Reconsidered”—but mistakes were made everywhere in
sight. I don’t think developers can be blamed for doing what they were asked to
do.

� � �

The day after Bob quit he and his wife moved to England. When Renee Deger
tried to call him for the Venture Capital Journal article, “a message left at Mr
Kadarauch’s home in England was not returned by press time.”

INTO THE GROUND: C++ / 213

Victoria Hamilton remarked to me a year after Lucid had been shut down that
Bob was a tragic character: He seemed so talented and smart, but everything he
touched went bad.

Although I have to admit bias because of my hatred of him and what he did to
my company, I cannot place all the blame on Bob’s faults. More blame, I think,
must be ascribed to the American business system and the business education
system. Bob learned to run a business as an abstraction. He wasn’t able to under-
stand the market we were trying to penetrate; he didn’t want to understand the
customers’ needs except only insofar as it was necessary to make them pay, he
didn’t care much about the company’s employees—what he seemed to care about
was his position of getting credit for success and the bottom line. There is nothing
wrong with caring about the bottom line, but there is everything wrong with
being obsessed with it. These traits were learned at school and in his earlier busi-
ness career.

Bob always said that blame was for children and dogs.

� � �

My daughter was born in 1987, and my second wife divorced me in 1993 after a
two-year separation. I lost the house on the hill, and I lived out of the trunk of my
car for the first year of our separation. I then hooked up with one of the Lucid
technical writers, with whom I now live in Mountain View.

� � �

The world sometimes has a long memory, and when you stick out of the crowd a
little, it’s hard to predict how that will aff ect you.

After I had been at ParcPlace for a year, I was asked to “reengineer” engineer-
ing, which I did for a year as vice president of development. At the tail end of that
year ParcPlace decided to merge with one of its competitors, Digitalk. I was not
interested in being a vice president of engineering for the merged company espe-
cially with a three-site operation on the horizon, and I’m not really into manage-
ment per se. I was happy to let the Digitalk vice president take over.

As it turned out, however, I would not have had a choice. ParcPlace was eager
to merge and needed to make some concessions to Digitalk to cement the deal.
One of Digitalk’s board members had been one of Lucid’s, one of the less impor-
tant members on the board, representing a venture capital firm. Perhaps from his
own knowledge or from reading Renee Deger’s piece, he remarked that I had had
a bad influence on Lucid and that I was at least a partial cause of its failure from
having been too technical and too much opposed to management. When I
quizzed ParcPlace’s CEO about this, he said that the board member in question
was “weak” and so his opinion was not taken seriously.

214 / INTO THE GROUND

� � �

If he or she is lucky, a developer will work for a company that carries an emo-
tional hold. I cared more about building a company that people would want to
work for than a company that would make people rich. I think I built a place
where I liked to work and I was hurt to see it fold. I think, also, I built a place—
possibly by accident—where some of its employees liked to work

In January 1991 when we had our first layoff, one of the people who had to go,
Chris, had been hired about three months earlier. He later married Jan, my
administrative assistant, who divorced one of the developers (whom I laid off in
September 1993). Chris sent an e-mail message to everyone, which I excerpt here:

To: Lucid
Subject: So long

It probably goes without saying that I’m sorry to be leaving. I’ll
miss you all. Despite the briefness of my time at Lucid, I’m finding
that this is first time that I have become emotional about leaving a
job.

To all of you, who made me welcome when I arrived, thank you. A
special thank you to the other 370-ists, to my two office mates, to all
who answered my questions and provided advice, to Burton and
Robert for their help and patience with my occasional special
requests, and to Jan for the much-needed hug therapy after I got the
word.

The bottom-most of all bottom lines is this: If my fairy godmother
had appeared an hour before [the hiring manager] was to call with
the job off er and told me that I would be laid off in January, but had
also given me a preview of what my time at Lucid would be like, I
would still have taken the job. It’s been a good 3+ months.

Lucid is a fine company, staff ed by as fine a group of people as I
could hope to find anywhere. It’s been a pleasure to get to know you,
and an honor to be of your number for a time. I wish you all, and the
firm, the very best of luck.

215

�
Money Through Innovation Reconsidered

I would guess that fans of capitalism generally believe that innovation is the criti-
cal success factor and that natural evolution derived from competition makes the
world better for consumers.

Every word of that belief is true, but the assumed meaning is not. Rather, the
assumed meaning is that companies are rewarded for their innovation where
innovation means invention, that the more innovation the better, and that con-
sumers get a better world by leaps and bounds. Let’s look at some evidence. The
first is the editorial by Andrew Binstock quoted in “Into the Ground: C++”:

The net eff ect shows that the forces of capitalism are much like those
of evolution: the fittest survive. And when the fittest leap forward in
their abilities, many weak or sick competitors are driven off or eaten.
The benefits are clear: consumers such as you and me have better
tools. (Binstock 1994)

No less an authority than the editors of the Economist appear to share this
belief. In a lead editorial on Bill Gates and Microsoft they wrote the following:

Antitrust policy must try to strike a balance between allowing market
leaders to profit from their innovations and stopping them from
abusing their power. (“How Dangerous” 1995)

In a backing piece in the same issue they wrote:

Innovation. Computing, telecoms and the media have all seen rapid
technological change. A stream of new ideas and products has sus-
tained vigorous competition in most areas of these industries, driving
costs and prices down. Thus, even if the product market were monop-
olised, trustbusters could afford to be sanguine if producers of new

216 / INTO THE GROUND

ideas were still able to make their way to market, or at least to force
dominant companies to keep innovating and cutting prices them-
selves. But if such innovations also became monopolised, antitrust
authorities would be right to worry. (“Thoroughly Modern Monopoly”

1995)

The first problem is thinking that innovation means invention. Innovation
means “to change a thing into something new, to renew, or to introduce some-
thing for the first time into the marketplace.” The Economist seems to understand
this partly because their lead editorial on Gates says this a few lines above the
quoted passage:

As a young Harvard drop-out, he gladdened every nerd’s heart by
selling IBM a software system [MS-DOS] that his own tiny company,
Microsoft, did not even own. (“How Dangerous” 1995)

On the other hand, the backing piece refers to innovations as “a stream of new
ideas.”

But even in innovation there is a degree of improvement implied by “alter” or
“make new,” which is the root meaning of the word. I’ll adopt the term radical
innovation to mean an innovation based on new ideas rather than on incremental
improvements to known ideas.

The second problem is in thinking that innovation causes the world to greatly
improve for consumers, as witnessed by Binstock’s comment, “when the fittest
leap forward in their abilities.”

My thesis is simple: Invention, radical innovation, and great leaps forward do
not produce revenue commensurate with the required effort in the software
industry, and invention usually doesn’t work in any industry.

Before we get too general or abstract, let’s look at some examples, starting with
Microsoft. First, as the Economist points out, Microsoft didn’t even own DOS
when it sold it, so it did not invent it. Moreover, at the time IBM innovated—
introduced to the marketplace—MS-DOS, its technology was at least 15 years old,
perhaps older. Even if we look at Windows 95, which is just coming out as I write
this, the newest ideas in it date to the mid-1970s, and the core of it is still rooted
in inventions of the 1950s and 1960s. Windows 95 is an innovation in the true
sense because it is a renewal of those old ideas in the current context and contains
some improvements over them, yet the ideas are the same. It contains no stream
of new ideas.

To be precise, the core operating system ideas of multitasking and threading,
address space protection, and file system organization were well known by 1965.
The idea of window-based user interfaces was well known by 1975, the ideas of
hypertext (that’s what OLE really is), mouse interaction, and menus were known

MONEY THROUGH INNOVATION RECONSIDERED / 217

in the late 1960s. Pop-up menus and drag-and-drop were invented in the early
1970s, I believe.

The artwork is new; the attention to detail in the interface is important; the
upgrade to a modern computing platform makes the ideas eff ective rather than
merely amusing; and the documentation and on-line help systems make it all pal-
atable.

In short, there are plenty of reasons that Windows 95 is good for consumers—
it moves the technology center of gravity up to the late 1960s from the late
1950s—but few of those reasons have to do with invention or radical innovation.

I believe Microsoft is pursuing the correct strategy for a technology company,
but this strategy has nothing to do with invention, radical innovation, creativity,
or imagination.

Let’s look at UNIX. UNIX is an operating system written as a free alternative to
then-existing operating systems with multitasking capabilities, such as Multics, in
contrast to whose name the name UNIX derived. UNIX was developed at Bell
Labs and later major improvements were made at the University of California at
Berkeley. A copy of UNIX went out on basically every tape that was delivered with
a PDP-11 and later with every VAX as freeware. Universities used it because it was
free and it was good enough and because the sources were included so that local
budding wizards could customize it to local use.

From the mid-1970s until nearly the mid-1980s, UNIX was unknown outside
the university setting. But around 1981 a group of grad students, graduates, and
faculty from Stanford and Berkeley and some others founded Sun Microsystems
(SUN was an acronym for Stanford University Network, which was the project for
which the workstation later known as the Sun 1 was built) and chose to use “stan-
dard” or, at any rate, existing components: the Motorola 68010 processor, Berke-
ley UNIX, and the Stanford networking hardware.

Now UNIX is the default workstation operating system.

When UNIX first came out there was nothing inventive about it; in fact, in
some ways, it was poorly engineered. A good example of this is the PC-losering
problem we encountered in the essay “The End of History and the Last Program-
ming Language.”

The PC-losering problem occurs when a user program invokes a system rou-
tine to perform a lengthy operation that might require significant state, such as
IO buff ers. If an interrupt occurs during the operation, the state of the user pro-
gram must be saved. Because the invocation of the system routine is usually a sin-
gle instruction, the program counter (PC) of the user program and the registers
do not adequately capture the state of the process. The system routine thus must
either back out or press forward. The right thing is to back out and restore the
user program PC to the instruction that invoked the system routine so that
resumption of the user program after the interrupt, for example, will reenter the

218 / INTO THE GROUND

system routine. It is called PC-losering because the PC is being coerced into “loser
mode,” where “loser” was the aff ectionate name for “user'” at MIT when the
problem was solved there in ITS, one of the MIT operating systems of the 1960s
and 1970s.

ITS has several dozens of pages of assembly language code dedicated to back-
ing out of a system call so that the normal context-saving mechanism of saving
the PC and registers will work. The trade-off was made that implementation sim-
plicity was sacrificed so that the interface to the system in the presence of inter-
rupts would be preserved: Programmers need know only that when an interrupt
occurs and has been handled, the main computation can be resumed by restoring
the registers and jumping to the saved PC.

In UNIX as of the late 1980s the solution is quite diff erent. If an interrupt
occurs during a system call, the call will immediately complete and will return an
error code. The trade-off was made that the simplicity of the interface to the sys-
tem would be sacrificed so that implementation simplicity would be preserved,
and therefore the implementation could be more easily checked for correctness:
Programmers must insert checks for error codes after each system call to see
whether the system call actually worked.

It might seem odd that one would write a system call and then have to explic-
itly check whether it worked—it returned, didn’t it? But, UNIX doesn’t need that
60 or so pages of complex and probably incorrect assembly language code that
backs out of every system call, and therefore it was easier to make UNIX porta-
ble—UNIX was simpler and smaller.

UNIX chose implementation simplicity over interface simplicity, whereas
while ITS chose interface simplicity. As you might suspect, many UNIX programs
were incorrect because after an interrupt they would crash, but UNIX is an oper-
ating system still in existence and ITS is not.

Over the years, with so many people adopting UNIX, it was improved so that
now it is a fairly good operating system—consider Mach and Solaris. The pattern
is to start modest and improve according to the dictates of the users.

There are many examples of this pattern in industry. Japanese automobile
manufacturers started by producing low-cost, moderate-quality automobiles for
sale in the United States, and as they were accepted the manufacturers upgraded
their product lines with improvements. It was well known in the 1970s how to
make excellent-quality cars with lots of features—all you had to do was look at
European cars—but that approach would have resulted in minimal acceptance.
No one wanted to buy a luxury car or even a regular car from a company named
Toyota or Nissan. But they might want to buy a minimally equipped, moderate
quality car at a low price.

The pattern is to get something of acceptable quality into the largest market-
place you can and then later improve or add a narrower focus with higher-quality,

MONEY THROUGH INNOVATION RECONSIDERED / 219

more inventive products. Today many people look first to Japanese automobile
manufacturers for luxury cars as well as for cars at all levels of quality and features.

In 1990 I proposed a theory, called Worse Is Better, of why software would be
more likely to succeed if it was developed with minimal invention (Gabriel 1990).
Here are the characteristics of a worse-is-better software design for a new system,
listed in order of importance:

• Simplicity: The design is simple in implementation. The interface should be
simple, but anything adequate will do. Implementation simplicity is the most
important consideration in a design.

• Completeness: The design covers only necessary situations. Completeness can
be sacrificed in favor of any other quality. In fact, completeness must be sacri-
ficed whenever implementation simplicity is jeopardized.

• Correctness: The design is correct in all observable aspects.

• Consistency: The design is consistent as far as it goes. Consistency is less of a
problem because you always choose the smallest scope for the first implemen-
tation.

Implementation characteristics are foremost:

• The implementation should be fast.

• It should be small.

• It should interoperate with the programs and tools that the expected users are
already using.

• It should be bug-free, and if that requires implementing fewer features, do it.

• It should use parsimonious abstractions as long as they don’t get in the way.
Abstraction gets in the way when it makes implementation too hard, too
slow, or hides information that shouldn’t be hidden. (I once heard an inter-
esting comment—sort of a motto—at a scientific computing conference:
Abstractions = page-faults.)

It is far better to have an underfeatured product that is rock solid, fast, and small
than one that covers what an expert would consider the complete requirements.

These are the benefits of a software system designed and implemented this
way:

• It takes less development time, so it is out early and can be adopted as the de
facto standard in a new market area.

• It is implementationally and functionally simple, so it can run on the smallest
computers. Maybe it can be easily ported as well—if it uses a simple portabil-
ity model. At any given time the mainstream computer users—whether indi-
viduals or corporations—are running hardware at least two generations old.

220 / INTO THE GROUND

• If it has some value, it will be ported or adopted and will tend to spread like a
virus.

• If it has value and becomes popular, there will be pressure to improve it, and
over time it will acquire the quality and feature-richness of systems designed
another way, but with the added advantage that the features will be those the
customers or users want, not those that the developers think they should
want.

The path of acceptance is that the worse-is-better system is placed in a position
in which it can act like a virus, spreading from one user to another, by providing a
tangible value to the user with minimal acceptance cost. There is little question it
can run everywhere, so there are no artificial barriers. The system can be improved
by the end users because it is open or openly modifiable, and its implementation is
simple and habitable enough that users can do this.

This simple implementation provides a means for the originators to improve
the system over time in a way consistent with how it’s being used, thereby increas-
ing the magnitude of the most important evaluation factors. Over time, the sys-
tem will become what lucky developers using a more traditional methodology
would achieve.

This may seem counterintuitive—many people believe that being competitive
requires doing the absolute best development you can. The following is a charac-
terization of the contrasting design philosophy, which I call The Right Thing:

• Simplicity: The design is simple, both in implementation and interface. Sim-
plicity of implementation is irrelevant.

• Completeness: The design covers as many important situations as possible. All
reasonably expected cases must be covered.

• Correctness: The design is correct in all observable aspects. Incorrectness is
simply not allowed.

• Consistency: The design is thoroughly consistent. A design is allowed to be
slightly less simple and less complete in order to avoid inconsistency. Consis-
tency is as important as correctness.

There really is only one implementation requirement:

• It should use hard abstraction throughout. Elements must be properly encap-
sulated in order to achieve information hiding.

The acceptance path for a right-thing system is that it is the right thing off the
bat, and even though it came late to the marketplace, it is so wonderful that it is
quickly accepted. Of course, it has to be on every necessary platform either right
away or quickly. This scenario can happen, it is simply unlikely.

MONEY THROUGH INNOVATION RECONSIDERED / 221

One of the more familiar examples of a right-thing system is the Macintosh

and the Macintosh operating system. When the Mac was introduced in 1984 it

was arguably the product of largely right-thing design though worse-is-better

implementation. It used ideas and technology only 10 years old or so, and it was

considerably ahead of its competition. One might say that Apple tried to run up

the score on the competition by producing a product so far in advance as to be

almost not in the same competitive milieu.

Although one could argue that the Macintosh today—some 10 years later—is

a success, it enjoys only about 10% to 15% of the total PC market. It is not used in

the mainstream; rather, its strongholds are primarily in desktop publishing,

graphic design, and marketing organizations, whereas Microsoft platforms are

used throughout the corporation. There are many good reasons for this failure to

capture more of the market in addition to the problems of the right-thing philos-

ophy, which we’ll look at further. MS-DOS was licensed to all the PC clone manu-

facturers, so that consumers had a choice of a variety of price and performance

characteristics. Of course, IBM, having strong influence among MIS depart-

ments, helped seed the PC in mainstream settings.

The popularity of the PC and DOS created the opportunity for a market of

software on this platform: A company wishing to write and sell a software prod-

uct always looked to the PC and DOS first because it had a larger market share to

start with because IBM shipped DOS, other manufacturers did too, and they all

shipped the same platform.

The diff erence between what happened to DOS and the Macintosh is an exam-

ple of what is known as gambler’s ruin. Suppose two players have equally large

piles of pennies—pick a round number like a jillion. If the players have a fair coin

and flip it, with one particular player taking a penny from the other if heads, vice

versa if tails, what will happen? It would seem that the players would keep their

positions of roughly equal amounts of pennies. But in mathematical terms, this is

an event of measure 0—it will never happen. The probability is essentially 1 that

one player will lose all his or her pennies. But if one of the players starts out with

more pennies than the other, the probability that that player will end up with all

of them is equal to the proportion of that player’s pennies to the total number of

pennies.

There is a tendency to think that somehow the free market is fair and that all

seemingly fairly matched competitors will survive. If there is some aspect of a

business that involves consumable resources used in competition, that business is

subject to gambler’s ruin.

In the case of PCs versus Macintoshs, the PC/DOS player started with many

more pennies and won. However, there is more to it than chance. The Macintosh

was clearly superior, yet it lost. Among the reasons for losing was that Apple

222 / INTO THE GROUND

didn’t license its technology until 1995 so that a clone market didn’t appear earlier
(and one could say that waiting 11 years to do it was a suboptimal strategy).

There are other problems stemming from the diff erence between the two phi-
losophies. One is that MS-DOS provided a simpler, more malleable base so that
the aftermarket could more easily mold MS-DOS into what it needed. Once those
characteristics of improvement were known, MS-DOS evolved.

� � �

One of the obvious criticisms of worse-is-better is that there is something worse
going on, that is, something not good or not right. It seems like the idea is inten-
tionally to put out an inferior product and then hope that things go well. This
isn’t the case, but even this argument itself can be attacked.

When you say that a system is inferior to what it could be, you are basing that
conclusion on an evaluation criterion. Necessarily you are using, perhaps intu-
itively, a metric based on a projection. That is, no one can evaluate an entire sys-
tem in all of its use settings, so you are looking at either only part of the system or
some of the settings, that is, a projection.

The problems with this are that a projection always loses information and the
choice of projection is typically based on bias. For example, Modula-3 is a great
programming language that is unsuccessful. Proponents of Modula-3 believe that
it is a fabulous language and better, in particular, than C++. Modula-3 is based on
a Cfront-like compiler, runs on a lot of computers, and is free. These are charac-
teristics it shares with C++. Unlike C++, Modula-3 is optimized for mathematical
and abstractional cleanliness. Moreover, it doesn’t have a very good compiler, it
lacks an environment, and it has no compelling systems written in it that people
want to use and could use in such a way to see and appreciate the advantages of
Modula-3. This last point can be understood by thinking about how much more
likely it would be for people to use Basic English or Esperanto if there were a com-
pelling piece of literature written in it.

Most important, the evaluation function—mathematical cleanliness—is not
valued by the users, and perhaps they can’t understand why it would be valuable
except in theoretical terms.

The PC-losering example can be viewed this way, too. The characteristic val-
ued by the ITS designer is simplicity of interface, which has led, in this case, to a
large, complex system that can run on only a specific computer (the PDP-10)
because it is written in assembly language because that is the only way to write it
so that it’s fast enough. UNIX is written in C, which is portable, and UNIX was
simple enough early on that even this implementation choice off ered acceptable
performance.

In the modern era, we have come to favor simplicity over complexity, perfec-
tion over imperfection, symmetry over asymmetry, planning over piecemeal

MONEY THROUGH INNOVATION RECONSIDERED / 223

growth, and design awards over habitability. Yet if we look at the art we love and
the music, the buildings, towns, and houses, the ones we like have the quality
without a name, not the deathlike morphology of clean design.

In many cases, the software system that succeeds starts with a kernel of good
technology, but it is not committed to fully to realizing that technology. By
enabling users to live in the implementation to some extent or to mold the tech-
nology to users’ needs while dropping hurdles to the use of the technology, that
system is able to survive and evolve.

� � �

The right-thing philosophy is based on letting the experts do their expert thing
all the way to the end before users get their hands on it. The thought is that until
the whole grand structure is built and perfected, it is unusable, that the technol-
ogy requires an expansive demonstration to prove its eff ectiveness, and that peo-
ple are convinced by understanding the eff ectiveness of a technology, as if we
needed to know that vehicles based on internal combustion engines could carry
immense weights—tons and tons—or seat dozens of people before someone
would be willing to buy a four-person, 15-horsepower car.

Worse-is-better takes advantage of the natural advantages of incremental devel-
opment. Incremental improvement satisfies some human needs. When something
is an incremental change over something else already learned, learning the new
thing is easier and therefore more likely to be adopted than is something with a lot
of changes. To some it might seem that there is value to users in adding lots of fea-
tures, but there is, in fact, more value in adding a simple, small piece of technology
with evolvable value.

The goal of a software enterprise is to make it into the mainstream, and being
in the mainstream does not mean selling to a particular set of corporations. It
means selling to customers with particular characteristics.

One of the key characteristics of the mainstream customer is conservatism.
Such a customer does not want to take risks; he (let’s say) doesn’t want to debug
your product; he doesn’t want to hit a home run so he can move up the corporate
ladder. Rather, he wants known, predictable improvement over what he is doing
today with his own practices and products. He wants to talk to other folks like
himself and hear a good story. He doesn’t want to hear how someone bet it all and
won; he wants to hear how someone bought the product expecting 10% improve-
ment and got 11%. This customer is not interested in standing out from the
crowd, particularly because of a terrible error in his organization based on a bad
buying decision. These aren’t the characteristics of someone who would love
technology and build an extravagant product based on it; therefore, it is hard for a
technologist to understand what this customer values.

224 / INTO THE GROUND

The ideal of the free market supports this kind of growth. If you decide to
spend a lot of resources developing a radical innovation product, you may be
throwing away development money. Why bet millions of dollars all at once on
something that could flop when you can spend a fraction, test the ideas, improve
the ideas based on customer feedback, and spend the remainder of money on the
winning evolution of the technology? If you win, you will win more, and, if you
lose, you will lose less. Moreover, you will be out there ahead of competition
which is happily making the right-thing mistake.

Microsoft won by putting out junk with a core good idea—and usually not
their own idea—and then improved and improved, never putting out something
too innovative, too hard to swallow, too risky.

When you put out small incremental releases, you can do it more frequently
than you can with large releases, and you can charge money for each of those
releases. With careful planning you can charge more for a set of improvements
released incrementally than the market would have borne had you released them
all at once, taking a risk on their acceptance to boot. Moreover, when you release
many small improvements, you have less risk of having a recall, and managing the
release process also is easier and cheaper. With incremental improvement, the
lifetime of an idea can be stretched out, and so you don’t have to keep coming up
with new ideas. Besides, who wants to base one’s economic success on the ability
to come up with new ideas all the time?

The free market means improvement for the consumers, but at the slowest
possible rate, and companies that try to go faster than that rate are almost always
hammered down or killed. On top of these factors is the feedback loop in the free
market. We’ve seen some reasons that it makes business sense to make small
improvements rather than large ones. Because companies use these techniques,
the pattern is established that the free market goes slowly. Given that, consumers
now act in accordance with the free market. For example, because consumers
rarely see radical innovation—it’s too expensive, so companies don’t do it, and a
series of incremental improvements seldom if ever amounts to a radical innova-
tion—they suspects its value. You might say that consumers are conditioned by
the free market against radical innovation.

When you add the risk aversion of the mainstream marketplace to the minimal
innovation fostered by the free market, it is easy to see that the right-thing is just
too risky to try unless you really are sure it will work.

� � �

The key idea is to identify the true value of what you bring to marketplace, to test
those ideas in a small context, to improve them in a participatory manner, and
then to package that value in the least risky way.

MONEY THROUGH INNOVATION RECONSIDERED / 225

Let’s look at the Lisp example. In order for Lisp to succeed as Lucid promoted

it, the customer would have had to buy into AI; buy into using an unusual lan-

guage; buy into the peculiar development environment with its own code con-

struction, debugging, and maintenance tools; and accept the view that the

standard computing world was at the other end of a narrow foreign function

interface. This is too much to ask someone to accept when the value to the cus-

tomer is a simple rule-based computing paradigm from AI and incremental

development from Lisp. There is no reason not to have presented expert-system

technology in more familiar surroundings or to introduce incremental develop-

ment using a Lisp constructed more like a traditional programming language.

If you decide to go whole hog and produce a right-thing product, you may

have made too much of an engineering commitment, certainly in terms of effort

put into the product. If the product is not right, it will be too large and complex

to modify to be more in line with customers’ needs. So the very investment you

might have thought was the way to put distance between you and possible com-

petition by making the effort for entry too great is the very impediment to modi-

fying your product to be what customers need.

When you release a modest product first, however, the sheer amount of typing

necessary to adapt is small, and therefore can be done quickly, which means that

your company is making rapid transitions in the marketplace, transitions your

customers may require.

The ideal situation is that your proprietary value is small compared with the

total size of your product, which perhaps can be constructed from standard parts

by either you or your customers or partners.

There is a saying adapted from something Wade Hennessey said about his own

way to making money:

Wade’s Maxim: No one ever made money by typing.

What this means in our context is that you cannot try to build too large and

complex product by yourself—you need to get parts from other places if your

product is complex, and you must make your value clear and apparent, and it

must be a simple decision for a customer to use your technology.

� � �

If you go out with a product without cachet, you might not like the results.

Cachet—a word whose meaning has changed recently to include the characteris-

tic of having a positive or desirable aura—is what will attract your customers to

your product. For example, Netscape has cachet because it is the hip window into

the Web.

226 / INTO THE GROUND

Cachet is that which makes a system or language attractive over and separate

from its objective features and benefits—it’s why kids ask for particular toys for

Christmas. There is nothing wrong with your customers acting like kids and bug-

ging their parents—their managers—into buying them your toy.

Cachet is how you appeal to your early adopters, whose successes pave the way

for acceptance into the mainstream. For many early adopters, technological inno-

vation is enough, but you should make sure that the cachet is technological only

and not based on overwhelming mass of technology. I use the term acceptance

group to refer to people who must accept your product and technology in order

for you to be successful—at first they are the early adopters, later the mainstream.

The larger you want your acceptance group to be, the lower technical skill level

you have to aim for. This is not a matter of elitism, it’s a matter of mathematics.

And if you aim for a lower technical talent group, you have to provide a simple

habitat—your system—for them to have to learn and inhabit.

Furthermore, the larger the acceptance group, the smaller and lower-power

the computer they will be using. The less technologically advanced the target

acceptance group, the less likely they will be to upgrade their computers unless

there is a specific reason to do so. And it is unlikely your system will be the ulti-

mate reason.

Nevertheless, any acceptance group needs to see that your system has the right

mythos, the right cachet. Their first impression must be good in order to generate

word of mouth, so it must have visible value right out of the box. If your system

has a lot of complex functionality, it will be difficult to make sure the first look

turns into a good first impression. The less functionality it has, the more con-

trolled an initial look the users get. If you provide a free or cheap implementation

with sources, then you might add a “wizard” component to your acceptance

group, adding not only a free development arm but also cachet.

� � �

Don’t be afraid to find the rhinoceros to pick fleas from. There is nothing wrong

with attaching your fortunes to those of a platform manufacturer or other system

provider whose star is bright and gaining brightness. For example, it has made

sense for the last 10 years to bet your company on Microsoft by writing software

for DOS and Windows. Especially smart is being able to use parts of the rhino’s

products and technology to fill out your product. The less innovation you do, the

better. Run just fast enough to win, but don’t ruin your chances in the next race.

� � �

Recall that Andrew Binstock invoked evolution:

MONEY THROUGH INNOVATION RECONSIDERED / 227

The net eff ect shows that the forces of capitalism are much like those
of evolution: the fittest survive. (Binstock 1994)

The popular idea even today is that evolution operates by making improve-
ments—some large and some small. Darwin himself recognized that the eff ect of
natural selection in making improvements was local at best. Darwin was writing
his work when Britain was in the midst of its industrial expansion and its interest
in showing that the free market led to improvements. Darwin was also under
pressure to show that the press for perfection was inexorable from slime to people
vectored through apes.

The theme of this theory is wedging out another species through competi-
tion—and this is just what Binstock believes is happening.

To respond to the pressure he was facing, Darwin came up with his wedge the-
ory, which stated that the panorama of life was chock full of species occupying
every ecological niche. Each species was like a wedge, and the only way that a new
species could find a place in the world was to wedge out another one, and the way
that happened was by being better somehow.

Undoubtedly this happens in many cases, but usually only in cases of small
local improvements. For example, the human brain has increased in size since the
first appearance of Homo sapiens, and this happened because a large brain had
advantages, and so population dynamics selected for this trait—perhaps early
men and women preferred to have intercourse with large-headed members of the
opposite sex.

But this cannot explain how a large complex brain came into existence in the
first place. Until something like a brain, only smaller, reaches a certain size and
complexity, it has no purpose and doesn’t really do anything. Therefore no selec-
tions are based on it except ones irrelevant to its ultimate use. This means that
there was no reason not to grow increasingly larger brains—maybe such a brain
simply belonged to someone more attractive. Eventually some environmental
change occurred in which the large brain just waiting for something to do had a
new purpose—language, for example—and its usefulness started to dominate
natural selection.

To get to the point of understanding why brains can’t just have grown and
grown we need to look at mass extinctions. The best-known extinction was that of
the dinosaurs. Dinosaurs and mammals overlapped by 100 million years, plenty of
time for any wedge-related competition to have increased the mammals’ niche or
even forced out the dinosaurs if the mammals were so much better than dinosaurs.
However, it took a disaster—currently believed to be a comet or asteroid hitting
the earth—to dislodge the dinosaurs. The small mammals were able to survive the
cloud-induced winter or the flash-induced heat that resulted but the dinosaurs
were not. The mammals had something that enabled them to survive, and almost
certainly it was something marginal or irrelevant until the catastrophic event—

228 / INTO THE GROUND

otherwise you have to believe that evolution operates by the future influencing the
past.

Natural selection is a mechanism to reject changes not to establish them. In
fact, natural selection is used to slow down changes in the areas that matter—if a
particular wing structure works, you don’t want to try changing it. Therefore,
those parts of an organism most central to its survival mutate over time the most
slowly. In fact, biologists use the rate of mutation to determine whether some
puzzling organ or structure has a purpose: The higher the rate, the less important
purpose it has.

Only things that are relatively worthless change rapidly and dramatically.
These worthless things provide variety, and someday an environmental change
can make one of those changes or a related group of them important to survival.
Then that one or that group will join the ranks of the natural-selection protected,
and perhaps some formerly static parts may no longer be essential and can begin
to change.

For example, we use tires for automobiles, but in Africa and India where cars
aren’t so numerous, people use them to make sandals. If a disaster occurred in
which cars and industry disappeared, car tires might thus be used to shoe people.
Nothing in the design or intended purpose of tires had anything directly to do
with sandals, but quirks of the new environment make them useful for the new
purpose. Then perhaps tires could begin to be improved for their new use.

Mass extinctions teach us this when we look at the details, but those details are
too extensive to go into in this essay. I recommend Eight Little Piggies by Stephen
Jay Gould (1993) for those interested.

In other words, natural selection provides very little incremental improve-
ment. Rather, almost all dramatic change occurs because the environment
changes and makes the worthless invaluable.

I think that this works in the marketplace as well. The simulation-based mech-
anisms of Smalltalk still are useful, but Smalltalk’s success in the mid-1990s as a
business-oriented language stems from the use of those mechanisms to model
naturally, not simulate, simple business objects. This was not one of Smalltalk’s
design goals, yet it has turned out to be the key success factor.

Population dynamics also makes a diff erence. Dinosaurs coexisted with mam-
mals for 100 million years, with the rat-sized mammals making no headway. And
nothing about the mammals forced out the dinosaurs through competition.

� � �

The lesson is to put out your small technology nugget, not typing too much, and
wait to see whether the environment changes so it has an interesting new use for
your nugget and then change your product to take advantage of it and how it’s

MONEY THROUGH INNOVATION RECONSIDERED / 229

used. Make a small, simple wing, wait ’til flying takes off, then build a flying
machine.

� � �

These ideas on innovation might seem odd, but they echo those of prominent
economic thinkers. Roland Schmitt and Ralph Gomory wrote:

[The Japanese company] gets the product out fast, finds out what is
wrong with it, and rapidly adjusts; this diff ers from the U.S. method
of having a long development cycle aimed at a carefully researched
market that may, in fact, not be there. (Schmitt and Gomory 1988,

1989)

And L. M. Branscombe wrote this:

After carefully assessing the functional requirements and the permis-
sive cost of a new product for consumer markets, the [Japanese] engi-
neering team will work on a series of designs, incrementally
approaching the cost target, testing for consumer acceptance. The ini-
tial design will very likely incorporate technical processes of a most
sophisticated nature, taken from the best publications in science. But
they will be used in an exceedingly conservative application. . . .
When the product is introduced it already incorporates leading edge
technologies with a high degree of extendability, but with little of the
risk associated with pushing the limits of the technology too soon.
American engineers faced with the same problem would spend much
more time and money pushing the scientific level of the technology to
a design point where it is clearly superior to proven alternatives
before introducing it. . . . In all likelihood, their costs will be higher
and risk of program slippage greater than the Japanese approach.
And the technology in the product, when introduced, will be more
difficult to extend incrementally. (Branscombe 1987)

Remember: No one ever made money by typing.

231

�
Epilogue

People build computers, write programs; a person is harmed when a bug occurs,

people form software development teams, people read programs; people write

compilers that read programs to create other programs, people write patterns to

communicate programming knowledge to other people. Software is elegant or

bogus to other people. Software serves a human function or fails to. There is no

Plato’s heaven where mathematical cleanliness sits supreme, where the correct-

ness of an abstraction is alive.

Clean abstractions help people understand and fix things the way a clearly

written sentence can make a hard concept accessible, and it would take just as

many books on writing abstractions to help people get how to write good ones as

it takes books on writing to explain how to write a clear sentence. And though

there are perhaps hundreds of books on writing, none of them nor all together

can really turn someone who cannot do it into a writer of clear sentences.

When we talk of architecture, we are talking about art as well as engineering.

As Jim Coplien (1995) pointed out, Vitruvius, the classic Roman architect, charac-

terized architecture as the joining of Commodity, Firmness, and Delight (Pollio

1960). In software engineering—if there really be such a thing—we have worked

thoroughly on Firmness, some during the last 10 years on Commodity, and none

on Delight. To the world of computer science, there can be no such thing as

Delight because beauty and anything from the arts or the so-called soft part of

human activity has nothing to do with science—it is mere contingency.

But to take people out of software development is to leave it empty.

My purpose in writing these essays has been to glorify humanity in its struggle

to remain human though the weight of science and management and business

leans heavy on that struggle, sees it in opposition to elegance, efficiency, and

profit.

232 / EPILOGUE

Engineering is a discipline that fosters creativity to contrive means to a goal,

and when we think of engineers, we think of bridge designers or the people who

design the physical structures of skyscrapers, or the person who can build a radio

out of a box of wires, resistors, transistors, power supplies, and capacitors.

But there are river engineers. The Mississippi River has a broad floodplain,

which floods many hundreds of square miles around the main course of the Mis-

sissippi every few years; and the course of the Mississippi changes from time to

time as erosion and climate-related forces change the river’s equilibrium.

The Army Corps of Engineers was asked to harness the river and to control

20-year floods—a 20-year flood is a flood so great that it appears, statistically,

only every 20 years—so that the rich floodplain could be planted and harvested,

so that homes and towns and cities like St. Louis could be safely built, so that the

river would stay in its banks and remain navigable. To do this they built control

structures that use the power of riverflow to dig channels deeper, built dams and

release points, bulldozed high levees. And it mostly worked, though in the early

1990s a series of heavy rain years caused catastrophic flooding, and the question

was whether the river control structures made the floods more destructive than

they would have been without them.

The river cannot be tamed because we cannot control everything about the

river and the weather; worse, we cannot even model or mimic or understand well

enough how the river operates to predict how it will behave, so how can we con-

trol it except by applying large control structures and continually repairing them

as the river eats and picks away at them?

River engineers are engineers who do their jobs by trying to model small parts

of rivers in idealized miniaturized laboratory mockups, by building control struc-

tures, and by repairing them when they inevitably fail. This is not the picture we

are accustomed to for other engineers.

The river is human nature and human failings, and it runs through software as

it does nowhere else in human endeavors. The salt sweet tears, the edgy new love

affair, the first birth, the exhaustion falling on exhilaration, frustration and anger,

the kicked heart of rejection, and all the world of life finds its way into the lines of

code, the designs, the architectures and frameworks we find essential to running

our system of life in the political and economic world. We cannot test the river, we

cannot model it, we cannot understand even the smallest part of it to the level of

science in high school chemistry. And because the river and the warming and

cooling of the earth cannot be figured, because the man and woman and the lov-

ing and hating cannot be figured, some engineers can only build, hope, and in the

end, repair.

233

�
References

Alexander, Christopher. 1964. Notes on the Synthesis of Form. Cambridge, Mass.: Harvard
University Press.

. 1968. “The Bead Game Conjecture.” Lotus 5: 151.

. 1975. The Oregon Experiment. New York: Oxford University Press.

. 1977a. “On Value.” Concrete 1 (December): 1, 6–7.

. 1977b. A Pattern Language. New York: Oxford University Press.

. 1979. The Timeless Way of Building. New York: Oxford University Press.

. 1985. The Production of Houses. New York: Oxford University Press.

. 1987. A New Theory of Urban Design. New York: Oxford University Press.

. 1991. “The Perfection of Imperfection.” In Roots and Branches: Contemporary
Essays by West Coast Writers, ed. Howard Junker. San Francisco: ZYZZVA.

. 1993. A Foreshadowing of 21st Century Art: The Color and Geometry of Very Early
Turkish Carpets. New York: Oxford University Press.

Alighieri, Dante. 1994. The Inferno of Dante. Trans. Robert Pinsky. New York: Farrar,
Straus, and Giroux.

Balzer, Robert, Frank Belz, Robert Dewar, David Fisher, Richard Gabriel, John Guttag, Paul
Hudak, and Mitchell Wand. 1989. “Draft Report on Requirements for a Common
Prototyping System,” ed. Richard Gabriel. SIGPLAN Notices 24 (March).

Binstock, Andrew. 1994. “Editorial.” UNIX Review, December.

Borges, Jorge Luis. 1962. Ficciones. New York: Grove Press.

Branscomb, L. M. 1987. “Towards a National Policy on Research and Development.” Deliv-
ered at conference of the Council on Research and Technology (CORE-TECH)
and Conference Board, MIT, October 8.

Carroll, Martin D., and John F. Isner. 1992. “The Design of the C++ Standard Compo-
nents.” In C++ Standard Components Programmer’s Guide. Murray Hill, NJ: AT&T
and UNIX Systems Laboratories.

234 / REFERENCES

The Chicago Manual of Style. 1993. 14th ed. Chicago: University of Chicago Press.

Clinger, Will, and Jonathon Rees. 1993. The Revised4 Report on Scheme. IEEE Standard.

Coplien, James O. 1994. “Borland Software Craftsmanship: A New Look at Process, Qual-
ity, and Productivity.” In Proceedings of the 5th Annual Borland International Con-
ference. Orlando, Fla., June 5.

. 1995. “Software Development as Science, Art, and Engineering,” C++ Report 7
(July/August).

Dataquest. 1992. CASE/Software Development Tools. San Jose, CA: Dataquest. [This study
does not give Lisp, PROLOG, and Smalltalk figures; the ones shown were deter-
mined by personal communication with one of the authors.]

Deger, Renee. 1995. “Blinded by Science.” Venture Capital Journal, New York, March.

Dingle, Herbert. 1979. “Time in Philosophy and Physics.” Philosophy 54.

Feyerabend, Paul. 1987. Farewell to Reason. London: Verso.

Fowler, H. W. 1987. A Dictionary of Modern English Usage. Rev. by Sir Ernest Gowers.
Oxford: Oxford University Press.

Gabriel, Richard P. 1985. Performance and Evaluation of Lisp Systems. Cambridge, Mass.:
MIT Press.

. 1990. “Lisp: Good News, Bad News, How to Win Big.” Keynote address, known as
“Worse is Better,” presented at the European Conference on the Practical Applica-
tions of Lisp, Cambridge University, March. Reprinted in AI Expert, June 1991, pp.
31–39. Excerpted in The UNIX-Haters Handbook, by Simson Garfinkel, Daniel
Weise, and Steven Strassman. San Mateo, CA: IDG.

Gabriel, Richard P., Nickieben Bourbaki, Matthieu Devin, Patrick Dussud, David Gray,
and Harlan Sexton. 1990. “Foundation for a C++ Programming Environment.”
Proceedings of C++ at Work, September.

Gabriel, Richard P., and Guy L. Steele Jr. 1990. “The Failure of Abstraction.” Lisp and Sym-
bolic Computation: An International Journal 3 (January).

Gordon, Karen Elizabeth. 1984. The Transitive Vampire: A Handbook of Grammar for the
Innocent, the Eager, & the Doomed. New York: Random House.

Gould, Stephen Jay. 1993. Eight Little Piggies: Reflections in Natural History. New York:
Norton.

Grabow, Stephen. Christopher Alexander: The Search for a New Paradigm in Architecture.
Stocksfield, UK: Oriel Press.

Haas, Ken. 1993. “How to Go from CFO to CEO (Without Really Trying): On Advance-
ment.” The Red Herring: The Technology Financial & Investment Monthly. Novem-
ber.

Harbison, Samuel P. 1992. Modula-3. Engelwood Cliffs, NJ: Prentice-Hall.

“How Dangerous Is Microsoft?” 1995. The Economist, July 8.

Johnson, Samuel. 1816. The Idler by the Author of “The Rambler.” London: A. Strahan.

Knuth, Donald. 1969. The Art of Computer Programming. Reading, Mass.: Addison-Wesley.

McPhee, John. 1993. Assembling California. New York: Farrar, Straus & Giroux.

REFERENCES / 235

Moore, Geoffrey A. 1991. Crossing the Chasm: Marketing and Selling Technology Products to
Mainstream Customers. New York: HarperCollins.

Nelson, Greg (ed). 1984. System Programming with Modula-3. Engelwood Cliffs, NJ: Pren-
tice-Hall.

Pirsig, Robert M. 1984. Zen and the Art of Motorcycle Maintenance: An Inquiry into Values.
New York: Bantam.

Pollio, V. 1960. Vitruvius: The Ten Books of Architecture. Trans. Morris Hickey Morgan.
New York: Dover.

Read, Herbert. 1951. “Preface.” In Aspects of Form, ed. Whyte Lancelot Law. New York: Pel-
legrini & Cudahy.

Schmitt, Roland W., and Ralph E. Gomory. 1988/1989. “Competition from Japan.” MIT
Report. December/January.

Steele, Guy L., Jr. 1984. Common Lisp: the Language. Maynard Mass.: Digital Press.

Steele, Guy L., Jr., and Richard P. Gabriel. 1993. “The Evolution of Lisp.” Paper delivered at
ACM Conference on the History of Programming Languages-II. Also in ACM
SIGPLAN Notices 28 (March). Also in History of Progamming Languages-II, Eds.
Thomas J. Bergin, Jr. and Richard G. Gibson. 1996. Reading, Mass.: Addison-Wes-
ley.

Stroustrup, Bjarne. 1987. The C++ Programming Language. Reading, Mass.: Addison-Wes-
ley.

Strunk Jr., William, and E. B. White. 1979. The Elements of Style. New York: Macmillan.

Tennent, R. D. 1981. Principles of Programming Languages. Engelwood Cliffs, NJ: Prentice-
Hall.

“Thoroughly Modern Monopoly.” 1995. The Economist, July 8.

Thucydides. 1981. The Pelopponesian War. Trans. Richard Crawley. New York: Random
House.

Van Fraassen, Bas C. 1980. The Scientific Image. Oxford: Clarendon Press.

Varela, Franciso J. 1979. Principles of Biological Autonomy. New York: North Holland.

Williams, Joseph M. 1990. Style: Toward Clarity and Grace. Chicago: University of Chicago
Press.

