The Java EE 6 Tutorial

Part No: 821-1841-16

ORACI_EM January 2013



Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Copyright and License: The Java EE 6 Tutorial

This tutorial is a guide to developing applications for the Java Platform, Enterprise Edition and contains documentation ("Tutorial") and sample code. The "sample
code" made available with this Tutorial is licensed separately to you by Oracle under the Berkeley license. If you download any such sample code, you agree to the
terms of the Berkeley license.

This Tutorial is provided to you by Oracle under the following license terms containing restrictions on use and disclosure and is protected by intellectual property
laws. Oracle grants to you a limited, non-exclusive license to use this Tutorial for information purposes only, as an aid to learning about the Java EE platform. Except
as expressly permitted in these license terms, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish,
or display any part, in any form, or by any means this Tutorial. Reverse engineering, disassembly, or decompilation of this Tutorial is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If the Tutorial is licensed on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
"commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This Tutorial is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you
use this Tutorial in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe
use.

THE TUTORIAL IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. ORACLE FURTHER DISCLAIMS ALL WARRANTIES, EXPRESS AND
IMPLIED, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NONINFRINGEMENT.

INNO EVENT SHALL ORACLE BE LIABLE FOR ANY INDIRECT, INCIDENTAL, SPECIAL, PUNITIVE OR CONSEQUENTIAL DAMAGES, OR
DAMAGES FOR LOSS OF PROFITS, REVENUE, DATA OR DATA USE, INCURRED BY YOU OR ANY THIRD PARTY, WHETHER IN AN ACTION IN
CONTRACT OR TORT, EVEN IF ORACLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. ORACLE'S ENTIRE LIABILITY FOR
DAMAGES HEREUNDER SHALL IN NO EVENT EXCEED ONE THOUSAND DOLLARS (U.S. $1,000).

No Technical Support
Oracle's technical support organization will not provide technical support, phone support, or updates to you.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

The sample code and Tutorial may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are
not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

130131@25097


http://java.net/projects/javaeetutorial/pages/BerkeleyLicense

Partl

Contents

PrEFACE ...ttt 31
INEPOAUCEION ...ttt es 35
OVEIVIEW ..ottt ettt ettt bttt s s s bbbttt ae s e s e b e b e s e bttt e s aeseseseseeseaens 37
Java EE 6 Platform HighlIghts ......c.cccocniiiciiiricciiecneiecnetneeceieeereseeeesessesessessesensessesseaenne 38
Java EE Application MOMEL ........coeueueiiiniiiiciniieicineireieicinei ettt sese et ses et esae s 39
Distributed Multitiered APPLICAtIONS .....c.ovveuevreucueiniciricieirecieireietreeietee sttt seesessesesseeaes 39
Security
Java EE COMPONENLS ....cocvimiiiiiiiiiiiiiciiicicics st sssssssssans 42
JAVAEE CLIENLS .eoevveeeeeeeeteeeeeeteeteeeeteee ettt et ese vt ese s esess et eneesesensesensesenssesensesensesensnnesen 42
WED COMPONEILS ...oueeiiniiincieieieteicietseeteis ettt ettt ettt b ettt eaebeen 44
Business COMPONENLS ...t 45
Enterprise INformation SYStem TIeT .........ceeeuveureuercereurieeeniereeeieineseiesseeessesseesesesessesessesessnsens 46
JaVa EE CONTAINETS ....ooveuiieieieieiiieiesieieiesteeee et teseste st ste et ese st sesassesessesesessesansesesessesansesessssesensesensans

Container Services ....

CONLANET TYPES ettt et
WED SEIVICES SUPPOIT w..ceuveireeieictreiccirete ettt ettt seb ettt sttt eeee e
KIML et ettt b ettt ee 49
SOAP Transport PIOtOCOL ..o esenaens 50
WSDL Standard FOTMAL .........c.vuveuiuieereiieeieenieeeneeseie e essesessessesessesesessessesesenne 50
Java EE Application Assembly and Deployment ..........coocvcveureeeeeureerecenerneeeenerneeeecenerseensessenennes 50
Packaging Applications
DeVelOPIMENT ROLES ......ucvuiuiiiieieieieieiretee ettt ettt sttt
JaVa EE Product PROVIAET .....c.ovovieieeeeeeeeeeeeeeeceeteeeeeevee ettt s e s s enennnnenen 53
TOOL PIOVIAET ..ottt 53
Application Component ProOVIEr ........cccveeuiureerniuneeeeeineineenesseseeinesessenseseesessessesessessesenne 53



Contents

ApPPLication ASSEIMDIET .....c.criuiciiirieiiirieicinte e 54
Application Deployer and AdmINIStIator .......c.oveeeereuereunieeeeceneireseseinesescesesessesseesesesessesessees 54
JAVAEE 6 APIS oottt ettt ettt ettt et et e s et e et e eas e beessentaessentesaeessentesaseereensenseenes 55
Enterprise JavaBeans TeChnology ..........ccccniniciiniicicceceee s 58
Java Servlet Technology .59
JavaServer Faces TeChNOLOZY .......covuvveviirieerciiirrieriieieieineienieeie e ssessesesse s sssesenaees 59
JavaServer Pages TEChNOLOZY ......covuvvueuiiriueicuniierieiiereieeeireeereieie e ssse e ssaesensees 60
JavaServer Pages Standard Tag LIDIAry .......ccoeeevereeecenieeeceniinneeeneencenesessessessesesessesensens 60
JAVA PEISISTENICE API ...ttt ettt ettt e beebsenbesssens e beeasensesean 61
Java Transaction APT ...ttt et a ettt a e ae b b nes 61
Java API for RESTful Web Services .61
Managed BEAIS .......cccuiiieerciieicireieicet ettt 61
Contexts and Dependency Injection for the Java EE Platform (JSR 299) .....ccccoevevvcrniereneee 62
Dependency Injection for Java (JSR 330) ...c.ccvvurreeriurmereenieeiceniirneneineeeneesesensessessesessessesensens 62
Bean ValidatiOn .......cccceeueveieiiiiecieieretescescese ettt s s s s sssssssssas s ses s ssnsssnsnsas 62
Java Message SErvice AP ...t s 63
Java EE Connector Architecture ... 63
I BN\ N1 2N 2 OO 63
Java Authorization Contract for CONAINETS ......cccivievevevevereeiieieeee e esesenns 63
Java Authentication Service Provider Interface for Containers ........cccoceeveeveevevevveeervereenenns 64
Java EE 6 APIs in the Java Platform, Standard Edition 6 and 7 .......cccoevveveeiveeecieieceeeeeeeenes 64
Java Database Connectivity API ..o esensesssessensees 64
Java Naming and Directory Interface API .. 65
JavaBeans Activation FrameWOTIK .........cocooveevereveviiieieeeeteeteeeeeeee ettt s s sesne 65
Java APLfOr XML PrOCESSING ....cucvrevvecrmiiieereereienseteieeseseesseesseasesensesesessesssssesessessesessessssssennees 65
Java Architecture for XIML Binding .......ceeeeurevereeniureeeienieieiniienseieeneseseesesesessesessesessesessees 66
SOAP with Attachments APTfOr JAVA .....ovieueveieieiiieeeeee et 66
Java APTfOr XIML WED SEIVICES ...ooveueevivieetieeeeeeieeeeeeeeeetetee ettt sesssensenenen 66
Java Authentication and Authorization Service ... .67
GlasSFish SErVEr TOOLS .....c.vueiieeeieieieieirieiceceee ettt seseees 67
Using the Tutorial EXamples ..ottt 69
Required Software .. 69
Java Platform, Standard EQItiON ........cccceeevieereeieiriicseeeeesseeese et essssssssssenes 69
Java EE 6 Software Development Kit .........ccccvureeeneeriieieinienieineineeieineeecesesessesseesesesessesessees 70

The Java EE 6 Tutorial « January 2013



Contents

Partll

Java EE 6 Tutorial COMPONENL .......cvuveeeiurieeiiirieeieieieeeeetieeeesseisesessessesensesssssssesssssesessessesessens 70
NetBeans IDE ... e 71
APACHE AN ittt

Starting and Stopping the GlassFish Server ....
V To Start the GlassFish Server Using NetBeans IDE
Starting the Administration CONSOLE ........cccuvveeireurieineireeereereee e seeaenne 74
V To Start the Administration Console Using NetBeans IDE ..........ccccocvericrneneernerneeenerncnnen. 74
Starting and Stopping the Java DB SEIVer ........ccovvveuirneercuneeencriereeneeneeens
WV To Start the Database Server Using NetBeans IDE
Building the EXAmIPLES ......ccvcueueierriieicireirieieineeeieieieeeeeet e nessese e sessesessessesessessesessessessesessessssenne

Tutorial Example DIreCtory STIUCTULE ...c..c.veuevreeceeirieeieireieeeisetseeeietsesesetsesessessessesesessesessessesenaes
Getting the Latest Updates to the Tutorial

V To Update the Tutorial through the Update Center
Debugging Java EE APPLICAtIONS .....cvcuevriecriiriecreireieicireeneeeeetneienessesensessessesessessesessessessssessessesense 77

Using the Server Log

Using a Debugger
TREWEDTIEN ... 79
Getting Started with Web Applications ... 81
WED APPLICALIONS ..cecvuvreiieieiiecietreeeictreee ettt see st sese sttt seae st sae s tenae s 81
Web Application LIfECYCle .......ovuiieiriieiiiireieiecieieeieeiseiseiese e sessessesses e saesasesees 83
Web Modules: The hel101 EXAMPLE «..c.vvrrucreurieeicireieicireinieeeetreeeieereteeeessesseeessesseseesessessssessessesenses 84
Examining the hellol Web Module ........cccooiiiiiiiiiiiiciscecccceseceenns 85
Packaging a Web MOdUle ..ot ssasesesaesesensens 88
Deploying a Web Module ... ssesesessns 90
Running a Deployed Web Module ........cocveuineeeiciniinicniniceineieieneeeeeceeiseee e ssesessesens 90
Listing Deployed Web Modules ... seesesensesssensns 91
Updating @ Web MOdULE ......c.ciueiciriieieiiinicninecireieecestiseeeesseiesseisesensessesensessasesesaesesensees 91
Dynamic RElOAdING ......c.covcuiiiciiiiciciiiricieieeceec e naens 91
Undeploying Web MOULES .........c.crueveuiiriciniiniiecieieecistiseieetseiesseaseeesscssessssessssesessesesessens 92
Configuring Web Applications: The hel102 EXaMPIe ......cocveueucrcrrernineneinerneirenenerenseneeeeenans 93
Mapping URLS to Web COMPONENLS ....c.vururmeerivereciriiieeirereeenseanesenseseesesessesesessessesessessessssens 93
Examining the he1102 Web Module ..o nessesensens 94
Running the hel102 EXAMPILE ....c.cvcuieieiiiriciineiecireiectiseieeteiesseaeesescses e sssesesesaesesensees 95



Contents

Declaring Welcome FIles ..ottt seesessese s ssssessesssescssees 97
Setting Context PAarameters ... 97
Mapping Errors to EITOr SCIEENS ..ottt ssssnsssees

Declaring Resource REfEreNCes ..........coewiuiuiieiecrniiiiieneieiseeeseeesesissssessssse s ssesseans

Further Information about Web Applications

JavaServer Faces TeChNOIOGY ...........ccooouoiiiiiiie et 103
What Is a JavaServer Faces APPLICation? ........c.cccueuereeuiureeeeiineieneiniienseneenesesessesensessesessessessesessees 104
JavaServer Faces Technology BENEfIts .......coeveuiuereciniunieeeiinieeneiieencieeseeeeesesensesesensesessesensees

Creating a Simple JavaServer Faces Application
Developing the Managed Bean ..........c.cccicicieieieiiieeeeeense s ssessenanes
Creating the WeD Page ..ottt et
Mapping the FAacesServilet INSTANCE .......c.ccureurecireirieeecrreirecererseeeeeseesesessessesessessessesesesnens
The Lifecycle of the he 110 APPLICAtION ...cucvuveeveeuiecieiieeeeeiee e

Running the hel10 APPLICAION .......cccuiuriecuiiiciciiceciie e

Further Information about JavaServer Faces Technology

Introduction to Facelets ... 111
WHhat IS FACELELST ...ttt et eee 111
Developing a Simple Facelets Application

Creating a Facelets Application ........cecccveueeeee.

Configuring the APPHCAtiON ..........ccuiciiiiiiciiiec s

Running the guessnumber Facelets EXample ........cccveeeuninecincininencrneinecinerneeeneneeseennennene 117
Using Facelets TEMPLAES .......c.cvvueveuiureecriireiereieie e ssessesessessessssensessesensesssssnsessees 119
Composite COMPONENLS .....ciuiuiuiiiiiiiiiiieieeii ittt 121
WED RESOUICES ...ttt saes 123
EXPressionLANQUAGE ..............oooirueirieiiiiieeeetetes ettt se st ss s essss sttt sasssssssnsas
OVErVIEW Of the EL ...eieuiiiiiciciriieicicircrctetetet ettt seb ettt sttt
Immediate and Deferred Evaluation SYNtax .........ccocveecereunecenerneeernennereicenesneeenessesensessessssenne

Immediate EValUation ..ot asesese e seessaesneaes

Deferred Evaluation
Value and Method EXPIreSSIONS .....c..ccueuiucurircueireeeurineictricreieeesseneaessesesesescssesesessesesessscssesesesseacses

ValUte EXPIESSIONS ...cvuruueuiriiieieireiiecirtiseeetetseiseetsess et ssess st ssessese st sscsesncnns

The Java EE 6 Tutorial « January 2013



Contents

Method EXPIESSIONS ...cuvurvreermiuiuermeiieeisesnieesesstsneaessessesessestssesessessesessessesessesesssessessesessessesenns 132
Defining a Tag Attribute TYPE .......ccocviuiirciiincieicieiireiecireiese e sse e 134
LIteral EXPIESSIONS ...cucuviucvriuceeirecueireictniscieesescaessesessessiessesesessesesseassessesesessesessesesessesesesasaesssnesesssasses 135
OPLTALOLS ...ttt bttt bbbttt b ettt aea s besestatanene 136
RESEIVEA WOTES ..ottt 136
Examples Of EL EXPIESSIONS ....cceucuriiuciriuiueinicirireecineseieisesetesesesseese s sesesessesesessesesessesesssscsesssacses 137
Using JavaServer Faces TechnologyinWeb Pages ..............ccccccooiininnccnnccnecrnenccnencnennes 139
Setting UP @aPage ..o s 139
Adding Components to a Page Using HTML Tags .........ccecceviureemierireererniereeneeseensenseeemsenseesesens 140

Common Component Tag AtIIDULES ......c.cccurureerierieeeerninieieiree e sesseseene 142

Adding HTML Head and Body Tags ..o seseeseene 145

Adding a FOrm COMPONENT .....cueureciiirieeicireirieineteeeeetsesseessessesesse s ssessesessessessssessessesesns 146

Using Text Components

Using Command Component Tags for Performing Actions and Navigation ..........c........ 152

Adding Graphics and Images with the h:graphicImage Tag .........cccocrneninevenerrenenenn. 153

Laying Out Components with the h:panelGrid and h:panelGroup Tags ........cocoveeeunn. 154

Displaying Components for Selecting One Value ........ccocveueureemnerneemrerneeerennenneenennenenne

Displaying Components for Selecting Multiple Values ....

Using the f:selectItemand f:selectItems Tags ...

Displaying the Results from Selection COMPONENTS .....c.vueueeurereeernemeecrnernesernernesessenseseene

Using Data-Bound Table COMPONENLS ......cvueeemmiurieemcrineeiereeeeseeenerese e nesseseens

Displaying Error Messages with the h:message and h:messages Tags .....c.ccocoeeveuverrceeennne 164

Creating Bookmarkable URLs with the h:buttonand h: link Tags

Using View Parameters to Configure Bookmarkable URLS ........cccocveurecuneinecenernceeercnnenene

The bookmarks Example APPIICAtION ......ccueuveeurireueureucieinicinieieseeeiseseseseseieiesesseesessesesseeaes

Resource Relocation Using h:outputScript and h:outputStylesheet Tags .....cc...... 169
USING COTE TAZS .evuiuiiiiciiiiiiii ittt bbb 171
Using Converters, Listeners, and Validators ... 175
Using the Standard CONVEITELS .........ccrereuiuereieinieeneereienseiseseseessesesessessesessessesessesssssesessessesessens 175

Converting a Component’s Valtue ..o 176

Using DateTimeConverter

USing NUMDEIrCONVETTEE ...ttt

Registering Listeners on COMPONENLS .......c.cccuviiiiiuiiiiiiiiiiiicieiiiiccise s 180



Contents

10

Registering a Value-Change Listener on a COmMpONent .........coceeeureereereureerernesererseeseenne
Registering an Action Listener on a COmMpPONent ...........coocvuiueivininiiccinicnincnceeeenes
Using the Standard Validators ..........c..cocreieciicenceecessie s ssssesenees
Validating a Component’s VAlUe ........cocveueureeeemieemereeneenerneeeneneseeenessesessesesessessessesenne
Using LongRangeValidator ...
Referencing a Managed Bean Method ..o sessesensees
Referencing a Method That Performs Navigation ........c.cececereerecuneneceneineeinennesseensesneenne
Referencing a Method That Handles an Action Event ........cccocecvivecncnecncrncceennenenenne
Referencing a Method That Performs Validation ..........cooecneericnenecencinceinenesecneenenenne
Referencing a Method That Handles a Value-Change Event

Developing with JavaServer Faces Technology ... 189
Managed Beans in JavaServer Faces TeChNOlOZY ......ccocveeveureueecuniineeceniinienceneeeeineeseseseenesennens 189
Creating a Managed Bean .......ccccocoevcuvevencnnennce.
Using the EL to Reference Managed Beans

Writing Bean Properties ... s

Writing Properties Bound to Component Values .......c..cccocvurecencrneenencrneeneneenenneeenenseeneenne

Writing Properties Bound to Component INStances ..........coceeeeereureeeererreeneremrerneeerenseneeenne
Writing Properties Bound to Converters, Listeners, or Validators
Writing Managed Bean Methods ..........ccceriiieicninicieceeeeceeseie e nsessesensessssesenaees
Writing a Method to Handle Navigation ........cccueeecuncuneeeineuneenecineineeeeenneeseessessesesesseseesenne
Writing a Method to Handle an Action EVent ...
Writing a Method to Perform Validation ........ccececvcrceinencnccineineeenceneeneiseeeenseseesenne
Writing a Method to Handle a Value-Change Event
Using Bean Validation .......c..ccreeeicireiriciniinieeeieieseeseiseseensssesesessese e ssesessesssesessssesessesssessesases
Validating Null and Empty Strings .....c..cecceeveeeeninmenninieeeeeeeeeneseeseessesessesseseesenne

JavaServer Faces Technology: Advanced Concepts
The Lifecycle of a JavaServer Faces APPLICAtion ........cocveeeueureeeeeuniereeceneenieenceneeensenessesesessesensens
Overview of the JavaServer Faces LIfeCycle .........cocuwininiiniiinernererenecneereinesseseneneeseesans
RESLOre VIEW PRASE ...vuceiieiriiiciieicciiec ettt
Apply Request Values Phase ..o
Process Validations Phase
Update Model Values PRASE ......c.cocuriieeirinciririciiccirccieecieecieeeseeeiesesesseesessescseesesesneaes
Invoke APplication PRaSe .......cccccvureueiniiniieicineiriecneieecineisecee e ssessesesesens

The Java EE 6 Tutorial « January 2013



Contents

11

Render RESPONSE PhaSE .....ccucuuruvueuiirieciiiicieiiieieitie et e sseasesenns 215
Partial Processing and Partial Rendering ...........ccccceiininincincineicininininescseseceseseeeseseseeens 216
The Lifecycle of a Facelets APPLICAtION ......cuuvuevuereereeieniereireirerenereriereesieeseesessesseessessessensssesssens 216
User Interface Component Model ........cccvuenieirinieinicieccireeneeieeeeeseeetsese et sseaesees 217

User Interface Component Classes ........cweeueureueecuneereserniunesereinesesesseseesessessesesessesessesseseens 217

Component Rendering Model ... 219

Conversion Model

Event and Listener MOdel .........ccccuiniercininieiinieneineeneieesee et ssesessssesessesenns 221

Validation MOAEL ......cucucuiiieeiiiiricrtireccneiseet ettt et e 222

Navigation MOdel ..o 223
Using Ajax with JavaServer Faces Technology ... 227
OVEIVIEW Of AJAX .ccorieiiiniiiiiie e es
Using Ajax Functionality with JavaServer Faces Technology ..........ccccvvcunirnieecrnienecrneenenens 228
UsIng Ajax With FACELES .......cuveeuiirrcieirieicirieecieieie ettt eee e ssese s ssssssae s asesesaen 229

USING the F12JAX TAG cvuvveeereeriieieereieiscitireiecisesete ettt et 229
Sending an Ajax REQUEST ........cuuiuieiiiecicicicin s 231

Using the eVent AtIIDULE .......cccuiieiciieceee e e esenne 231

Using the eXeCUte AIIDULE «..c.vucureeieciiireccreeecieeects e e eaeesenne 232

Using the immediate AtIIDULE ...coceveieriecicireeeeirce et e 232

Using the 1istener AtIIDULE ...

Monitoring Events on the Client ...
Handling Errors .......cocoveevcenevvecenee
Receiving an Ajax RESPONSE .......cccviuiiiiiiiiiciiicii s
Ajax ReqUESt LILECYCLE .....ouvrireciiiiccireccieceei e naes
Grouping 0f COMPONENLS .....c.cuerreererriierseeeirieeeetseeeesetsetessessetseeeesessesessesseseseessessesessessesessessessssesns
Loading JavaScript as @ RESOUICE ......c.cueueucuiurieeiiiiieieireieiseieiesieseesese e ssesesaetsess e sese s ssesesaees
Using JavaScript APT in a Facelets APPLICAtION ........ccoveiueeremieereemerinnieeneeseneaenenseneseaesans 237
Using the @ResourceDependency Annotation in a Bean Class ........cccocveveverreunecnnerreenenenne 238
The ajaxguessnumber Example Application

The ajaxguessnumber SOUICE FIles ...ttt es

Running the ajaxguessnumber Example

Further Information about Ajax in JavaServer Faces Technology ...........coceveveevcrneerecrneenenees 242



Contents

10

12

13

Composite Components: Advanced Topics and Example .................ccoooiereennnicneeenenenes

Attributes of a Composite COMPONENT ......curruruiureureeiieriieitireiereireeeneeeseeseaessessesesseasesessessasesesaees
Invoking a Managed BEan ... anes
Validating Composite Component VAlUES ..........cccceueeureurerernemerenenineseeseasesesessessensessessesens
The compositecomponentlogin Example Application
The Composite COMPONENt FILE .....uvuuiiuiirieieiriciniccrcieeicseeieseee e
The USING PAZE «...ovvveiiieciireicicieieecitiseie ettt s ssenne
The Managed Bean .......c.cceeciieeiciniiniciineeieitie ettt e ssesesscnns

Running the compositecomponentlogin EXample .......coocnrcneneeincinenencineneenenneeeene

Creating Custom Ul Components and Other Custom Objects ................cccoovvrrvrnrrrirnnnnn. 251
Determining Whether You Need a Custom Component or Renderer .........c.coceereeevcrneennnce 253
When to Use a Custom COMPOIENT ......cuuvevueurevemeemienmeersernesensersesensesessesessessesessessesessessessesenns
When to Use a Custom RENAETrer ...t ssessessesenns

Component, Renderer, and Tag Combinations

Understanding the Image Map EXample ..........ccccovuiiininciniiessseissie e
Why Use JavaServer Faces Technology to Implement an Image Map? ........ccocvevevcrrerneencne 256
Understanding the Rendered HTML .......ccocniuriiininiceniinieeineencneiseeieisese e sessesenns
Understanding the Facelets Page ...
Configuring Model Data .........cccueueeeuiunicriirereeeiieeneneeese e ssesessessessesesessesessessessssenns
Summary of the Image Map Application Classes ....

Steps for Creating a Custom COMPONENT .....cuueurvmemreereerieieieerenenessensersessesssessessessessessessessesseses

Creating Custom Component CLASSES .........coweueureueecurerrrerrerreeeeersesereesessseessessesessessesessessessesesnes
Specifying the Component FAMILY .........ccoocuoeuiiriiininiiincccceececeescce e
Performing ENCOAING ..ot nsenes

Performing DECOMING ......ccueuereurirrieeiniiriieieieieneieeseeeteeseseseasese e tasese e sese s asese s essesesncen

Enabling Component Properties to Accept Expressions

Saving and REStOrING STALE .......ceuiueeeeriurieriireeereeiene et e seasnsenns
Delegating Rendering t0 @ RENAETET .....c.ccvvuevciriiriecinciniieicireieicinctseeeicineiecctsesseaessetseseesetsesesaennes
Creating the Renderer Class ...
Identifying the ReNderer TYPe .......ccccvreeriureeremiieieneineeneiseseneieseesessessesesesesessessessesenns
Implementing an EVent LISTEIET .......c.ocevcureueicireireeeineineieietreieieisetsesetetsesessetsessesessessesessessesessesnes
Implementing Value-Change Listeners
Implementing ACtion LIStENETS .......cccceueeermeuerereriermmereeneenessesessesessesessessesessesesessesessesenne

Handling Events for Custom COMPONENTS .........c.cuuurummimimieereieiessenseessssseesessesessessessesesseses

The Java EE 6 Tutorial « January 2013



Contents

14

Defining the Custom Component Tag in a Tag Library Descriptor ........coccceeveevcereereerneenenens 276
Using a Custom COMPONENT ......cciiuiiiiiiiiiiiiicciiiicc e 277
Creating and Using a Custom CONVEITET ........cc.ccucuiiuiurimiuneieeemeesesieesesssse e ssessesssssessssssens 279

Creating a Custom Converter

Using a Custom Converter ..........oovcveenniceninenennes
Creating and Using a Custom Validator ........cccccveeneureernerneeecineieieeineeesennesesenseseeeessessesennes 283
Implementing the Validator INtEIface .........cccvvveeuiureercrnieecineireceneeesee e esseseene 284
Specifying @ CUSTOM TAZ ....vucvurveeerierirerneireeeieireiseieseisese et sese e seasesenne 286
Using a Custom Validator .......c.eccueeeeeueineeeicineinieitineeeieiseiesse e ssese e ssessssesesseseens 287
Binding Component Values and Instances to Managed Bean Properties ...........cccccoccoeuunciunnuanee 288
Binding a Component Value t0 @ PrOPErty .........cccocvieucinirecrncenicncniceeieeeceeeeee e

Binding a Component Value to an Implicit Object

Binding a Component Instance to a Bean Property

Binding Converters, Listeners, and Validators to Managed Bean Properties ...........coceuneunenee 293
Configuring JavaServer Faces Applications ................ccoceniurieiniiniieicininienin e 295
Using Annotations to Configure Managed Beans ...........ccecvvueeerierecrnenneeemceneeenenessesenessesensens 296
Using Managed Bean SCOPES .......crueueueuiuriuciniinieitiseieieiseseesessessesesessesessessese e ssessesesesseseens 296
Application Configuration Resource File ... essessensenssssessssens 297
Ordering of Application Configuration Resource Files .........cocveneneeercrnenercrnenneernenneenene 298
Configuring Managed Beans .........cccocveeeveneeeecereereceneenenens
Using the managed-bean Element
Initializing Properties Using the managed-property Element .......ccccccvevevcunenccencrncneenne 303
Initializing Maps and LiStS ........c.ccccueiriuniiiiriicicicienisieeeiset e sse s ssessssaesaas

Registering Application MESSAZES ..........ceweureuereemrerreremsemeeensenesessesseesesessessssessessessssessessssessessesessens
Using FacesMessage to Create a Message
Referencing Error Messages ...

Using Default VAlIAAtors ........cccveveieirieiiiniiereeieeeeieienseseieseesesessessessesessessesessesssssssessessesessens

Registering a Custom Validator ........c.oceecueurecincinieeicineieienetseeeeetseseeeesesseeessessesessesseseesessessesesne

Registering a Custom CONVEITET ........ccvvueveiiuiieereiieieiete ettt saes

Configuring Navigation RUIES ........cccveeiciiiriciniiniieicneiecnetnecetneseneeseseeeessessesensessesessessessesennes

V To Configure a Navigation RULE .......c.cc.veueiveireuriciniinieicneiscereirceeieeeee e
Implicit Navigation Rules
Registering a Custom Renderer with a Render Kit .......c.oceeuneriercniercniinecneneencneeenenneeeenens 317

Registering a Custom COMPONENL .......c.cceviiiuiiiiiiiiii s 319



Contents

12

15

Basic Requirements of a JavaServer Faces APplication .........ceccvcereueecurerniceneeneeeneeneneeceseuneeennes 320
Configuring an Application with a Web Deployment Descriptor ........c.cooceevcuneurecrreunenene 321
Configuring PrOJECt STAZE ......c.cucucuuciuieiiiiiicicie et sse s sss s sasenes 324
Including the Classes, Pages, and Other ReSOUICes ........c..coucuiuricunemnicinciniercneececeeane 324

Java Servlet TEChNOIOQGY ...t eaes 327

WRAL IS @ SEIVIEL? ..ottt 328

SEIVIEt LIFECYCLE .uvuiriviieicireiciciret ettt st
Handling Servlet Lifecycle Events
Handling SEIvIet EITOTS ........c.cccvcuiiriiiiiccireecicieeees e esenes

Sharing INfOrMAatION .....c.cvveuciiueieireieiceireeecet ettt esensenns

USING SCOPE ODJECES .cuvvrvereirrireiniirieeiseieee et ssese s ssessasesnns

Controlling Concurrent Access to Shared RESOUICES .......ceweuivremeriureernerneernerneeneeneenenenne 331
Creating and InitialiZing a SEIVIET ........ccveureurivciriiricinciriecree ettt seseeaeens
Writing Service Methods ........cocveeuvenecencrnccencrnennn.

Getting Information from Requests

Constructing RESPOMNSES ......cccruiviiiiiiiiiiici e

Filtering Requests and RESPONSES ......c.ccueureuricurirriecireiriieieireieieeesetseseesetsesessessessesessessesessessesessesnes

Programming FAIErs .........coiiiciiiiccci e
Programming Customized Requests and ReSPONSES ........cceueervemeurecrerneeerenneneeersennenenne 336
Specifying Filter Mappings ........c.ccevevrceeercrreenne

Invoking Other Web ReSOUICES ......c..c.vuvcuiericeiiiieireieieneiseeeeeeseseeeesese s ssesessessenssaennes

Including Other Resources in the Response
Transferring Control to Another Web Component .............c.ccocuvucueucenivneiniinerseesenceennn 339
Accessing the Web CONtEXt ... sse s ssesese s ssssesesaees 339
Maintaining CHENt STALE .......c.cccueurreeeriiriieieiriee et isese et ees s s s ssese s ases s ssesesaees 340

Accessing a Session

Associating Objects With @ SESSION .....c.vceeureurircireinicieieeere e eaeeaenne
Ses510N MaANAZEMENL ..ot
SESSION TTACKING ..vuveireiiiiiieicie ittt naes
FINAlIZING @ SEIVIET ...ttt sttt ese s
Tracking SErvice REQUESES ......c.eveueureucuiirieeieiriieeeieieeie s sessese et bseseesenae
Notifying Methods to Shut Down
Creating Polite Long-Running Methods ..........ccccereuninecrcineemernineeneeeneeeseseesesenne

The mood Example APPLICALION ....c.vuuiuieeiieriieieieiiicieiseieieiseietae et sese et sesesaeen

The Java EE 6 Tutorial « January 2013



Contents

16

17

Partlil

18

19

Components of the mood Example APpliCation .........ccecureeeecuneereernernecrerneenerneeeeenseenesenne 344

Running the mood EXAMPIE .....c.ovcuiiriueieiniieiciiceieeeceieeseseisese e seseeseseseseens 344
Further Information about Java Servlet Technology .........ccccocveeueurierernienrcrnireenerneenenneeeeeens 346
Uploading Files with Java Servlet Technology .............cccccooviiiieeenncee s

The @MuTltipartContig ANNOTAtION ...ccooiceieiieeieicececeeeceeete et er et senes
The getParts and getPart Methods ...t
The fileupload Example Application

Architecture of the fileupload Example Application

Running the fileupload EXample ... seseseaesans
Internationalizing and Localizing Web Applications ...............c.ccoocovninninncnncenecnenccnnne 355
Java Platform Localization ClaSSES ..........ccevuveeeererereriiiiseieiese et se s s sss e se s sesasanes 355
Providing Localized Messages and Labels .........ccvueucrurieineinieeinciniinicneiniecineeneieeeesesseeeesenseeennes 356

Establishing the LOCALe ........cviurieiiiriieiciiricire ettt e ssese e 356

Setting the Resource Bundle ...t ssessesenne 357

Retrieving LOCalized MESSAZES .......covueveuevemeeuniurieeriiieensereaenseseesesesessesessessesessessessesesesesenns 358
Date and Number FOrmatting ........ccccocveeeniercriuneenenieeeneieseneeseeesessesensesesessessessesessessesensens 359
Character Sets and ENCOINGS .......c.veuiurieeeciriccieicereieeeeeeeeeseteeienessese e sessesensessesennes 359

CRATACLET SELS w.ucvuereeeeiencecieiee ettt et saenaes

Character Encoding

WED SEIVICES ...ttt ettt eae 361

Introduction toOWeb SErvices ...ttt 363

WHhat ATE WED SEIVICES? ...ttt ettt sse sttt ssaanenssnsnses 363

TYPES Of WED SEIVICES ....ouvuiieniiiiiiiiici e
“Big” WED SEIVICES ..couvunvririirirerrerieriieeietitise e sasesssase s sse s ssesssssse s ssesassasanes
RESTful Web Services

Building Web Services With JAX-WS ............cooiiiieeeecce et se s 367
Creating a Simple Web Service and Clients with JAX-WS ......c.occennrnnncnenecneneeeeeneeneaes 368
Requirements of a JAX-WS ENAPOINT w..euvurrueuiuriueiiiniieieiniscineiseieeisesesessese e esseseens 369



Contents

14

20

21

Coding the Service Endpoint Implementation Class ...........cccvcureeurerneeemcrnereeernenneensersenenne 370
Building, Packaging, and Deploying the SErvice ..........cccvrivcincucinininiineiniseeeieseieennes 370
Testing the Methods of a Web Service ENApoint .........cccvceuveuvierevcmnenecnncineeneeeeeeeeeenenne 371
A Simple JAX-WS Application CHENt .......ccveeurircueiriiieiricirieie et sseseseeeaes 372
A SImple JAX-WS WED CLENT ....ccurvieiiirieriiciiiriieicireieieiseieesessessese e isesessessese e sseseesesesseseens 374
Types SUPPOIted BY JAX-WS ..ottt saees 377
Schema-to-Java MaPPING ......c.eccurevreueunieriiereireieiseieeseseseesesesessese e ssssesesse s ssesessessssesessses 377
Java-to-Schema MapPPINg ........ccvcueueeemiuriereiiererieensesessee e sseseesesessesessessessssenns 378
Web Services Interoperability and JAX-WS ..o sessesesaees 379

Further Information about JAX-WS

Building RESTful Web Services With JAX-RS ...........ccocoviiininenirccsecee e 381
What Are RESTTUl Wb SEIVICES? ....ouvuiuiiiirrieiiiiieicineisicetiseieieiseiessciesesseseesesessasesesaesessesesnees 381
Creating a RESTful Root Resource Class ..................

Developing RESTful Web Services with JAX-RS
Overview of a JAX-RS APPLICALION ...vuvuivrieiiiiirieiiieieicisie ettt ens
The @Path Annotation and URI Path Templates .........cceveuneereeuneuneeeenerneenererneneennenseennenne
Responding to HTTP Methods and ReqQUESLS .........coveueureemerrierecmiereeneieeeneeeee e
Using @Consumes and @Produces to Customize Requests and Responses
Extracting Request Parameters ...
Example Applications for JAX-RS ...t eeseseseesesessessese e sssssese e snesesaees
A RESTTul Web SeIvice .......ociiiiiiiiciciic s sasnes
The rsvp Example APPLICAtION ...c.covueuiereeeiiiniiriciniinieieiseeieisesesessessese s sessese e seessesenns
Real-World Examples .......c.ccceveeneneeenencernneenne
Further Information about JAX-RS ..ottt sttt nan

JAX-RS: Advanced Topics and EXample ...............cocooerireiiicceieieeccese e
Annotations for Field and Bean Properties of Resource Classes ...
Extracting Path Parameters ........coveeereercinieneeiienesenersesensessessesessessesessessesessessessssesessesenns
Extracting Query Parameters ...
Extracting Form Data ..o
Extracting the Java Type of a Request 0r RESPONSE ......c.cuurvermerrereceerereererenrerereneerieneseanenne
Subresources and Runtime Resource Resolution ...
SUbTesOUIce MEthOds ..o e

SUDTIESOUICE LOCALOLS ..vouvevieevetetieiiitetetetetete ettt s s se s s s st seseasassesesesesesnanans

The Java EE 6 Tutorial « January 2013



Contents

PartIv

22

Integrating JAX-RS with EJB Technology and CDI .........cccocvecneinecncineeenerneieecereeseeeesesneeennes 408
Conditional HTTP REQUESES .....ccvvueueuriuieeiiiriieiretseieieiseseeseisetsesessetsesessessessssessessesessessesessessessssesnes 409
Runtime Content Negotiation ..........cccceiiiiiiiniiiiiiiiiiie e ssessssssesssaenens 410
Using JAX-RS With JAXB .....cvuiiiiciiiecicicieniesieieesseeses e ssssss st ssse s sse s sasssssssesssesensssens 412
Using Java Objects to Model YOUT DAt ...c.cecuueueuicuniereeciniinincieineeeieiseeeeeiseisesesessesesesseseene 414
Starting from an Existing XML Schema Definition ........cccceeecureeevcrnenecrnerneeeneneenennenene 415
Using JSON with JAX-RS and JAXB .....ccvevieuirieieineieieineisecssesseaeiessesessessesessessessesesesseseens 417
The customer Example APPIICAtION ...occueuricurireeciriiieiricieirciciseeie ettt sseesesseaesees 418
Overview of the customer Example APplication ........ccccveeeeurcericrneeneceneineeineineeeenseeseenne 419

The Customer and Address Entity Classes

The CUSTOMErSEIrVICE CLASS .ucvuvuereeieciriirieeieireieieireieeae st
The CustomerClientXML and CustomerClientISON Classes ........cccrmieeercurerreemrereenne 424
Modifying the Example to Generate Entity Classes from an Existing Schema .................. 426
Running the customer EXaMPIe ..ot sessesenne 428
ENTEIPriSE@BEANS ...........coeeeie ettt et b ettt s s s s senas 433
ENTEIPriSE@BEANS ...........c.oiiiitct ettt b bbb bbb s s e 435
What Is an Enterprise BEANT .......c.cveurieinincieinicieiesciecieieteie ettt eaesees 435
Benefits of ENterprise BEANS .......cviuvieeiiunierieiiirieicisieeiseieee st seseene

When to Use Enterprise Beans
Types of ENterprise BEANS ... s sasannes
What Is a Session Bean? ..............
Types 0f SESSION BEANS .........cuuivuieiiciiciiiiicciice i
When to Use Session Beans ..o sssssssssnes
What Is a Message-Driven Bean? ... 439
What Makes Message-Driven Beans Different from Session Beans? .........cccocveuvecurcrnennce 439
When to Use Message-Driven Beans
Accessing Enterprise Beans ...
Using Enterprise Beans in CHENES ......ccciuieuiirieecinieicrieeiciseeneseeeese e sseseseens
Deciding on Remote or Local Access
LOCAl CHENTS w.ocvevieiieiicicicici s
Remote Clients .........cccc....
Web Service Clients

Method Parameters aNd ACCESS ....uoviuvvueriiieiieeeeeeeeeeeeeeeee et st sae s saesessesessssessenan



Contents

16

23

24

The Contents of an ENterprise BEAN .......ccocvveveureuereciniineeeiireieneieeenecieeseseessesensessesessesessesensees 447
Packaging Enterprise Beans in EJB JAR ModUles ..........ccocucuiuncincucinininiencincicceineeeennes 447
Packaging Enterprise Beans in WAR ModUles .........cccocuveuerninvcmnincnncreeneeeee e 448

Naming Conventions for Enterprise Beans ..........ccccveveeuneuneerernieerceneinieneeneeenenneseneenessesenens 449

The Lifecycles of ENterprise BEANS ........cccvvureuereureueieceniiniieiniineieieiseeesseeseesesesessesessessesessessssesesaees 450
The Lifecycle of a Stateful Session Bean ...........cceieeeuninecercinececneeeereeeeeeee e 450
The Lifecycle of a Stateless SeSS10N BEAN .......c.vuveuieriuceniiniciiincieiereseceisee e 451
The Lifecycle of a Singleton Session Bean ..........ccceeuereeerniceernineeneneeeneene e 451

The Lifecycle of a Message-Driven Bean

Further Information about Enterprise Beans

Getting Started with Enterpris@ Beans .................ccoooeereieieniiiieieeee e
Creating the ENterprise BEAN .......ccccvcureeiciriueiciriinicieineieetreieeeesetseiessetsesessetsesessessessesessessesessesnes
Coding the Enterprise Bean Class ..........cccco.......
Creating the converter Web Client
Running the converter EXamPple ... e
Modifying the Java EE APPLICAtION ...cuvueviuieerciiieiecineinieeieireienetseeensceseesesessessesessessesessesessesesnees
VW T0 Modify @ Class File ........cuveueiecicirieicrerecreeieeeeeeee e

Running the Enterprise Bean EXamples ...............ooooirinniceeeeer e 461
The cart EXAMPIE ...c.cuevciiiiciiiiccirieecitieeiecieie ettt ssesene 461
The BusSiness INTEITACE .......cvevvuieiuirerereieiiecee ettt ettt be b s s sanae e 462
Session Bean Class
The @Remove Method
HELPET CLASSES ..ottt e

Running the cart EXample ...
A Singleton Session Bean EXample: COUNTET ...t seesesessessesensenees
Creating a Singleton Session Bean
The Architecture of the counter EXample .......c.ocevcuveunecincinicincinenieneineeneineeeeseesesenenene
Running the counter EXamPple ...
A Web Service EXample: NETTOSEIVICE ..ttt ssese s ssessessesensesens
The Web Service Endpoint Implementation Class
Stateless Session Bean Implementation Class
Running the helloservice EXamPple ...

USING the TIMET SEIVICE ...ouvvuveiriiiiiecireiriecintiseie ettt ese et es st sa s eesesaeen

The Java EE 6 Tutorial « January 2013



Contents

25

26

27

Creating Calendar-Based Timer EXPIeSSiOns .......coeecureureeucrneeemernimneersernesenessesensenseseene 479
Programmatic TIMETS .......ccceuviiiiiiiiiiciiiciiiciic et sesanaes 482
AUtomatic TIMETS ...vcvieiciiiicrc e 483
Canceling and Saving TIMELS ........cccvuiuriiiiiiriiini e 484

Getting Timer Information ....

Transactions aNd TIINIETS .....cocvceivveviiieerieeeeeeeeeeeeees et seaesseaesseaese e tesessese s eseseesenesssssasenen

The timersession EXAMPILE ..ottt 485
Running the timersession EXample ... 488

Handling EXCEPIONS ......ucuuiuieieiiiiiieciscicie i sse s 489

A Message-Driven Bean EXamplle ...............cooiiiiiiininnce et
Overview of the simplemessage EXamPIe ......coeerereeiniirieeinienieeieineiencieeseseseesesesessesessesesees
The simplemessage APplication CLENT ........cccoeuruerciniereecineinieereteeneeeeseie e nseseseeseseasesenaees
The Message-Driven Bean Class ........cecureererneiereiniineeneinieeseesesensessssessesssssesessessesessesessssens

The onNMesSage MEtROM ......c.oveveeieeeeeeeeee e nenn

Running the simplemessage EXAMPIe .......ccocociirinininiiniincieicceeeeeecie e

Administered Objects for the simplemessage Example ...

V¥ To Run the simplemessage Application Using NetBeans IDE ..........cccccocoevecunivicncnninnenn. 496
V¥ To Run the simplemessage Application Using ANt .......ccvcveeeereuneerecencrreeenerneenesensenneennenne 496
Removing the Administered Objects for the simplemessage Example ........ccccoeuvirinnncs 497
Using the Embedded Enterprise Bean Container ..............c.ococccvveueinivcinnccincncnnecrneceneceeenene 499
Overview of the Embedded Enterprise Bean CONntainer ..........cccveueeeencureeeencenereecenernevenseeneuennes 499
Developing Embeddable Enterprise Bean Applications ...........cceeereeeeerniereernemreeererseeenenseerenens 499
Running Embedded APPLICAtIONS .....c.cceueeeueeiuriueiiirieeieieieieiseeseseieisesesessesessessessesesesseseens 500
Creating the Enterprise Bean CONtainer .......c..cocevereeererniemcrneineenerneenensesessenessesesessesenne 500
Looking Up Session Bean References ... 502
Shutting Down the Enterprise Bean CONtainer .........cccccveeceneureeurerneemerneseeensessesensensesenne 502
The standalone Example APPLICAtiON .....c.ococueureeeurinicinicieinccirineerecieieeceseesetseseseeesesseesesseaeses 502
V¥ To Run the standalone Example APplication .........ccocveeeevcuneurererncinecencrneeneerseiseessessenenenne 503

Using Asynchronous Method Invocation in Session Beans
Asynchronous Method INVOCAION ........ccueuiuricuiiricieiicccieee e naens

Creating an Asynchronous Business Method ..........coeucunericiniinecincnecicneecneseeenneaeene



Contents

18

PartV

28

29

Calling Asynchronous Methods from Enterprise Bean CLents ..........cccocveeeercuneeercrrceneenne 507
The async EXample APPLICAtION ...cuvucuriieuricieiricieieeisicie ettt eeaeaees

Architecture of the async Example Application
Running the async Example

Contexts and Dependency Injection for the Java EE Platform .................ccoooveernnnnicccncnnns 513
Introduction to Contexts and Dependency Injection for the Java EE Platform ....................... 515
OVEIVIEW Of CDI ...ttt ettt bbbt sttt st es
ADOUL BEANS ..ottt bbb
About CDI Managed Beans
Beans as Injectable Objects
USING QUALHTIETS ..ottt ses
INJECtINg BEANS ..ot s
USING SCOPES vttt bbbt
Overriding the Scope of a Bean at the Point of Injection .........cccecveeeecererrecenerneeenerneeecerenneennes
Giving Beans EL Names
Adding Setter and Getter Methods
Using a Managed Bean in a Facelets PAge ........ccocveueveueunieeiiiniieicneiecneineieceseseseees s saees
Injecting Objects by Using Producer Methods .........ccvueeeuneureeeincinirnecineiniecneineeeieiseseeeeesesneeeenes
Configuring a CDI APPHCAtioN .......cccviuiiciiiiiiiniiec i
Using the @PostConstruct and @PreDestroy Annotations With CDI Managed Bean
CLASSES evvrvrreeererieiactreieeseettstee sttt b e 525
V To Initialize a Managed Bean Using the @PostConstruct Annotation .........ececveeveecencnne 525
V To Prepare for the Destruction of a Managed Bean Using the @PreDestroy Annotation 526
Further Information about CDI ........c.cccuveuriueiciniiriieieineieieneieeeset ettt ssesesessesessesns 526
Running the Basic Contexts and Dependency Injection Examples ..o, 527
The simplegreeting CDI EXAMPIE .....ccovvemiiricrernienreieieeneineieneneseese e ssesessesesensensesens 527
The simplegreeting SOUICE Files ... nesene 528
The Facelets Template and Page .........ccovveeueureeeernierenienieeineieeneeeenessesesessesessesesessenne 528
CoNfIGUIAtION FALES ....uvrreiiiiiicireiecitiree ettt sneen 529
Running the simplegreeting EXample ... esenseseene 530
The guessnumber CDI EXAMPLE ....c.vurueuiurimeiiiniieicieisicieiseieieiseseise e ssese e ssesessesseseesessesnens 531
The guesSSNUMDET SOUICE FILES .....cvovevevieieiieeeeeteteteeeeeeet ettt es s s s as s s enens 532

The Java EE 6 Tutorial « January 2013



Contents

30

31

The FACElets PAZE ....cecvuceiuieciiieiciieiccieie it 536

Running the guessnumber EXaMPIe ..o seesensenne 537

Contexts and Dependency Injection for the Java EE Platform: Advanced Topics ................... 539
Using Alternatives in CDI APPLICAtIONS .....c..cuvueuiuiueiceiirieiiiriences e seeseaens 539
USING SPECIALIZATION ..vuvreviieiriiriecieireicieireie ettt et e 540
Using Producer Methods, Producer Fields, and Disposer Methods in CDI Applications ....... 541
Using Producer Methods .........ociieieiieiciiriecenciseeese e sseessesnns
Using Producer Fields to Generate Resources
Using a Disposer Method ........c.occuieeciiinieeiciniinietiseecineieecieesese e sessesens
Using Predefined Beans in CDI APPLICAtiONS .......covueveueuerecuiereeeniereeerenneeeneeneaseeensessesensessesensens
Using Events in CDI APPLICATIOIS ....cueuvureeuiuereerniiiieneenieenseseeereeseeseeessessesensessesessessessesessesesessens
DefiNing EVENLS .....c.vueuuiuieereiiieeieireeneieie e sse e ese s ssese e ssssessessssssenns
Using Observer Methods to Handle Events
FIriNG EVENTS ..ot
Using Interceptors in CDI APPLICAtIONS .....c..c.oveuuiurieeucurieeiciiiricieieeeeeseee s ssessesensens
Using Decorators in CDI APPLICAtIONS .......c.ccuevecuiuieeiiiniieieiiicciseeeeeeseie e sseseeaens

Using Stereotypes in CDI APPliCations ..o

Running the Advanced Contexts and Dependency Injection Examples ..................ccceoeneveve. 553

The encoder Example: Using AIernatives ........c.coceereeeeeniereerniereeenneeseeneesesensesessesenessesenens
The Coder Interface and IMplementations .........ccvceeeuevreeueureereesneeseesessesesesseseesessesseseens
The encoder Facelets Page and Managed Bean

Running the encoder EXample ...

The producermethods Example: Using a Producer Method To Choose a Bean
TMPIEMENTALION ...eitiriiiiiteieicirtee ettt sttt eaebes

Components of the producermethods EXample .......cccoveueeenneenecininecniceneceeneenneaes
Running the producermethods Example
The producerfields Example: Using Producer Fields to Generate Resources
The Producer Field for the producerfields EXample ......ccccooreninenineneinenesinenseneenne
The producerfields Entity and Session Bean ...
The producerfields Facelets Pages and Managed Bean ..........ccocccceueinencniincrncnsercnennnes
Running the producerfields Example
The billpayment Example: Using Events and INterceptors ...........cccceuveeereurcuneuncrncecreneeneennn.
The PaymentEVent EVENt ClASS ......ccceeiiieieeeeereeteeeeeesete et esesesese et ssesesese s ssanans



Contents

20

PartVI

32

33

The PaymentHandler EVENt LISTENET ......cccicvveiveeeiieeceieeceeeceeeee ettt ss e eeaene e
The billpayment Facelets Pages and Managed Bean
The LoggedInterceptor Interceptor Class ..........ceureerrenecirincrerneceseneeereeseesesessesesenes
Running the billpayment EXample ..o eseessesseessenenees
The decorators Example: Decorating a Bean
Components of the decorators EXample ..o

Running the decorators EXAMPIe ... eesessenne

PEISISTENCE ... 577
Introduction to the Java Persistence API ... 579
BNEHES wvviiiic 579
Requirements for Entity Classes ..o 580
Persistent Fields and Properties in Entity Classes ........ccccveeeuneereeuneenecinerneieiernensesensenneneene 580
Primary Keys in Entities
Multiplicity in Entity Relationships .......coceueureevcuniereniirieeneeeeeeeneisee e sessesenne 587
Direction in Entity Relationships ........cocvueuiereercrnieienieereeeeeeeeieee e 587
Embeddable Classes in ENTILIES ........oceueureeeiceeirieieireieieireieeicisesesessesesessese e sseseesesessesenns 590
EDtity INNETTtance ....c.vuvecvieeeciciriecieieecieieeie ettt nsesaees
ADSIIACE ENTILIES ...vuvuviieciriciciicieiicirececcteeee ettt eae et ssnacs
Mapped Superclasses
Non-Entity SUPEICIasses ..ot ssees 592
Entity Inheritance Mapping Strate@ies ..........cveueuriuremerniureemeunesenerneeneensesnesessessesessessessesenns 592
Managing ENtIIESs ..o 595
The EntityManager INEIfACE .......ocviivieieeeveeereteteeeeeetete ettt s e st senens 595
Persistence UNILS ......cciuiiiiiiiiiiiiiii 599
QUErYing ENtItIEs ....c.cuviviiiiiiicccc e 600
Further Information about PErSiStENCe .......c.cocueureueircrriuercrreiricireineeeieeneeeicenesseeessessesensessesesscenes 601
Running the Persistence EXamples ...
The 0rder APPLICATION ....c.uveeueeierieeieireieieisei ettt et eeae
Entity Relationships in the order Application
Primary Keys in the order Application .........cccccveeecmniremneineeneieeeeeeee s
Entity Mapped to More Than One Database Table ........cc.ccceeureuricrninecineneeeneineeecnncnenenne

The Java EE 6 Tutorial « January 2013



Contents

34

Cascade Operations in the order AppliCation ........ceccueureeecuniereerneneeneineeeiseeeeeseanesenne 610
BLOB and CLOB Database Types in the order Application .........cc.coeeevereeevcuneerecrreenenenne 611
Temporal Types in the order APPICAtiON .......c.ocuveereueuriireeicineirieirereeesee e sesseseene 612
Managing the order Application’s ENHIES ........cccueveeeuriereremrereeenenienneesesseeseeesensenseneeseees 612
Running the order Example
The roster APPLICAtION ...ttt

Relationships in the roster APPliCAtion ........ccccvceureceiniciriciereeeree et 616
Entity Inheritance in the roster APpliCation ..........coccreeecnerecrnenecrnceseeenneeeeseesesenne 617
Criteria Queries in the roster APPliCAtION ... 619
Automatic Table Generation in the roster Application ..........cccceeeveveniercrncerereeennenens 620

Running the roster Example

The address-book APPLCALION .....c.oveueiricueireiciriiecirecie ettt eeaes
Bean Validation Constraints in address-book
Specitying Error Messages for Constraints in address -Dook .........cecceeerneneeenerneeneenne 624
Validating Contact Input from a JavaServer Faces Application .........cccoceceeveureeecrcrrernennne 625
Running the address-book EXamPple ... 625
The Java Persistence QUEryLanguage ..............ccccouriiueuniiirinieinieieiseeie et eeaeaees 629
Query Language TerminolOZy ........cccvcuvieucurieiciniinieineiriieieeseneesessessssesessesessessesessessessssessessesenens 630
Creating Queries Using the Java Persistence Query Language ..........cccecveevecenerreernerrevenscerernnees 630
Named Parameters in Queries
Positional Parameters in QUETIES .........coovvveieverereereeereeeeeeteeeteeeeseseeseseseseseesesesesessesessssesensenes 631
Simplified Query Language SYNtaX .........ccvcreeecurerrieeeneuneeemerneeeescesesseeeeessesessessessesessessesessessesesaes 632
SELECt STATEIMIEIIS «...vuvveveerevieeeereee ettt bbbttt 632
Update and Delete Statements .......c.cvccureceeurecerineeeineceeinesctsiesesesessesesessesesesesesseesesseseseseaes 632
EXQMPLE QUETIES ....voveerereineeiecicieie ettt ese st saen

Simple Queries
Queries That Navigate to Related ENtIties .......cocecuviueecuninecrnerneeneneeeeeeeeneseeeneneeeene
Queries with Other Conditional EXPreSsions .........cceecneeeecrneureerneunesessessesessenseseeesseseene
Bulk Updates and Deletes ..o ssseesesssesnns
Full QUery Language SYNTAX .....cccvveecuriuereeeureeerseneeeneseeeneesessesessessesessesssssssesssssesessessesessesessssees
BINE SYIMDOLS ettt et e et
BNF Grammar of the Java Persistence Query Language ...
FROM CIAUSE ...overierieiiiiii it

Path EXPIESSIONS ...vuvuueucireiieeeiiriieiseireieiseiseesesessessesessessese bbbt sesasns

21



Contents

22

35

36

37

38

WHERE CIAUSE ..ouvvveveveveeeeieitete ettt ettt tetesas st sesebessteas st esesesesessasasassesesesesessasasssesesesnanas 647
SELECT CLAUSE ..evuvveveveveeeeeeiistete et tsesastss et ss st s s e b esess s s s sesesesesesessasassesesesesessasasssnsesasas 657
ORDER BY CIAUSE ....vovveieieieeeeetetesetceeteses et tesesess st st tese st s sesesetesesssssesesesesesessssnsasesssesesesensans 659
GROUP BY and HAVING CIAUSES .....ceevevevererererenierererereteteseseseseseseseseassesesesesesesessassssesesesesessasans 659
Using the Criteria AP to Creat@ QUENIES ...............coeucueveveiieecicieete st nnas

Overview of the Criteria and Metamodel APIS .........ccccouiinininininciiciiciicsccec s
Using the Metamodel API to Model Entity Classes ..........ccoeruueuemierecrnimnieemeereneneneeseeenessesensens
Using Metamodel Classes
Using the Criteria API and Metamodel API to Create Basic Typesafe Queries
Creating a Criteria QUETY ......ccciiiiiiiiiiiii e
QUETY ROOLS ..
Querying Relationships Using Joins
Path Navigation in Criteria Queries
Restricting Criteria QUEry RESUILS ......cccvvuevemiureeriirieneiieeieieee e sessesenns
Managing Criteria QUery ReSULLS .........covvviiiiciiiiciiccccc e

EXecuting QUETIES ......c.cuiiiiiiiiiiiiiicicc e

Creating and Using String-Based Criteria Queries ................cccoooeeirnniienennnn s 673
Overview of String-Based Criteria APT QUETIES ........cccuiuuiueiiiiniieiiiieieissiecseiscsecsssissnaes 673
Creating String-Based QUETIES .........cccocuuiiiiiimiiiiiciiiiesi s ssssaes 674
Executing String-Based QUETIES .......cccvuueviuriuriuciiiriieiterieeieineieteseeeesctsessesesessese e ases s ssssese s 675

Controlling Concurrent Access to Entity Data with Locking ..............cccoccocncinnnncnnes
Overview of Entity Locking and CONCUITENCY .........ccuimueiueimeimiiecieiiiccssessssecsssasesssesessanes
Using Optimistic LOCKING .......vuiviiniiiiiciiiesciiiiciecs s sesasns
LOCK IMIOGES ..ot s e
Setting the Lock Mode

Using Pessimistic LOCKING ...c.vueveururiuiiiinieeiiiniieieireieiseieiseie et sessese s ssessssenns

Using a Second-Level Cache with Java Persistence APl Applications ................cccccooeernence.
Overview of the Second-Level Cache ........ccocvevueunnee.

Controlling Whether Entities May Be Cached
Specifying the Cache Mode Settings to Improve Performance ..........cuceeeeveereeeencereeneceneeneeennes

The Java EE 6 Tutorial « January 2013



Contents

Part VIl

39

40

Setting the Cache Retrieval and Store Modes ..........coeucuerecunienecunerneeeeerneeeeernensesensessesenne 686
Controlling the Second-Level Cache Programmatically ........cccccoeceuveunieercrnerecrnernecnrennennn. 687
SEOCUIITY ..ottt bbbttt e s s s s et s et seseseseseses s s s ssnsnansesesas 689

Introduction to Security in the Java EE Platform
Overview 0f Java EE SECUTILY .....cuvvueviiiericieiricicineieicireieeeeeetseeensetsesessessessssesessesessessesessessessesennes
A Simple Application Security Walkthrough
Features of a Security MeChanism .........c.coeicieiiniiiiiiisecie i
Characteristics Of APplication SECUIILY .......ccovureurecunierecrniiniicieireieicseieeesess e ssese e sseseene
SeCUrity MEChANISING ....cucvieiecieirieeicireiectret ettt ettt seee et se st seae s sesensessesesacenes
Java SE Security MechaniSms .........c.cceeeueeereuniureemeinienereienenessee e ssesesessesessesenne

Java EE Security Mechanisms ..o ssssssnas

Securing CONAINETS ......ccuiiuiiiiiiic s

Using Annotations to Specify Security Information

Using Deployment Descriptors for Declarative SECUIILY .......cocuveeverneeeecrnernecrnerneeenrernennne 701
Using Programmatic SECUTILY ........ccoviiiiiiiiiniiiiiiiiciiccecic e 701
Securing the GlassFish SEIVET ..ottt ettt sesesaeenes 702
Working with Realms, Users, Groups, and ROLES .........coceveurureerirrieereniinnenineeeeneeenesneeeeeens 702
What Are Realms, Users, Groups, and ROLES? ........ccveurivreneinirnieineineinecineireereinesee e 703

Managing Users and Groups on the GlassFish Server ....
Setting Up Security ROLES ........c.ovcuiiieeiiiiiciireecieec e essesens
Mapping Roles to Users and GIOUPS ........ceeueureeeriureuemserreeneesesnesesessesessessesessessessesesesseseens

Establishing a Secure Connection UsING SSL .....c..c.ovuvueuiurieemierieerenieeeeneiseeenseeseeensessessesesessesens
Verifying and Configuring SSL SUPPOTIL ....c.cueueurerrieeieiriirieineireieteiseiseseesessese s sesseseene

Further Information about SECUTILY .........cucuiverereirreereiieercieee e sese s naens

Getting Started Securing Web Applications ... 713

Overview of Web Application SECUTILY ....c.ocvvueucureuriciriirieeireireieeeereteeesetseeetetsesessessessesessetsesennes

Securing Web APPLICALIONS .....c.cuveeueuriueicieiricietreieicireieeieetseeesessesessesseseseessessesessessesessessessssesnes
Specifying Security CONSIIAINTS .......ccuiveiveririeiiiiiieicieiisee s seniaes

Specitfying Authentication Mechanisms
Specifying an Authentication Mechanism in the Deployment Descriptor ...........ccccocveune. 722
Declaring SECUrity ROLES ......c.cvvucuiuriueiiiieeicieineeitiseiecis et sesseseens 723

23



Contents

24

a1

42

Using Programmatic Security with Web Applications .........ceccvcereeeercererrecenerneeeencuneneecenenseeennes

Authenticating Users Programmatically ..........coccvereeunirneeicinceicineneceiseeeisesese e
Checking Caller Identity Programmatically .........cccccoeeniuiiineiniiicieeeinininesccie e
Example Code for Programmatic SECUIItY ..........ccocveuiioriniiniiniiiniicciseinieceseiecsesnneans
Declaring and Linking Role References
Examples: Securing Web APPLICAtIONS .......covueveeueureeeremriieeeiierieneeseeenessesenseseeeneensessesensesesensens
V¥ To Set Up Your System for Running the Security EXamples .........ccocevcurerevcrncnecercrnenenenne
The hello2_basicauth Example: Basic Authentication with a Servlet

The hellol_formauth Example: Form-Based Authentication with a JavaServer Faces
APPHCALION ereiieiiieict ettt bttt ettt 734

Getting Started Securing Enterprise Applications

Securing Enterprise Beans
Securing an Enterprise Bean Using Declarative Security
Securing an Enterprise Bean Programmatically .........cccocovceeeunirecmnenecrncneenenneeeeneenenenne
Propagating a Security Identity (RUN-AS) ..c..ccoeveuierremiereererneeenereeneenessesesessesessesseasesenne
Deploying Secure Enterprise BEans .........ccoccvcecicirieniniinincneiceeie e ssesesesenans

Examples: Securing Enterprise BEANS .........coueveueureeereunieeeeriinieneeeeereesesensessessssensessesensessesensens
The cart-secure Example: Securing an Enterprise Bean with Declarative Security ....... 750

The converter-secure Example: Securing an Enterprise Bean with Programmatic
SEOUTILY .t et 754

Java EE Security: Advance@d TOPICS ............ccccvuvveirreecieieieeecece et s s saens
Working with Digital Certificates ...........coviuvuneurcurieireriiinercise e sasans
Creating a Server CertifiCate ........c..vereereureereieeneieee e e seesensenns
Adding Users to the Certificate Realm .......cccccoeeueuniereeuniinieieinceieneneceisee e sessesenne
Using a Different Server Certificate with the GlassFish Server ...,
Authentication MEChANISIIS .....c.ceveviurieeriirieereieieeeeieeieneisese e ssesessese e ssesensessasesesaees
Client AUthentiCation ...t
Mutual AUthentication ...
Using Form-Based Login in JavaServer Faces Web Applications ...........cecevcureeevcurereecererreeennes
Using j_security checkin JavaServer Faces FOrms ...
Using a Managed Bean for Authentication in JavaServer Faces Applications
Using the JDBC Realm for User Authentication ..........eccveurecencrneeernceneeeecenerneeeesennesencsseseeenne
V¥ To Configure a JDBC Authentication Realm .........c.cccvcuiivcivcincieinininincncseceeceesiseeens

The Java EE 6 Tutorial « January 2013



Contents

Part VIl

43

44

Securing HTTP RESOUICES .....cccuieeiiiciriiiciieeiiietieeiceeseieie e ssecssssese s sssae s sessassensnaes
Securing ApplICation CLENLS .....c.oceveueureeereereeeicireieecinetseeenessesessesseteeaessessesessessesessessessesessessesesne
Using Login MOAULES ........cccuiuicmiiiciciieeciciee e sseseseesnns
Using Programmatic LOZIN ......cccvviiiiiiiiiicct st

Securing Enterprise Information Systems Applications....

Container-Managed Sign-On .....c..c.cceereereuniinieriinieneineeneseeeee e ssessesenns
Component-Managed Sign-ON ........ccceeeuireerineenereeeneieee e sessesenns
Configuring Resource Adapter SECULILY ...
V¥ To Map an Application Principal to EIS Principals .........ccccoveuveeneincinecineineseeineeneerenneneene
Configuring Security Using Deployment DeSCIIPLOLS ......c.ccvvueecererreeeeneereeeeseerereeecenerseeenseesesenaes
Specitying Security for Basic Authentication in the Deployment Descriptor ..........c........ 783
Specitying Non-Default Principal-to-Role Mapping in the Deployment Descriptor ....... 784
Further Information about SECUIILY .........cc.ccuiiiiiiiiiiiiic e 785
Java EE Supporting Technologies ................c.oooiiiiiireinincceee e eeeas 787
Introduction to Java EE Supporting Technologies .................coooovernrnnininicrecrereeeeeene 789
Transactions in Java EE APPLICAtIONS ....c.cveueueecuieneieieineieicineisieceineeeseisese e sssssese e ssesenaees 789
Resources in Java EE APPLCAtIONS ....c.cuvuieeunicuririecieieicirictece ettt eesesseaesees 790
The Java EE Connector Architecture and Resource Adapters ..........oocvevcuvcevcueeenereenennes 790
Java Database Connectivity Software
JaVa MESSAZE SEIVICE ...ouvuiuiiiiiiiniiiiii bbb
TrANSACLIONS ... 793
What Is @ Transaction? ... sa e 793
Container-Managed Transactions ...
Transaction AIIDULES ..........ccocuiiciiiiiiiii e
Rolling Back a Container-Managed TTansaction ..........c.ceceeureemrerneeemerneeeeensemseensenseeenne

Synchronizing a Session Bean’s Instance Variables
Methods Not Allowed in Container-Managed Transactions ..........coeeecureeeeeunerreerserneenne 799
Bean-Managed Transactions
JTA Transactions .....ccceeeeeeveeveveeereereerenreeereereeseesessenns
Returning without Committing
Methods Not Allowed in Bean-Managed Transactions .........cc.cecevcereeeecrneereerneuneensenseneene 801

25



Contents

26

45

46

47

TTansaction TIIMEOULS .......cicviveiirietieectceere ettt ettt esr st e s sae b et esseseereesessessessetessesensessessesessens
VW To Seta Transaction TIIMEOUL .....c.ocvvuivveieiirieritcreiete ettt ettt e e reeseebessesessesseseerensens
Updating Multiple Databases .......cccvcueeeeriurieereeriuereeienienieeeenesseeessesessssessessesessessesessesessssesens

Transactions in Web Components

Further Information about TTanSACtIONS ...cveveuevieeiieeeieeeeeeeeeeeeee ettt tes et etes et se s eenenen

Resources and Resource AdapLers ................coooveeeeieieinisieccee ettt sessssnans 805

Resources and JNDI Naming
DataSource Objects and Connection Pools
Resource INJECHION ....cviiiiiiiiiiiicc e
Field-Based INJECTION ...ucuuvueurerieincieieiicitinieeieiseietae ettt et
Method-Based Injection
Class-Based Injection

Resource Adapters and Contracts

Management CONIACES .......c.cviiuiiiiiiiiciiiieiice e ssaes 811
Generic WOrk Context CONTIACE .....c.o.eveviveeveeeeeeeereeeeteeeeeeeereteeesesseseseeeeteseseseesesessssesesesseseses 813
Outbound and INbOUNA CONTIACES .....c.vvveeeevieieeeceecectceeee ettt enenens 813

Metadata ANNOtations .........cceeeveveeeeveereeeeeeeeerenens

Common Client Interface

Using Resource Adapters With Contexts and Dependency Injection for the Java EE Platform
(CDI) 816

Further Information about Resources

The Resource Adapter EXamPIe ...............ccoooiiiieicceeeececee et sesnes 819

The Resource Adapter

The Message-Driven Bean

The WebD APPIICALION ...uvuvrieieiiiriieicircieiecret ettt bbb
Running the mailconnector EXAmple ... seesesessesessesenees 820
V Before You Deploy the mailconnector EXample ..........ccenenenernernenerenieeeneesensensenens 820
V¥V To Build, Package, and Deploy the mailconnector Example Using NetBeans IDE ......... 821
V¥ To Build, Package, and Deploy the mailconnector Example Using Ant ........cccocuvvuence. 822
V¥ To Run the mailconnector EXAMPILE ......cocceereeurineeeiniiieinecisineieteececeseesesseseseeeseeseesesseaeaes 822
Java Message Service CONCEPRES .........ccouvueveueiiiirieieieieiee ettt ettt be b saesesesesasanens 825
OVEIVIEW O the JIMIS AP ..ottt ettt ettt et et stene s senesenan 825

The Java EE 6 Tutorial « January 2013



Contents

48

WHRat IS MESSAZING? ...vuverrcrrieeirerreiercireiseeeteireseeset ettt ssese ettt sseseescnns 825
WHhat I the JIMS API? ..ottt ettt eeenen 826
When Can You Use the JIMS API? ...ttt 826
How Does the JMS API Work with the Java EE Platform? .........ccceceveveveeeveereeiereeeenennas 827
Basic JMS API Concepts
JIMS APT ATCRITECTULE ..ottt ae et ess et e s s s e s s enenenenen 829
Messaging DOmMAINS ..o 829
Message CONSUMPLION ... 832
The JMS API Programming MOdel .........cocueueueuneurieciniinieiiineeeieneieeeciseisese e ssessessesessssesesaees 832

JMS Administered Objects
JMS Connections

JIVIS SESSIONS ..vevevinrenreereriereiteeseeereeseeseesesesseseeteeseesesesseseesessessessesseseesesensessessesesensensessessesesensen
JMS MESSAZE PIOAUCELS ..ot sae s sseseanesenne
JMS Message COMSUIMETS .....cucuviiiiiiiiiiiiiiiisscsces st
JIVIS MESSAZES ...eeeiiiiiiiincicici ittt
JIMS QUEUE BIOWSET'S ....eveviieieieieiieteniieteteseesteseseesesesesesaesesssesessesasaesessssesessesansesesesesssesesensn
JMS Exception Handling .....

Creating RODUST JIMS APPLICALIONS ...uvuevrveeririecieireieicireieeeetsetseeeeetseseesessetseee et sesessessessesessessesenne 842
Using Basic Reliability MechaniSms ...........ccccoeveeuiunieecrninecereeseencssese e essesenns 843
Using Advanced Reliability MeChaniSms .........ccccvcureeevcuninecrneuneenernecnerneeeensessesenessesenne 847

Using the JMS API in Java EE APPlICations .......c.cccccueiuiuniiriincicineicieieesiieecicsesescssesesssesaeens 851
Using @Resource Annotations in Enterprise Bean or Web Components ...........ccccecuueeee. 852
Using Session Beans to Produce and to Synchronously Receive Messages ..........ccveueunee. 852
Using Message-Driven Beans to Receive Messages Asynchronously ...........ccccccccvieciniianee 853
Managing Distributed Transactions ...........ccceveeueureeererneemerneeeeenessesenessesensesseseesesessesenne 856
Using the JMS API with Application Clients and Web Components ........cocccveveeerrcrneunc. 858

Further Information abOUt JIMLS ........couiviieiiiieeereeeese ettt 858

Java Message Service EXamPles .............coooiieeeiiiiiiiiecee ettt nnanaas 859

Writing Simple JMS APPLICALIONS .....cvucviueueiiiiriciiiecicireeceieee e 860
A Simple Example of Synchronous Message RECEIVES ........ccueurecuernierecrnerneennenneeeesennenene 860
A Simple Example of Asynchronous Message CONSUMPLION .....ccueveeecrreeeeeereuneeerenneneene 870
A Simple Example of Browsing Messages in a Queue
Running JMS Clients on Multiple SYStEIMS ......coceveurureecriurecuerreeenerneeeeensesneseaessesessesseseene
Undeploying and Cleaning the Simple JMS EXamples .........cccoeueeuriuniireuneencescecnennineenennes 886

27



Contents

28

49

Writing RObust JMS APPLCAtIONS ....cueureeuierreerciirereeiienieeetiresensessesensessessesessessesessessesessessessesessees
A Message Acknowledgment EXamPple ..ot esseseens
A Durable Subscription EXample ........cccvceeeeirieiniinieeicinesecineisee e esseseens

A Local Transaction EXAMPIe ....c.cveeeeiriciricieiicirinceeiceinecenecieseecseeese e sessesessesesessescses
An Application That Uses the JMS API with a Session Bean
Writing the Application Components for the clientsessionmdb Example
Creating Resources for the clientsessionmdb EXample .....ccoooemnocnenicncrneenencnnennene
Running the clientsessionmdb EXamPple ..o ssenseseene
An Application That Uses the JMS API with an Entity .....ccoccoeeevereericeneneereeneecneeseeeeneeennens
Overview of the clientmdbentity Example Application ........cccocveevcecevcreieereerenneerennes
Writing the Application Components for the clientmdbentity Example
Creating Resources for the clientmdbentity EXample ......cccccoeniencrninencnnerneennennene
Running the clientmdbentity EXamMPIe ....ccoveiniincininecineiniceeeereeeeeesseeeneneaene
An Application Example That Consumes Messages from a Remote Server ...........coocevecuneeence
Overview of the consumeremote Example Modules ..........coevcureerivcrnenecineinccincnneenerernennens
Writing the Module Components for the consumeremote Example .........ccoocvcuvcrvcrcrcnnnee
Creating Resources for the consumeremote Example .......ccccocveeveuniercrnienecnnceneeennees
Using Two Application Servers for the consumeremote Example
Running the consumeremote EXample ...
An Application Example That Deploys a Message-Driven Bean on Two Servers
Overview of the sendremote Example Modules .........occcvureincininicnenecnencseneneenenene
Writing the Module Components for the sendremote Example .......ccccooceveeunevecenerrcnnnen.
Creating Resources for the sendremote Example
V¥ To Enable Deployment on the Remote SYStem ........ccccuciuiiuciineiiieceinisiessiesieisians
V¥ To Use Two Application Servers for the sendremote Example .........cccooveeurnceenencenenecnnn.
Running the sendremote EXamPle ..o ssesensenns

V¥ To Disable Deployment on the Remote SYStem ..o,

Bean Validation: Advanced TOPICS ...........c.ccoeviiieiucicieieeeece ettt nanas
Creating Custom CONSLIAINES ......ccccviiciiiiiiiiiicc s naes
Using the Built-In Constraints to Make a New Constraint ..........cccoeceeeeeveureerneuneeeerseeneenne
Customizing Validator MESSAZES ......c.weueureveeeererreeeieireiesetreseeseesessesessessesessessesessessessssesessesessesnes
The ValidationMessages Resource Bundle ....
Grouping CONSIIANES ......ccviiiiiiiiiiii e s

Customizing Group Validation Order ...

The Java EE 6 Tutorial « January 2013



Contents

50

PartIX

51

52

Using Java EE INTEICEPLOLS .............ccooviiieeiecicetee ettt sne 933
Overview of Interceptors
INEEICEPLOT CLASSES ..ecvrvuveereuiinereieecieieietsiseseeeaetseese s atae s b sese e esetseae e satae e s seaesennaes

Interceptor Lifecycle

Interceptors and CDI
USING INTEICEPLOLS .ottt
Intercepting Method INVOCAtIONS .......cvueuierecmmiureeneiieeneneienseseesesenessesense e seseeseessesenne 936
Intercepting Lifecycle Callback EVENLS .......ccocuuiriiiiiniiniiiiicciciicciseiieceseiesie i 937
Intercepting Timeout EVENLS .......cccouviiiiiiiiiciiiiccc e 938
The interceptor Example APPLICAtion ........ceccueureeeueureeeicinieeieineeneeceeeneieneesesensesessesessessesensees 939
Running the interceptor EXamPple ... sessesensenne 940
CASE@STUAIES ... s 943

Duke’s Bookstore Case Study Example

Design and Architecture of Duke’s BOOKSTOTE .....c.c.eveuiureeeriinieereiiecreneineeneiseeensesseseneeseeseaens 945
The Duke’s BooKkstore INterface ... 946
The Book Java Persistenice APTENTILY ..covcuiereeeeeenieeieineirieieiseseeeiseseesescssese e sseseasenns 946
Enterprise Beans Used in DuKke’s BOOKSTOTE .......ccc.euveueuriiuriniuciricieineeenineseinicieesesetseesesseaeans 947
Facelets Pages and Managed Beans Used in Duke’s BOOKStOTe ...........ccocveucucicucenieniunennes 947
Custom Components and Other Custom Objects Used in Duke’s Bookstore ................... 949
Properties Files Used in DUKe’s BOOKSTOIE ........c..ccuvvuiuiireriicrneriereeieineieseesesenieneesaseseasenae 949
Deployment Descriptors Used in Duke’s BOOKSTOTE ......c.cveuevucuneuricrnienencrnerneneiennceeeennenene 950
Running the Duke’s Bookstore Case Study Application .........c.ceeeeeveemeereeenerneeeeenseeseenenrenns 951
V To Build and Deploy Duke’s Bookstore Using NetBeans IDE ........ccceveureeneneineenccerennenene 951
V¥ To Build and Deploy Duke’s Bookstore Using Ant .........c.ccccveureueereunernecrnerneeeescusenneensenseeenne 951
VW T0 RUN DUKE’S BOOKSLOTE .....ooeirieiriiiiiiiiie e na s saens 952
Duke’s Tutoring Case Study EXample .............cc.oooouiiiriirinieeee e
Design and Architecture of DuKe’s TULOTING .....c.cuvvveveeuiereeriirieeneireieeeeeeeeeneeseeensessesensesesseaens
Main TNEEITACE ..ot

Java Persistence API Entities Used in the Main Interface

Enterprise Beans Used in the Main INterface .........ccoeueurereeeneireeinerneeieinesieiseesee s

Facelets Files Used in the Main INtErface .......ovvveeieiveeiieeceiceieeceeeeeeeee et

29



Contents

Helper Classes Used in the Main INterface ........cccocveeveuneveceneinecincnecncineeeeeneesesessenseseene
ProPerties FIlES .....c.ouiuiuriueiiiriieicicieiciisee ettt e
Deployment Descriptors Used in Duke’s TUtOTING .....cccvvueveemmerreemernieenereieeenenneeenenneeenne
Administration INErface .........cc.ccuciiiiiuiiiiiiiiiicic s

Enterprise Beans Used in the Administration Interface ...

Facelets Files Used in the Administration Interface ..........ccocoveeveunevevcunenecernerneeererneeneenne
Running the Duke’s Tutoring Case Study APPliCation .........ceceeecerevrecencereeeencerereecererneseeseeseeennes
Setting Up GlassFish SEIVET ......c.c.vuiiiiiriciiriciciricce e
Running DUKE’S TULOTING ....ccuvuveeumrueeeimiiieenieiieneeneineae e ssessesessessesessessessssessesesenns
53 Duke’s Forest Case Study EXample ... seseaes 965
Design and Architecture 0f DUKE’s FOIESt .......c.ciuireuniuriiereiniiereiieneeceeeneeeneeseseneensessesesessesensens 966
TRE @VENTS PIOJECT ..cuvuieiieirieicicieec ittt e 968
The entities PrOJEC oo seae 969
The dukes - payment PrOJECT ......cocueureciiirieincireireeieiseeeietseieesetsetseae ettt esesesens 971
The dukes - reSources PIOJECT ... sssssees 972
The DUKE’S StOT€ PTOJECt ....cuvuiviecimiiecieiiecciireieneieie et easesenns 972
The Duke’s ShIPMENt PTOJECE ...uvuvuiuiuieiirierieciiireicieireieieiseieescseieese e ssese e esesesseseene 977
Building and Deploying the Duke’s Forest Case Study Application ..........c.cccceeuveuniuvciinciniunees 979
PrereqUisite TaSK ....cceiciriceeiccieirceseci ettt ettt 979
V¥ To Build and Deploy the Duke’s Forest Application Using NetBeans IDE ...........ccccocueuee. 980
V¥V To Build and Deploy the Duke’s Forest Application Using Ant
Running the Duke’s Forest APPliCAtioNn .......c.occcevcureeeecineunrecenerreeeecrnereecererseeeesessesensesseseesessessesenses
¥V To Register as a Duke’s Store CUSLOMET .......c.cvuvuiuiuiureucicieienieienieeeiseese e sseseseaens
VW To Purchase Products ... ssssns
V¥ To Approve Shipment 0f @ PTOAUCE ....c.ovcucinieinciniricircncccrcrececeeeeseiseseese e
VW T0 Create @ NeW PrOQUCL ..ot ssses
INAEX ..o s 985

30 The Java EE 6 Tutorial « January 2013



Preface

This tutorial is a guide to developing enterprise applications for the Java Platform, Enterprise
Edition 6 (Java EE 6) using GlassFish Server Open Source Edition.

Oracle GlassFish Server, a Java EE compatible application server, is based on GlassFish Server
Open Source Edition, the leading open-source and open-community platform for building and
deploying next-generation applications and services. GlassFish Server Open Source Edition,
developed by the GlassFish project open-source community at http://glassfish.java.net/,
is the first compatible implementation of the Java EE 6 platform specification. This lightweight,
flexible, and open-source application server enables organizations not only to leverage the new
capabilities introduced within the Java EE 6 specification, but also to add to their existing
capabilities through a faster and more streamlined development and deployment cycle. Oracle
GlassFish Server, the product version, and GlassFish Server Open Source Edition, the
open-source version, are hereafter referred to as GlassFish Server.

The following topics are addressed here:

“Before You Read This Book” on page 31
“Related Documentation” on page 32
“Typographic Conventions” on page 32
“Default Paths and File Names” on page 33
“Third-Party Web Site References” on page 34

Before You Read This Book

Before proceeding with this tutorial, you should have a good knowledge of the Java
programming language. A good way to get to that point is to work through the Java Tutorials
(http://docs.oracle.com/javase/tutorial/index.html).

31


http://glassfish.java.net/
http://docs.oracle.com/javase/tutorial/index.html
http://docs.oracle.com/javase/tutorial/index.html

Preface

Related Documentation

The GlassFish Server documentation set describes deployment planning and system
installation. To obtain documentation for GlassFish Server Open Source Edition, go to
http://glassfish.java.net/docs/. The Uniform Resource Locator (URL) for the Oracle
GlassFish Server product documentation is http://docs.oracle.com/cd/E26576_01/
index.htm.

The API documentation for packages that are provided with GlassFish Server is available as
follows.

= The API specification for version 6 of Java EE is located at http: //docs.oracle. com/
javaee/6/api/.

= The API specification for GlassFish Server, including Java EE 6 platform packages and
nonplatform packages that are specific to the GlassFish Server product, is located at
http://glassfish.java.net/nonav/docs/v3/api/.

Additionally, the Java EE Specificationsat http: //www.oracle.com/technetwork/java/
javaee/tech/index.html might be useful.

For information about creating enterprise applications in the NetBeans Integrated
Development Environment (IDE), see http://www.netbeans.org/kb/.

For information about the Java DB database for use with the GlassFish Server, see
http://www.oracle.com/technetwork/java/javadb/overview/index.html.

The GlassFish Samples project is a collection of sample applications that demonstrate a broad
range of Java EE technologies. The GlassFish Samples are bundled with the Java EE Software
Development Kit (SDK) and are also available from the GlassFish Samples project page at
http://glassfish-samples.java.net/.

Typographic Conventions

32

Table P-1 describes the typographic changes that are used in this book.

TABLEP-1 Typographic Conventions

Typeface Meaning Example
AaBbCc123 The names of commands, files, and Edit your . login file.
directories, and onscreen computer .
Use 1s -a to list all files.
output
machine_name% you have mail.
AaBbCc123 What you type, contrasted with onscreen  machine_name% su
computer output

Password:

The Java EE 6 Tutorial « January 2013


http://glassfish.java.net/docs/
http://docs.oracle.com/cd/E26576_01/index.htm
http://docs.oracle.com/cd/E26576_01/index.htm
http://docs.oracle.com/javaee/6/api/
http://docs.oracle.com/javaee/6/api/
http://glassfish.java.net/nonav/docs/v3/api/
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.netbeans.org/kb/
http://www.oracle.com/technetwork/java/javadb/overview/index.html
http://glassfish-samples.java.net/

Preface

TABLEP-1 Typographic Conventions

(Continued)

Typeface

Meaning

Example

AaBbCcl23

AaBbCc123

A placeholder to be replaced with a real
name or value

Book titles, new terms, and terms to be
emphasized (note that some emphasized
items appear bold online)

The command to remove a file is rm filename.

Read Chapter 6 in the Users Guide.
A cacheis a copy that is stored locally.

Do not save the file.

Default Paths and File Names

Table P-2 describes the default paths and file names that are used in this book.

TABLEP-2 Default Paths and File Names

Placeholder

Description

Default Value

as-install

as-install-parent

tut-install

domain-root-dir

domain-dir

Represents the base installation
directory for the GlassFish Server
or the SDK of which the
GlassFish Server is a part.

Represents the parent of the base
installation directory for
GlassFish Server.

Represents the base installation
directory for the Java EE Tutorial
after you install the GlassFish
Server or the SDK and run the
Update Tool.

Represents the directory in which
adomain is created by default.

Represents the directory in which
a domain’s configuration is
stored.

Installations on the Solaris operating system, Linux
operating system, and Mac operating system:

user’s-home-directory/glassfish3/glassfish
Windows, all installations:
SystemDrive:\glassfish3\glassfish

Installations on the Solaris operating system, Linux
operating system, and Mac operating system:

users-home-directory/glassfish3
Windows, all installations:
SystemDrive:\glassfish3

as-install/docs/javaee-tutorial

as-install/domains/

domain-root-dir/domain-name

33



Preface

Third-Party Web Site References

Third-party URLs are referenced in this document and provide additional, related information.

Note - Oracle is not responsible for the availability of third-party web sites mentioned in this
document. Oracle does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Oracle will
not be responsible or liable for any actual or alleged damage or loss caused or alleged to be
caused by or in connection with use of or reliance on any such content, goods, or services that
are available on or through such sites or resources.

34 The Java EE 6 Tutorial « January 2013



PART |

Introduction

Part I introduces the platform, the tutorial, and the examples. This part contains the
following chapters:

= Chapter 1, “Overview”
= Chapter 2, “Using the Tutorial Examples”

35



36



CHAPTER 1

Overview

This chapter introduces you to Java EE enterprise application development. Here you will
review development basics, learn about the Java EE architecture and APIs, become acquainted
with important terms and concepts, and find out how to approach Java EE application
programming, assembly, and deployment.

Developers today increasingly recognize the need for distributed, transactional, and portable
applications that leverage the speed, security, and reliability of server-side technology.
Enterprise applications provide the business logic for an enterprise. They are centrally managed
and often interact with other enterprise software. In the world of information technology,
enterprise applications must be designed, built, and produced for less money, with greater
speed, and with fewer resources.

With the Java Platform, Enterprise Edition (Java EE), development of Java enterprise
applications has never been easier or faster. The aim of the Java EE platform is to provide
developers with a powerful set of APIs while shortening development time, reducing
application complexity, and improving application performance.

The Java EE platform is developed through the Java Community Process (JCP), which is
responsible for all Java technologies. Expert groups, composed of interested parties, have
created Java Specification Requests (JSRs) to define the various Java EE technologies. The work
of the Java Community under the JCP program helps to ensure Java technology’s standard of
stability and cross-platform compatibility.

The Java EE platform uses a simplified programming model. XML deployment descriptors are
optional. Instead, a developer can simply enter the information as an annotation directly into a
Java source file, and the Java EE server will configure the component at deployment and
runtime. These annotations are generally used to embed in a program data that would
otherwise be furnished in a deployment descriptor. With annotations, you put the specification
information in your code next to the program element affected.

In the Java EE platform, dependency injection can be applied to all resources a component
needs, effectively hiding the creation and lookup of resources from application code.

37



Java EE 6 Platform Highlights

Dependency injection can be used in EJB containers, web containers, and application clients.
Dependency injection allows the Java EE container to automatically insert references to other
required components or resources, using annotations.

This tutorial uses examples to describe the features available in the Java EE platform for
developing enterprise applications. Whether you are a new or experienced Enterprise
developer, you should find the examples and accompanying text a valuable and accessible
knowledge base for creating your own solutions.

The following topics are addressed here:

“Java EE 6 Platform Highlights” on page 38

“Java EE Application Model” on page 39

“Distributed Multitiered Applications” on page 39

“Java EE Containers” on page 47

“Web Services Support” on page 49

“Java EE Application Assembly and Deployment” on page 50
“Packaging Applications” on page 51

“Development Roles” on page 52

“Java EE 6 APIs” on page 55

“Java EE 6 APIs in the Java Platform, Standard Edition 6 and 7” on page 64
“GlassFish Server Tools” on page 67

Java EE 6 Platform Highlights

38

The most important goal of the Java EE 6 platform is to simplify development by providing a
common foundation for the various kinds of components in the Java EE platform. Developers
benefit from productivity improvements with more annotations and less XML configuration,
more Plain Old Java Objects (POJOs), and simplified packaging. The Java EE 6 platform
includes the following new features:

= Profiles: configurations of the Java EE platform targeted at specific classes of applications.
Specifically, the Java EE 6 platform introduces a lightweight Web Profile targeted at
next-generation web applications, as well as a Full Profile that contains all Java EE
technologies and provides the full power of the Java EE 6 platform for enterprise
applications.

= New technologies, including the following:
= Java API for RESTful Web Services (JAX-RS)
= Managed Beans

= Contexts and Dependency Injection for the Java EE Platform (JSR 299), informally
known as CDI

= Dependency Injection for Java (JSR 330)
®m  Bean Validation (JSR 303)

The Java EE 6 Tutorial « January 2013



Distributed Multitiered Applications

= Java Authentication Service Provider Interface for Containers (JASPIC)

= New features for Enterprise JavaBeans (EJB) components (see “Enterprise JavaBeans
Technology” on page 58 for details)

= New features for servlets (see “Java Servlet Technology” on page 59 for details)

= New features for JavaServer Faces components (see “JavaServer Faces Technology” on
page 59 for details)

Java EE Application Model

The Java EE application model begins with the Java programming language and the Java virtual
machine. The proven portability, security, and developer productivity they provide forms the
basis of the application model. Java EE is designed to support applications that implement
enterprise services for customers, employees, suppliers, partners, and others who make
demands on or contributions to the enterprise. Such applications are inherently complex,
potentially accessing data from a variety of sources and distributing applications to a variety of
clients.

To better control and manage these applications, the business functions to support these
various users are conducted in the middle tier. The middle tier represents an environment that
is closely controlled by an enterprise’s information technology department. The middle tier is
typically run on dedicated server hardware and has access to the full services of the enterprise.

The Java EE application model defines an architecture for implementing services as multitier
applications that deliver the scalability, accessibility, and manageability needed by
enterprise-level applications. This model partitions the work needed to implement a multitier
service into the following parts:

= The business and presentation logic to be implemented by the developer
= The standard system services provided by the Java EE platform

The developer can rely on the platform to provide solutions for the hard systems-level problems
of developing a multitier service.

Distributed Multitiered Applications

The Java EE platform uses a distributed multitiered application model for enterprise
applications. Application logic is divided into components according to function, and the
application components that make up a Java EE application are installed on various machines,
depending on the tier in the multitiered Java EE environment to which the application
component belongs.

Chapter 1 « Overview 39



Distributed Multitiered Applications

40

Figure 1-1 shows two multitiered Java EE applications divided into the tiers described in the
following list. The Java EE application parts shown in Figure 1-1 are presented in “Java EE
Components” on page 42.

= Client-tier components run on the client machine.

= Web-tier components run on the Java EE server.

= Business-tier components run on the Java EE server.

= Enterprise information system (EIS)-tier software runs on the EIS server.

Although a Java EE application can consist of all tiers shown in Figure 1-1, Java EE multitiered
applications are generally considered to be three-tiered applications because they are
distributed over three locations: client machines, the Java EE server machine, and the database
or legacy machines at the back end. Three-tiered applications that run in this way extend the
standard two-tiered client-and-server model by placing a multithreaded application server
between the client application and back-end storage.

The Java EE 6 Tutorial « January 2013



Distributed Multitiered Applications

FIGURE1-1 Multitiered Applications

Java EE Java EE
Application 1 Application 2

/ Client Client
L Tier Machine
Application | 452>
Client

JavaServer
Faces
Pages Web
Tier
‘ Java EE
Server

Enterprise Enterprise
Beans Beans

Business

A

EIS Database
Tier Server

' Database Database

Security

Although other enterprise application models require platform-specific security measures in
each application, the Java EE security environment enables security constraints to be defined at
deployment time. The Java EE platform makes applications portable to a wide variety of
security implementations by shielding application developers from the complexity of
implementing security features.

The Java EE platform provides standard declarative access control rules that are defined by the
developer and interpreted when the application is deployed on the server. Java EE also provides
standard login mechanisms so application developers do not have to implement these
mechanisms in their applications. The same application works in a variety of security
environments without changing the source code.

Chapter 1 « Overview 41



Distributed Multitiered Applications

42

Java EE Components

Java EE applications are made up of components. A Java EE component is a self-contained
functional software unit that is assembled into a Java EE application with its related classes and
files and that communicates with other components.

The Java EE specification defines the following Java EE components:

= Application clients and applets are components that run on the client.

= Java Servlet, JavaServer Faces, and JavaServer Pages (JSP) technology components are web
components that run on the server.

= Enterprise JavaBeans (EJB) components (enterprise beans) are business components that
run on the server.

Java EE components are written in the Java programming language and are compiled in the
same way as any program in the language. The differences between Java EE components and
“standard” Java classes are that Java EE components are assembled into a Java EE application,
they are verified to be well formed and in compliance with the Java EE specification, and they
are deployed to production, where they are run and managed by the Java EE server.

Java EE Clients

A Java EE client is usually either a web client or an application client.

Web Clients

A web client consists of two parts:

= Dynamic web pages containing various types of markup language (HTML, XML, and so
on), which are generated by web components running in the web tier

= A web browser, which renders the pages received from the server

A web client is sometimes called a thin client. Thin clients usually do not query databases,
execute complex business rules, or connect to legacy applications. When you use a thin client,
such heavyweight operations are oft-loaded to enterprise beans executing on the Java EE server,
where they can leverage the security, speed, services, and reliability of Java EE server-side
technologies.

Application Clients

An application client runs on a client machine and provides a way for users to handle tasks that
require a richer user interface than can be provided by a markup language. An application client
typically has a graphical user interface (GUT) created from the Swing or the Abstract Window
Toolkit (AWT) API, but a command-line interface is certainly possible.

The Java EE 6 Tutorial « January 2013



Distributed Multitiered Applications

Application clients directly access enterprise beans running in the business tier. However, if
application requirements warrant it, an application client can open an HTTP connection to
establish communication with a servlet running in the web tier. Application clients written in
languages other than Java can interact with Java EE servers, enabling the Java EE platform to
interoperate with legacy systems, clients, and non-Java languages.

Applets

A web page received from the web tier can include an embedded applet. Written in the Java
programming language, an applet is a small client application that executes in the Java virtual
machine installed in the web browser. However, client systems will likely need the Java Plug-in
and possibly a security policy file for the applet to successfully execute in the web browser.

Web components are the preferred API for creating a web client program, because no plug-ins
or security policy files are needed on the client systems. Also, web components enable cleaner
and more modular application design because they provide a way to separate applications
programming from web page design. Personnel involved in web page design thus do not need
to understand Java programming language syntax to do their jobs.

The JavaBeans Component Architecture

The server and client tiers might also include components based on the JavaBeans component
architecture (JavaBeans components) to manage the data flow between the following:

= Anapplication client or applet and components running on the Java EE server
= Server components and a database

JavaBeans components are not considered Java EE components by the Java EE specification.

JavaBeans components have properties and have get and set methods for accessing the
properties. JavaBeans components used in this way are typically simple in design and
implementation but should conform to the naming and design conventions outlined in the
JavaBeans component architecture.

Java EE Server Communications

Figure 1-2 shows the various elements that can make up the client tier. The client
communicates with the business tier running on the Java EE server either directly or, as in the
case of a client running in a browser, by going through web pages or servlets running in the web
tier.

Chapter 1 « Overview 43



Distributed Multitiered Applications

44

FIGURE1-2 Server Communication

Application Client and | Web Browser, Web /
Optional JavaBeans Pages, Applets, 7
Components and Optional
p VY JavaBeans W i
\‘\‘\Q Components \*\-\Q Client
- b Tier
A A
\4
Web Tier y
§\\
i i |
Business Tier  jov4 EE
Server

Web Components

Java EE web components are either servlets or web pages created using JavaServer Faces
technology and/or JSP technology (JSP pages). Servlets are Java programming language classes
that dynamically process requests and construct responses. JSP pages are text-based documents
that execute as servlets but allow a more natural approach to creating static content. JavaServer
Faces technology builds on servlets and JSP technology and provides a user interface component
framework for web applications.

Static HTML pages and applets are bundled with web components during application assembly
but are not considered web components by the Java EE specification. Server-side utility classes
can also be bundled with web components and, like HTML pages, are not considered web
components.

As shown in Figure 1-3, the web tier, like the client tier, might include a JavaBeans component
to manage the user input and send that input to enterprise beans running in the business tier for
processing.

The Java EE 6 Tutorial « January 2013



Distributed Multitiered Applications

FIGURE 1-3  Web Tier and Java EE Applications

Application Client | Web Browser, Web /
and Optional Pages, Applets, 7
JavaBeans and Optional
Components JavaBeans \\/
¥ Components ! i
p V! R VY Client
\‘Q \‘\Q Tier
A A
A
JavaBeans Web Pages
Components Servlets
(Optional) / Web
o o Tier
K, .2
¥ ' i Java EE
Business Server
Tier

Business Components

Business code, which is logic that solves or meets the needs of a particular business domain such
as banking, retail, or finance, is handled by enterprise beans running in either the business tier
or the web tier. Figure 1-4 shows how an enterprise bean receives data from client programs,
processes it (if necessary), and sends it to the enterprise information system tier for storage. An
enterprise bean also retrieves data from storage, processes it (if necessary), and sends it back to

the client program.

Chapter 1 « Overview

45



Distributed Multitiered Applications

FIGURE 1-4 Business and EIS Tiers

Application Client and | Web Browser, Web /
Optional JavaBeans Pages, Applets, and 7
Components Optional JavaBeans \/

Components
KT i
&Q Client
A

gy

Tier

JavaBeans Web Pages
Components Servlets
(Optional) Web
l il Tier
A
v

Java Persistence Entities
Business  Java EE

Session Beans
Message-Driven Beans * Tier Server

A

|

\
Database
and Legacy E_|S
Systems Tier

Enterprise Information System Tier

The enterprise information system tier handles EIS software and includes enterprise
infrastructure systems, such as enterprise resource planning (ERP), mainframe transaction
processing, database systems, and other legacy information systems. For example, Java EE
application components might need access to enterprise information systems for database
connectivity.

46 The Java EE 6 Tutorial « January 2013



Java EE Containers

Java EE Containers

Normally, thin-client multitiered applications are hard to write because they involve many lines
of intricate code to handle transaction and state management, multithreading, resource
pooling, and other complex low-level details. The component-based and platform-independent
Java EE architecture makes Java EE applications easy to write because business logic is
organized into reusable components. In addition, the Java EE server provides underlying
services in the form of a container for every component type. Because you do not have to
develop these services yourself, you are free to concentrate on solving the business problem at
hand.

Container Services

Containers are the interface between a component and the low-level platform-specific
functionality that supports the component. Before it can be executed, a web, enterprise bean, or
application client component must be assembled into a Java EE module and deployed into its
container.

The assembly process involves specifying container settings for each component in the Java EE
application and for the Java EE application itself. Container settings customize the underlying
support provided by the Java EE server, including such services as security, transaction
management, Java Naming and Directory Interface (JNDI) API lookups, and remote
connectivity. Here are some of the highlights.

= The Java EE security model lets you configure a web component or enterprise bean so that
system resources are accessed only by authorized users.

= The Java EE transaction model lets you specify relationships among methods that make up a
single transaction so that all methods in one transaction are treated as a single unit.

= JNDIlookup services provide a unified interface to multiple naming and directory services
in the enterprise so that application components can access these services.

= The Java EE remote connectivity model manages low-level communications between clients
and enterprise beans. After an enterprise bean is created, a client invokes methods on it as if
it were in the same virtual machine.

Because the Java EE architecture provides configurable services, application components within
the same Java EE application can behave differently based on where they are deployed. For
example, an enterprise bean can have security settings that allow it a certain level of access to
database data in one production environment and another level of database access in another
production environment.

The container also manages nonconfigurable services, such as enterprise bean and servlet
lifecycles, database connection resource pooling, data persistence, and access to the Java EE
platform APIs (see “Java EE 6 APIs” on page 55).

Chapter 1 « Overview 47



Java EE Containers

48

Container Types

The deployment process installs Java EE application components in the Java EE containers as
illustrated in Figure 1-5.

FIGURE1-5 Java EE Server and Containers

Application Client
Container
Client
Machine
Application
Client
A
Servlet
« Web
¢ Container
\ | 4
Java EE
v l Server
Enterprise Enterprise
Bean Bean EJB
. . Container
A
v
Database

= Java EE server: The runtime portion of a Java EE product. A Java EE server provides EJB and
web containers.

= Enterprise JavaBeans (EJB) container: Manages the execution of enterprise beans for Java
EE applications. Enterprise beans and their container run on the Java EE server.

= Web container: Manages the execution of web pages, servlets, and some EJB components
for Java EE applications. Web components and their container run on the Java EE server.

The Java EE 6 Tutorial « January 2013



Web Services Support

= Application client container: Manages the execution of application client components.
Application clients and their container run on the client.

= Applet container: Manages the execution of applets. Consists of a web browser and Java
Plug-in running on the client together.

Web Services Support

Web services are web-based enterprise applications that use open, XML-based standards and
transport protocols to exchange data with calling clients. The Java EE platform provides the
XML APIs and tools you need to quickly design, develop, test, and deploy web services and
clients that fully interoperate with other web services and clients running on Java-based or
non-Java-based platforms.

To write web services and clients with the Java EE XML APIs, all you do is pass parameter data
to the method calls and process the data returned; for document-oriented web services, you
send documents containing the service data back and forth. No low-level programming is
needed, because the XML API implementations do the work of translating the application data
to and from an XML-based data stream that is sent over the standardized XML-based transport
protocols. These XML-based standards and protocols are introduced in the following sections.

The translation of data to a standardized XML-based data stream is what makes web services
and clients written with the Java EE XML APIs fully interoperable. This does not necessarily
mean that the data being transported includes XML tags, because the transported data can itself
be plain text, XML data, or any kind of binary data, such as audio, video, maps, program files,
computer-aided design (CAD) documents, and the like. The next section introduces XML and
explains how parties doing business can use XML tags and schemas to exchange datain a
meaningful way.

XML

Extensible Markup Language (XML) is a cross-platform, extensible, text-based standard for
representing data. Parties that exchange XML data can create their own tags to describe the
data, set up schemas to specify which tags can be used in a particular kind of XML document,
and use XML style sheets to manage the display and handling of the data.

For example, a web service can use XML and a schema to produce price lists, and companies
that receive the price lists and schema can have their own style sheets to handle the data in a way
that best suits their needs. Here are examples.

= One company might put XML pricing information through a program to translate the XML
to HTML so that it can post the price lists to its intranet.

= A partner company might put the XML pricing information through a tool to create a
marketing presentation.

Chapter 1 « Overview 49



Java EE Application Assembly and Deployment

= Another company might read the XML pricing information into an application for
processing.

SOAP Transport Protocol

Client requests and web service responses are transmitted as Simple Object Access Protocol
(SOAP) messages over HTTP to enable a completely interoperable exchange between clients
and web services, all running on different platforms and at various locations on the Internet.
HTTP is a familiar request-and-response standard for sending messages over the Internet, and
SOAP is an XML-based protocol that follows the HTTP request-and-response model.

The SOAP portion of a transported message does the following:

= Defines an XML-based envelope to describe what is in the message and explain how to
process the message

= Includes XML-based encoding rules to express instances of application-defined data types
within the message

= Defines an XML-based convention for representing the request to the remote service and
the resulting response

WSDL Standard Format

The Web Services Description Language (WSDL) is a standardized XML format for describing
network services. The description includes the name of the service, the location of the service,
and ways to communicate with the service. WSDL service descriptions can be published on the
Web. GlassFish Server provides a tool for generating the WSDL specification of a web service
that uses remote procedure calls to communicate with clients.

Java EE Application Assembly and Deployment

50

A Java EE application is packaged into one or more standard units for deployment to any Java
EE platform-compliant system. Each unit contains

= A functional component or components, such as an enterprise bean, web page, servlet, or
applet
= Anoptional deployment descriptor that describes its content

Once a Java EE unit has been produced, it is ready to be deployed. Deployment typically
involves using a platform’s deployment tool to specify location-specific information, such asa
list of local users who can access it and the name of the local database. Once deployed on a local
platform, the application is ready to run.

The Java EE 6 Tutorial « January 2013



Packaging Applications

Packaging Applications

A Java EE application is delivered in a Java Archive (JAR) file,a Web Archive (WAR) file, or an
Enterprise Archive (EAR) file. A WAR or EAR fileis a standard JAR (. jar) filewitha .war or
.ear extension. Using JAR, WAR, and EAR files and modules makes it possible to assemble a
number of different Java EE applications using some of the same components. No extra coding

is needed; it is only a matter of assembling (or packaging) various Java EE modules into Java EE
JAR, WAR, or EAR files.

An EAR file (see Figure 1-6) contains Java EE modules and, optionally, deployment descriptors.
A deployment descriptor, an XML document with an . xml extension, describes the deployment
settings of an application, a module, or a component. Because deployment descriptor
information is declarative, it can be changed without the need to modify the source code. At
runtime, the Java EE server reads the deployment descriptor and acts upon the application,
module, or component accordingly.

FIGURE 1-6 EAR File Structure

’ Assembly Root
I
|

| |
META-INF Web EJB
Module Module

Application Client
Module

Resource Adapter
Module

application.xml
glassfish-application.xml
(optional)

The two types of deployment descriptors are Java EE and runtime. A Java EE deployment
descriptor is defined by a Java EE specification and can be used to configure deployment settings
on any Java EE-compliant implementation. A runtime deployment descriptor is used to
configure Java EE implementation-specific parameters. For example, the GlassFish Server
runtime deployment descriptor contains such information as the context root of a web
application, as well as GlassFish Server implementation-specific parameters, such as caching

Chapter 1 « Overview 51



Development Roles

directives. The GlassFish Server runtime deployment descriptors are named
glassfish-moduleType.xml and are located in the same META- INF directory as the Java EE
deployment descriptor.

A Java EE module consists of one or more Java EE components for the same container type and,
optionally, one component deployment descriptor of that type. An enterprise bean module
deployment descriptor, for example, declares transaction attributes and security authorizations
for an enterprise bean. A Java EE module can be deployed as a stand-alone module.

Java EE modules are of the following types:

= EJB modules, which contain class files for enterprise beans and, optionally, an EJB
deployment descriptor. EJB modules are packaged as JAR files with a . jar extension.

= Web modules, which contain servlet class files, web files, supporting class files, image and
HTML files, and, optionally, a web application deployment descriptor. Web modules are
packaged as JAR files with a .war (web archive) extension.

= Application client modules, which contain class files and, optionally, an application client
deployment descriptor. Application client modules are packaged as JAR files with a . jar
extension.

= Resource adapter modules, which contain all Java interfaces, classes, native libraries, and,
optionally, a resource adapter deployment descriptor. Together, these implement the
Connector architecture (see “Java EE Connector Architecture” on page 63) for a particular
EIS. Resource adapter modules are packaged as JAR files with an . rar (resource adapter
archive) extension.

Development Roles

52

Reusable modules make it possible to divide the application development and deployment
process into distinct roles so that different people or companies can perform difterent parts of
the process.

The first two roles, Java EE product provider and tool provider, involve purchasing and
installing the Java EE product and tools. After software is purchased and installed, Java EE
components can be developed by application component providers, assembled by application
assemblers, and deployed by application deployers. In a large organization, each of these roles
might be executed by different individuals or teams. This division of labor works because each
of the earlier roles outputs a portable file that is the input for a subsequent role. For example, in
the application component development phase, an enterprise bean software developer delivers
EJB JAR files. In the application assembly role, another developer may combine these EJB JAR
files into a Java EE application and save it in an EAR file. In the application deployment role, a
system administrator at the customer site uses the EAR file to install the Java EE application into
aJava EE server.

The Java EE 6 Tutorial « January 2013



Development Roles

The different roles are not always executed by different people. If you work for a small company,
for example, or if you are prototyping a sample application, you might perform tasks in every
phase.

Java EE Product Provider

The Java EE product provider is the company that designs and makes available for purchase the
Java EE platform APIs and other features defined in the Java EE specification. Product providers
are typically application server vendors that implement the Java EE platform according to the
Java EE 6 Platform specification.

Tool Provider

The tool provider is the company or person who creates development, assembly, and packaging
tools used by component providers, assemblers, and deployers.

Application Component Provider

The application component provider is the company or person who creates web components,
enterprise beans, applets, or application clients for use in Java EE applications.

Enterprise Bean Developer

An enterprise bean developer performs the following tasks to deliver an EJB JAR file that
contains one or more enterprise beans:

= Writes and compiles the source code
= Specifies the deployment descriptor (optional)
= Packages the . class files and deployment descriptor into the EJB JAR file

Web Component Developer

A web component developer performs the following tasks to deliver a WAR file containing one
or more web components:

= Writes and compiles servlet source code

= Writes JavaServer Faces, JSP, and HTML files

= Specifies the deployment descriptor (optional)

= Packagesthe .class, . jsp,and.html files and deployment descriptor into the WAR file

Chapter 1 « Overview 53



Development Roles

54

Application Client Developer

An application client developer performs the following tasks to deliver a JAR file containing the
application client:

= Writes and compiles the source code
= Specifies the deployment descriptor for the client (optional)
= Packages the . class files and deployment descriptor into the JAR file

Application Assembler

The application assembler is the company or person who receives application modules from
component providers and may assemble them into a Java EE application EAR file. The
assembler or deployer can edit the deployment descriptor directly or can use tools that correctly
add XML tags according to interactive selections.

A software developer performs the following tasks to deliver an EAR file containing the Java EE
application:

= Assembles EJB JAR and WAR files created in the previous phases into a Java EE application
(EAR) file

= Specifies the deployment descriptor for the Java EE application (optional)

= Verifies that the contents of the EAR file are well formed and comply with the Java EE
specification

Application Deployer and Administrator

The application deployer and administrator is the company or person who configures and
deploys application clients, web applications, Enterprise JavaBeans components, and Java EE
applications, administers the computing and networking infrastructure where Java EE
components and applications run, and oversees the runtime environment. Duties include
setting transaction controls and security attributes and specifying connections to databases.

During configuration, the deployer follows instructions supplied by the application component
provider to resolve external dependencies, specify security settings, and assign transaction
attributes. During installation, the deployer moves the application components to the server
and generates the container-specific classes and interfaces.

The Java EE 6 Tutorial « January 2013



JavaEE 6 APIs

A deployer or system administrator performs the following tasks to install and configure a Java
EE application or components:

= Configures the Java EE application or components for the operational environment

= Verifies that the contents of the EAR, JAR, and/or WAR files are well formed and comply
with the Java EE specification

= Deploys (installs) the Java EE application or components into the Java EE server

Java EE 6 APIs

Figure 1-7 shows the relationships among the Java EE containers.

FIGURE 1-7 Java EE Containers

Client System Java EE Server
Browser < Web Container
JavaServer
‘ B s Servlet
Application
Client I -
Container
Application EJB Container ! j
cient | T T([BE | [EE |7 ’~ J/I

Database

Figure 1-8 shows the availability of the Java EE 6 APIs in the web container.

Chapter 1 « Overview 55



JavaEE 6 APIs

FIGURE 1-8 Java EE APIs in the Web Container

Web Java SE
Container
JavaMail
Servlet
JSP
JavaServer | Connectors
Faces
Java Persistence
JMS
Management

WS Metadata
Web Services
JACC

JAX-WS
JAX-RPC

Figure 1-9 shows the availability of the Java EE 6 APIs in the EJB container.

56 The Java EE 6 Tutorial « January 2013



JavaEE 6 APIs

FIGURE1-9 Java EE APIsin the EJB Container

EJB
Container

EJB

JavaMail

Java Persistence
JTA

Connectors

JMS

Management

WS Management

Web Services
JACC

EE |
G

JAX-WS
JAX-RPC

Java SE

Figure 1-10 shows the availability of the Java EE 6 APIs in the application client container.

Chapter 1 « Overview

57



JavaEE 6 APIs

58

FIGURE 1-10 Java EE APIs in the Application Client Container

Application | Java Persistence Java SE

Client

Container Management
WS Metadata

Tt Web Services
Application
Client | JSR 299

JMS
JAXR
JAX-WS 2
JAX-RPC | &

L New in Java EE 6

The following sections give a brief summary of the technologies required by the Java EE
platform and the APIs used in Java EE applications.

Enterprise JavaBeans Technology

An Enterprise JavaBeans (EJB) component, or enterprise bean, is a body of code having fields and
methods to implement modules of business logic. You can think of an enterprise bean as a
building block that can be used alone or with other enterprise beans to execute business logic on
the Java EE server.

Enterprise beans are either session beans or message-driven beans.

= A session bean represents a transient conversation with a client. When the client finishes
executing, the session bean and its data are gone.

= A message-driven bean combines features of a session bean and a message listener, allowing
a business component to receive messages asynchronously. Commonly, these are Java
Message Service (JMS) messages.

The Java EE 6 Tutorial « January 2013



JavaEE 6 APIs

In the Java EE 6 platform, new enterprise bean features include the following:

= The ability to package local enterprise beans in a WAR file
= Singleton session beans, which provide easy access to shared state

= Alightweight subset of Enterprise JavaBeans functionality (EJB Lite) that can be provided
within Java EE Profiles, such as the Java EE Web Profile.

The Java EE 6 platform requires Enterprise JavaBeans 3.1 and Interceptors 1.1. The Interceptors
specification, which is part of the EJB 3.1 specification, makes more generally available the
interceptor facility originally defined as part of the EJB 3.0 specification.

Java Servlet Technology

Java Servlet technology lets you define HTTP-specific servlet classes. A servlet class extends the
capabilities of servers that host applications accessed by way of a request-response
programming model. Although servlets can respond to any type of request, they are commonly
used to extend the applications hosted by web servers.

In the Java EE 6 platform, new Java Servlet technology features include the following:

Annotation support
Asynchronous support

Ease of configuration
Enhancements to existing APIs
Pluggability

The Java EE 6 platform requires Servlet 3.0.

JavaServer Faces Technology

JavaServer Faces technology is a user interface framework for building web applications. The
main components of JavaServer Faces technology are as follows:

= A GUI component framework.

= A flexible model for rendering components in different kinds of HTML or different markup
languages and technologies. A Renderer object generates the markup to render the
component and converts the data stored in a model object to types that can be represented
inaview.

= Astandard RenderKit for generating HTML/4.01 markup.

The following features support the GUI components:

= Inputvalidation
= Eventhandling

Chapter 1 « Overview 59



JavaEE 6 APIs

60

Data conversion between model objects and components
Managed model object creation

Page navigation configuration

Expression Language (EL)

All this functionality is available using standard Java APIs and XML-based configuration files.

In the Java EE 6 platform, new features of JavaServer Faces include the following:

= The ability to use annotations instead of a configuration file to specify managed beans and
other components

= Facelets, a display technology that replaces JavaServer Pages (JSP) technology using
XHTML files

= Ajax support
= Composite components

= Implicit navigation

The Java EE 6 platform requires JavaServer Faces 2.0 and Expression Language 2.2.

JavaServer Pages Technology

JavaServer Pages (JSP) technology lets you put snippets of servlet code directly into a text-based
document. A JSP page is a text-based document that contains two types of text:

= Static data, which can be expressed in any text-based format such as HTML or XML

= JSP elements, which determine how the page constructs dynamic content

For information about JSP technology, see the The Java EE 5 Tutorial at
http://docs.oracle.com/javaee/5/tutorial/doc/.

The Java EE 6 platform requires JavaServer Pages 2.2 for compatibility with earlier releases, but
recommends the use of Facelets as the display technology in new applications.

JavaServer Pages Standard Tag Library

The JavaServer Pages Standard Tag Library (JSTL) encapsulates core functionality common to
many JSP applications. Instead of mixing tags from numerous vendors in your JSP applications,
you use a single, standard set of tags. This standardization allows you to deploy your
applications on any JSP container that supports JSTL and makes it more likely that the
implementation of the tags is optimized.

JSTL has iterator and conditional tags for handling flow control, tags for manipulating XML
documents, internationalization tags, tags for accessing databases using SQL, and commonly
used functions.

The Java EE 6 Tutorial « January 2013


http://docs.oracle.com/javaee/5/tutorial/doc/

JavaEE 6 APIs

The Java EE 6 platform requires JSTL 1.2.

Java Persistence API

The Java Persistence API (JPA) is a Java standards-based solution for persistence. Persistence
uses an object/relational mapping approach to bridge the gap between an object-oriented
model and a relational database. The Java Persistence API can also be used in Java SE
applications, outside of the Java EE environment. Java Persistence consists of the following
areas:

= The Java Persistence API
= The query language
= Object/relational mapping metadata

The Java EE 6 platform requires Java Persistence API 2.0.

Java Transaction API

The Java Transaction API (JTA) provides a standard interface for demarcating transactions.
The Java EE architecture provides a default auto commit to handle transaction commits and
rollbacks. An auto commit means that any other applications that are viewing data will see the
updated data after each database read or write operation. However, if your application performs
two separate database access operations that depend on each other, you will want to use the JTA
API to demarcate where the entire transaction, including both operations, begins, rolls back,
and commits.

The Java EE 6 platform requires Java Transaction API 1.1.

Java API for RESTful Web Services

The Java API for RESTful Web Services (JAX-RS) defines APIs for the development of web
services built according to the Representational State Transfer (REST) architectural style. A
JAX-RS application is a web application that consists of classes packaged as a servlet ina WAR
file along with required libraries.

The JAX-RS APl is new to the Java EE 6 platform. The Java EE 6 platform requires JAX-RS 1.1.

Managed Beans

Managed Beans, lightweight container-managed objects (POJOs) with minimal requirements,
support a small set of basic services, such as resource injection, lifecycle callbacks, and

Chapter 1 « Overview 61



JavaEE 6 APIs

62

interceptors. Managed Beans represent a generalization of the managed beans specified by
JavaServer Faces technology and can be used anywhere in a Java EE application, not just in web
modules.

The Managed Beans specification is part of the Java EE 6 platform specification (JSR 316).

Managed Beans are new to the Java EE 6 platform. The Java EE 6 platform requires Managed
Beans 1.0.

Contexts and Dependency Injection for the Java EE
Platform (JSR 299)

Contexts and Dependency Injection (CDI) for the Java EE platform defines a set of contextual
services, provided by Java EE containers, that make it easy for developers to use enterprise beans
along with JavaServer Faces technology in web applications. Designed for use with stateful
objects, CDI also has many broader uses, allowing developers a great deal of flexibility to
integrate different kinds of components in a loosely coupled but type-safe way.

CDl is new to the Java EE 6 platform. The Java EE 6 platform requires CDI 1.0.

Dependency Injection for Java (JSR 330)

Dependency Injection for Java defines a standard set of annotations (and one interface) for use
on injectable classes.

In the Java EE platform, CDI provides support for Dependency Injection. Specifically, you can
use DI injection points only in a CDI-enabled application.

Dependency Injection for Java is new to the Java EE 6 platform. The Java EE 6 platform requires
Dependency Injection for Java 1.0.

Bean Validation

The Bean Validation specification defines a metadata model and APT for validating data in
JavaBeans components. Instead of distributing validation of data over several layers, such as the
browser and the server side, you can define the validation constraints in one place and share
them across the different layers.

Bean Validation is new to the Java EE 6 platform. The Java EE 6 platform requires Bean
Validation 1.0.

The Java EE 6 Tutorial « January 2013



JavaEE 6 APIs

Java Message Service API

The Java Message Service (JMS) API is a messaging standard that allows Java EE application
components to create, send, receive, and read messages. It enables distributed communication
that is loosely coupled, reliable, and asynchronous.

The Java EE 6 platform requires JMS 1.1.

Java EE Connector Architecture

The Java EE Connector architecture is used by tools vendors and system integrators to create
resource adapters that support access to enterprise information systems that can be plugged in
to any Java EE product. A resource adapter is a software component that allows Java EE
application components to access and interact with the underlying resource manager of the EIS.
Because a resource adapter is specific to its resource manager, a different resource adapter
typically exists for each type of database or enterprise information system.

The Java EE Connector architecture also provides a performance-oriented, secure, scalable, and
message-based transactional integration of Java EE based web services with existing EISs that
can be either synchronous or asynchronous. Existing applications and EISs integrated through
the Java EE Connector architecture into the Java EE platform can be exposed as XML-based web
services by using JAX-WS and Java EE component models. Thus JAX-WS and the Java EE
Connector architecture are complementary technologies for enterprise application integration
(EAI) and end-to-end business integration.

The Java EE 6 platform requires Java EE Connector architecture 1.6.

JavaMail API

Java EE applications use the JavaMail API to send email notifications. The JavaMail API has two
parts:

= Anapplication-level interface used by the application components to send mail
= A service provider interface

The Java EE platform includes the JavaMail API with a service provider that allows application
components to send Internet mail.

The Java EE 6 platform requires JavaMail 1.4.

Java Authorization Contract for Containers

The Java Authorization Contract for Containers (JACC) specification defines a contract
between a Java EE application server and an authorization policy provider. All Java EE
containers support this contract.

Chapter 1 « Overview 63



Java EE 6 APIs in the Java Platform, Standard Edition 6 and 7

The JACC specification defines java.security.Permission classes that satisfy the Java EE
authorization model. The specification defines the binding of container-access decisions to
operations on instances of these permission classes. It defines the semantics of policy providers
that use the new permission classes to address the authorization requirements of the Java EE
platform, including the definition and use of roles.

The Java EE 6 platform requires JACC 1.4.

Java Authentication Service Provider Interface for
Containers

The Java Authentication Service Provider Interface for Containers (JASPIC) specification
defines a service provider interface (SPI) by which authentication providers that implement
message authentication mechanisms may be integrated in client or server message-processing
containers or runtimes. Authentication providers integrated through this interface operate on
network messages provided to them by their calling containers. The authentication providers
transform outgoing messages so that the source of each message can be authenticated by the
receiving container, and the recipient of the message can be authenticated by the message
sender. Authentication providers authenticate each incoming message and return to their
calling containers the identity established as a result of the message authentication.

JASPIC is new to the Java EE 6 platform. The Java EE 6 platform requires JASPIC 1.0.

Java EE 6 APIs in the Java Platform, Standard Edition 6 and 7

64

Several APIs that are required by the Java EE 6 platform are included in the Java Platform,
Standard Edition 6 and 7 (Java SE 6 and 7) and are thus available to Java EE applications.

Java Database Connectivity API

The Java Database Connectivity (JDBC) API lets you invoke SQL commands from Java
programming language methods. You use the JDBC API in an enterprise bean when you have a
session bean access the database. You can also use the JDBC API from a servlet or a JSP page to
access the database directly without going through an enterprise bean.

The JDBC API has two parts:

= Anapplication-level interface used by the application components to access a database

= A service provider interface to attach a JDBC driver to the Java EE platform

The Java SE 6 platform requires JDBC 4.0.

The Java EE 6 Tutorial « January 2013



Java EE 6 APIs in the Java Platform, Standard Edition 6 and 7

Java Naming and Directory Interface API

The Java Naming and Directory Interface (JNDI) API provides naming and directory
functionality, enabling applications to access multiple naming and directory services such as
LDAP, DNS, and NIS. The JNDI API provides applications with methods for performing
standard directory operations, such as associating attributes with objects and searching for
objects using their attributes. Using JNDI, a Java EE application can store and retrieve any type
of named Java object, allowing Java EE applications to coexist with many legacy applications
and systems.

Java EE naming services provide application clients, enterprise beans, and web components
with access to a JNDI naming environment. A naming environment allows a component to be
customized without the need to access or change the component’s source code. A container
implements the component’s environment and provides it to the component as a [NDI naming
context.

ATJava EE component can locate its environment naming context by using JNDI interfaces. A
component can create a javax.naming.InitialContext object and look up the environment
naming context in InitialContext under the name java:comp/env. A component’s naming
environment is stored directly in the environment naming context or in any of its direct or
indirect subcontexts.

A Java EE component can access named system-provided and user-defined objects. The names
of system-provided objects, such as JTA UserTransaction objects, are stored in the
environment naming context java: comp/env. The Java EE platform allows a component to
name user-defined objects, such as enterprise beans, environment entries, JDBC DataSource
objects, and message connections. An object should be named within a subcontext of the
naming environment according to the type of the object. For example, enterprise beans are
named within the subcontext java: comp/env/ejb, and JDBC DataSource references are
named within the subcontext java: comp/env/jdbc.

JavaBeans Activation Framework

The JavaBeans Activation Framework (JAF) is used by the JavaMail API. JAF provides standard
services to determine the type of an arbitrary piece of data, encapsulate access to it, discover the
operations available on it, and create the appropriate JavaBeans component to perform those
operations.

Java API for XML Processing

The Java API for XML Processing (JAXP), part of the Java SE platform, supports the processing
of XML documents using Document Object Model (DOM), Simple API for XML (SAX), and

Chapter 1 « Overview 65



Java EE 6 APIs in the Java Platform, Standard Edition 6 and 7

66

Extensible Stylesheet Language Transformations (XSLT). JAXP enables applications to parse
and transform XML documents independently of a particular XML processing
implementation.

JAXP also provides namespace support, which lets you work with schemas that might otherwise
have naming conflicts. Designed to be flexible, JAXP lets you use any XML-compliant parser or
XSL processor from within your application and supports the Worldwide Web Consortium
(W3C) schema. You can find information on the W3C schema at this URL:
http://www.w3.0rg/XML/Schema.

Java Architecture for XML Binding

The Java Architecture for XML Binding (JAXB) provides a convenient way to bind an XML
schema to a representation in Java language programs. JAXB can be used independently or in
combination with JAX-WS, where it provides a standard data binding for web service messages.
All Java EE application client containers, web containers, and EJB containers support the JAXB
APL

The Java EE 6 platform requires JAXB 2.2.

SOAP with Attachments API for Java

The SOAP with Attachments API for Java (SAAJ) is a low-level API on which JAX-WS depends.
SAAJ enables the production and consumption of messages that conform to the SOAP 1.1 and
1.2 specifications and SOAP with Attachments note. Most developers do not use the SAAJ APJ,
instead using the higher-level JAX-WS APL

Java APl for XML Web Services

The Java API for XML Web Services (JAX-WS) specification provides support for web services
that use the JAXB API for binding XML data to Java objects. The JAX-WS specification defines
client APIs for accessing web services as well as techniques for implementing web service
endpoints. The Implementing Enterprise Web Services specification describes the deployment
of JAX-WS-based services and clients. The EJB and Java Servlet specifications also describe
aspects of such deployment. JAX-WS-based applications can be deployed using any of these
deployment models.

The JAX-WS specification describes the support for message handlers that can process message
requests and responses. In general, these message handlers execute in the same container and
with the same privileges and execution context as the JAX-WS client or endpoint component
with which they are associated. These message handlers have access to the same JNDI
java:comp/env namespace as their associated component. Custom serializers and deserializers,
if supported, are treated in the same way as message handlers.

The Java EE 6 Tutorial « January 2013


http://www.w3.org/XML/Schema

GlassFish ServerTools

The Java EE 6 platform requires JAX-WS 2.2.

Java Authentication and Authorization Service

The Java Authentication and Authorization Service (JAAS) provides a way for a Java EE
application to authenticate and authorize a specific user or group of users to run it.

JAAS is a Java programming language version of the standard Pluggable Authentication
Module (PAM) framework, which extends the Java Platform security architecture to support
user-based authorization.

GlassFish Server Tools

The GlassFish Server is a compliant implementation of the Java EE 6 platform. In addition to
supporting all the APIs described in the previous sections, the GlassFish Server includes a
number of Java EE tools that are not part of the Java EE 6 platform but are provided as a
convenience to the developer.

This section briefly summarizes the tools that make up the GlassFish Server. Instructions for
starting and stopping the GlassFish Server, starting the Administration Console, and starting
and stopping the Java DB server are in Chapter 2, “Using the Tutorial Examples.”

The GlassFish Server contains the tools listed in Table 1-1. Basic usage information for many of
the tools appears throughout the tutorial. For detailed information, see the online help in the
GUTI tools.

TABLE 1-1 GlassFish Server Tools

Tool Description

Administration Console A web-based GUI GlassFish Server administration utility. Used to stop the
GlassFish Server and to manage users, resources, and applications.

asadmin A command-line GlassFish Server administration utility. Used to start and stop
the GlassFish Server and to manage users, resources, and applications.

appclient A command-line tool that launches the application client container and invokes
the client application packaged in the application client JAR file.

capture-schema A command-line tool to extract schema information from a database, producing
a schema file that the GlassFish Server can use for container-managed
persistence.

package-appclient A command-line tool to package the application client container libraries and
JAR files.

Java DB database A copy of the Java DB server.

Chapter 1 « Overview 67



GlassFish ServerTools

TABLE 1-1  GlassFish Server Tools (Continued)
Tool Description
xjc A command-line tool to transform, or bind, a source XML schema to a set of

JAXB content classes in the Java programming language.

schemagen A command-line tool to create a schema file for each namespace referenced in
your Java classes.
wsimport A command-line tool to generate JAX-WS portable artifacts for a given WSDL

file. After generation, these artifacts can be packaged in a WAR file with the
WSDL and schema documents, along with the endpoint implementation, and
then deployed.

wsgen A command-line tool to read a web service endpoint class and generate all the
required JAX-WS portable artifacts for web service deployment and invocation.

68 The Java EE 6 Tutorial « January 2013



CHAPTER 2

Using the Tutorial Examples

This chapter tells you everything you need to know to install, build, and run the tutorial
examples.

The following topics are addressed here:

“Required Software” on page 69

“Starting and Stopping the GlassFish Server” on page 73
“Starting the Administration Console” on page 74
“Starting and Stopping the Java DB Server” on page 75
“Building the Examples” on page 75

“Tutorial Example Directory Structure” on page 76
“Getting the Latest Updates to the Tutorial” on page 77
“Debugging Java EE Applications” on page 77

Required Software

The following software is required to run the examples:

“Java Platform, Standard Edition” on page 69
“Java EE 6 Software Development Kit” on page 70
“Java EE 6 Tutorial Component” on page 70
“NetBeans IDE” on page 71

“Apache Ant” on page 72

Java Platform, Standard Edition

To build, deploy, and run the examples, you need a copy of the Java Platform, Standard Edition
6.0 Development Kit (JDK 6) or the Java Platform, Standard Edition 7.0 Development Kit (JDK
7). You can download the JDK 6 or JDK 7 software from http://www.oracle.com/
technetwork/java/javase/downloads/index.html.

69


http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Required Software

70

Download the current JDK update that does not include any other software, such as NetBeans
IDE or the Java EE SDK.

Java EE 6 Software Development Kit

GlassFish Server Open Source Edition 3.1.2 is targeted as the build and runtime environment
for the tutorial examples. To build, deploy, and run the examples, you need a copy of the
GlassFish Server and, optionally, NetBeans IDE. To obtain the GlassFish Server, you must
install the Java EE 6 Software Development Kit (SDK), which you can download from
http://www.oracle.com/technetwork/java/javaee/downloads/index.html. Make sure
you download the Java EE 6 SDK, not the Java EE 6 Web Profile SDK.

SDK Installation Tips
During the installation of the SDK, do the following:

= Allow the installer to download and configure the Update Tool. If you access the Internet
through a firewall, provide the proxy host and port.

= Configure the GlassFish Server administration user name as admin, and specify no
password. This is the default setting.

m  Accept the default port values for the Admin Port (4848) and the HT'TP Port (8080).

= Do not select the check box to create an operating system service for the domain.

You can leave the check box to start the domain after creation selected if you wish, but this is not
required.

This tutorial refers to as-install-parent, the directory where you install the GlassFish Server. For
example, the default installation directory on Microsoft Windows is C:\glassfish3, so
as-install-parent is C: \glassfish3. The GlassFish Server itself is installed in as-install, the
glassfish directory under as-install-parent. So on Microsoft Windows, as-install is
C:\glassfish3\glassfish.

After you install the GlassFish Server, add the following directories to your PATH to avoid having
to specify the full path when you use commands:

as-install-parent/bin

as-install/bin

Java EE 6 Tutorial Component

The tutorial example source is contained in the tutorial component. To obtain the tutorial
component, use the Update Tool.

The Java EE 6 Tutorial « January 2013


http://www.oracle.com/technetwork/java/javaee/downloads/index.html

Required Software

Next Steps

To Obtain the Tutorial Component Using the Update Tool
Start the Update Tool by doing one of the following:
= Fromthe command line, type the command updatetool.

= OnaWindows system, from the Start menu, select All Programs, then select Java EE 6 SDK,
then select Start Update Tool.

Expand the Java EE 6 SDK node.

Select the Available Updates node.

From the list, select the Java EE 6 Tutorial check box.
Click Install.

Accept the license agreement.

After installation, the Java EE 6 Tutorial appears in the list of installed components. The tool is
installed in the as-install/docs/javaee-tutorial directory. This directory contains two
subdirectories: docs and examples. The examples directory contains subdirectories for each of
the technologies discussed in the tutorial.

Updates to the Java EE 6 Tutorial are published periodically. For details on obtaining these
updates, see “Getting the Latest Updates to the Tutorial” on page 77.

NetBeans IDE

The NetBeans integrated development environment (IDE) is a free, open-source IDE for
developing Java applications, including enterprise applications. NetBeans IDE supports the Java
EE platform. You can build, package, deploy, and run the tutorial examples from within
NetBeans IDE.

To run the tutorial examples, you need the latest version of NetBeans IDE. You can download
NetBeans IDE from http://www.netbeans.org/downloads/index.html. Make sure that you
download the Java EE bundle.

To Install NetBeans IDE without GlassFish Server

When you install NetBeans IDE, do not install the version of GlassFish Server that comes with
NetBeans IDE. To skip the installation of GlassFish Server, follow these steps.

On the first page of the NetBeans IDE Installer wizard, deselect the check box for GlassFish
Server and click OK.

Chapter2 - Using the Tutorial Examples 71


http://www.netbeans.org/downloads/index.html

Required Software

72

Accept both the License Agreement and the Junit License Agreement.

A few of the tutorial examples use the Junit library, so you should install it.

Continue with the installation of NetBeans IDE.

To Add GlassFish Server as a Server in NetBeans IDE

To run the tutorial examples in NetBeans IDE, you must add your GlassFish Server as a server
in NetBeans IDE. Follow these instructions to add the GlassFish Server to NetBeans IDE.

From the Tools menu, select Servers.

The Servers wizard opens.

Click Add Server.

Under Choose Server, select GlassFish Server 3+ and click Next.

Under Server Location, browse to the location of the Java EE 6 SDK and click Next.
Under Domain Location, select Register Local Domain.

Click Finish.

Apache Ant

Ant is a Java technology-based build tool developed by the Apache Software Foundation
(http://ant.apache.org/) and is used to build, package, and deploy the tutorial examples. To
run the tutorial examples, you need Ant 1.7.1 or higher. If you do not already have Ant, you can
install it from the Update Tool that is part of the GlassFish Server.

To Obtain Apache Ant
Start the Update Tool.
= From the command line, type the command updatetool.

= OnaWindows system, from the Start menu, select All Programs, then select Java EE 6 SDK,
then select Start Update Tool.

Expand the Java EE 6 SDK node.

Select the Available Add-ons node.

The Java EE 6 Tutorial « January 2013


http://ant.apache.org/

Starting and Stopping the GlassFish Server

4  From thelist, select the Apache Ant Build Tool check box.
5 ClickInstall.

6 Acceptthelicense agreement.

After installation, Apache Ant appears in the list of installed components. The tool is installed
in the as-install-parent/ant directory.

NextSteps To use the ant command, add as-install-parent/ant/bin to your PATH environment variable.

Starting and Stopping the GlassFish Server

To start the GlassFish Server from the command line, open a terminal window or command
prompt and execute the following:

asadmin start-domain --verbose

A domain is a set of one or more GlassFish Server instances managed by one administration
server. Associated with a domain are the following:

= The GlassFish Server’s port number. The default is 8080.
= The administration server’s port number. The default is 4848.
=  Anadministration user name and password. The default user name is admin, and by default

no password is required.

You specify these values when you install the GlassFish Server. The examples in this tutorial
assume that you chose the default ports as well as the default user name and lack of password.

With no arguments, the start-domain command initiates the default domain, which is
domainl. The - -verbose flag causes all logging and debugging output to appear on the terminal
window or command prompt. The output also goes into the server log, which is located in
domain-dir/logs/server.log.

Or, on Windows, from the Start menu, select All Programs, then select Java EE 6 SDK, then
select Start Application Server.

To stop the GlassFish Server, open a terminal window or command prompt and execute:

asadmin stop-domain domainl

Or, on Windows, from the Start menu, select All Programs, then select Java EE 6 SDK, then
select Stop Application Server.

Chapter2 - Using the Tutorial Examples 73



Starting the Administration Console

v To Start the GlassFish Server Using NetBeans IDE

1

Next Steps

Click the Services tab.
Expand the Servers node.

Right-click the GlassFish Server instance and select Start.

To stop the GlassFish Server using NetBeans IDE, right-click the GlassFish Server instance and
select Stop.

Starting the Administration Console

74

To administer the GlassFish Server and manage users, resources, and Java EE applications, use
the Administration Console tool. The GlassFish Server must be running before you invoke the
Administration Console. To start the Administration Console, open a browser at
http://localhost:4848/.

Or, on Windows, from the Start menu, select All Programs, then select Java EE 6 SDK, then
select Administration Console.

To Start the Administration Console Using NetBeans
IDE

Click the Services tab.
Expand the Servers node.

Right-click the GlassFish Server instance and select View Domain Admin Console.

Note - NetBeans IDE uses your default web browser to open the Administration Console.

The Java EE 6 Tutorial « January 2013



Building the Examples

Starting and Stopping the Java DB Server

The GlassFish Server includes the Java DB database server.

To start the Java DB server from the command line, open a terminal window or command
prompt and execute:

asadmin start-database

To stop the Java DB server from the command line, open a terminal window or command
prompt and execute:

asadmin stop-database

For information about the Java DB included with the GlassFish Server, see
http://www.oracle.com/technetwork/java/javadb/overview/index.html.

v To Start the Database Server Using NetBeans IDE

When you start the GlassFish Server using NetBeans IDE, the database server starts
automatically. If you ever need to start the database server manually, follow these steps.

1 Clickthe Services tab.
2 Expandthe Databases node.

3 Right-click Java DB and select Start Server.

NextSteps To stop the database using NetBeans IDE, right-click Java DB and select Stop Server.

Building the Examples

The tutorial examples are distributed with a configuration file for either NetBeans IDE or Ant.
Either NetBeans IDE or Ant may be used to build, package, deploy, and run the examples.
Directions for building the examples are provided in each chapter.

Chapter2 - Using the Tutorial Examples 75


http://www.oracle.com/technetwork/java/javadb/overview/index.html

Tutorial Example Directory Structure

Tutorial Example Directory Structure

76

To facilitate iterative development and keep application source separate from compiled files,
the tutorial examples use the Java BluePrints application directory structure.

Each application module has the following structure:

= build.xml: Antbuild file

®  src/java: Java source files for the module

= src/conf: configuration files for the module, with the exception of web applications
= web: web pages, style sheets, tag files, and images (web applications only)

= web/WEB-INF: configuration files for web applications (web applications only)

= nbproject: NetBeans project files

When an example has multiple application modules packaged into an EAR file, its submodule
directories use the following naming conventions:

= example-name-app-client: application clients
= example-name-ejb: enterprise bean JAR files
= example-name-war: web applications

The Ant build files (build.xml) distributed with the examples contain targets to create a build
subdirectory and to copy and compile files into that directory; a dist subdirectory, which holds
the packaged module file; and a client- jar directory, which holds the retrieved application
client JAR.

The tut-install/examples/bp-project/ directory contains additional Ant targets called by the
build.xml file targets.

For some web examples, an Ant target will open the example URL in a browser if one is
available. This happens automatically on Windows systems. If you are running on a UNIX
system, you may want to modify a line in the
tut-install/examples/bp-project/build.properties file. Remove the comment character
from the line specifying the default. browser property and specify the path to the command
that invokes a browser. If you do not make the change, you can open the URL in the browser
yourself.

The Java EE 6 Tutorial « January 2013



Debugging Java EE Applications

Getting the Latest Updates to the Tutorial

Check for any updates to the tutorial by using the Update Center included with the Java EE 6
SDK.

v To Update the Tutorial through the Update Center

1 Openthe Services tab in NetBeans IDE and expand Servers.

2 Right-click the GlassFish Server instance and select View Update Center to display the Update
Tool.

3 Select Available Updates in the tree to display a list of updated packages.
4 Lookfor updates to the Java EE 6 Tutorial (javaee-tutorial) package.

5 Ifthereisan updated version of the Tutorial, select Java EE 6 Tutorial (javaee-tutorial) and click
Install.

Debugging Java EE Applications

This section explains how to determine what is causing an error in your application deployment
or execution.

Using the Server Log

One way to debug applications is to look at the server log in domain-dir/1logs/server.log. The
log contains output from the GlassFish Server and your applications. You can log messages
from any Java class in your application with System.out.printlnand the Java Logging APIs
(documented at http://docs.oracle.com/javase/6/docs/technotes/guides/logging/
index.html) and from web components with the ServietContext.log method.

If you use NetBeans IDE, logging output appears in the Output window as well as the server log.

If you start the GlassFish Server with the - -verbose flag, all logging and debugging output will
appear on the terminal window or command prompt and the server log. If you start the
GlassFish Server in the background, debugging information is available only in the log. You can
view the server log with a text editor or with the Administration Console log viewer.

Chapter2 - Using the Tutorial Examples 77


http://docs.oracle.com/javase/6/docs/technotes/guides/logging/index.html
http://docs.oracle.com/javase/6/docs/technotes/guides/logging/index.html

Debugging Java EE Applications

78

To Use the Administration Console Log Viewer
Select the GlassFish Server node.

Click the View Log Files button.

The log viewer opens and displays the last 40 entries.

To display other entries, follow these steps.

a. Click the Modify Search button.

b. Specify any constraints on the entries you want to see.

¢. Clickthe Search button at the top of the log viewer.

Using a Debugger

The GlassFish Server supports the Java Platform Debugger Architecture (JPDA). With JPDA,
you can configure the GlassFish Server to communicate debugging information using a socket.

To Debug an Application Using a Debugger
Enable debugging in the GlassFish Server using the Administration Console:
a. Expand the Configurations node, then expand the server-config node.

b. Selectthe JVM Settings node. The default debug options are set to:

-Xdebug -Xrunjdwp:transport=dt socket,server=y,suspend=n,address=9009

Asyou can see, the default debugger socket port is 9009. You can change it to a port not in
use by the GlassFish Server or another service.

c. Select the Debug Enabled check box.
d. Click the Save button.

Stop the GlassFish Server and then restart it.

The Java EE 6 Tutorial « January 2013



PART 11

The Web Tier

Part I explores the technologies in the web tier. This part contains the following chapters:

Chapter 3, “Getting Started with Web Applications”

Chapter 4, “JavaServer Faces Technology”

Chapter 5, “Introduction to Facelets”

Chapter 6, “Expression Language”

Chapter 7, “Using JavaServer Faces Technology in Web Pages”

Chapter 8, “Using Converters, Listeners, and Validators”

Chapter 9, “Developing with JavaServer Faces Technology”

Chapter 10, “JavaServer Faces Technology: Advanced Concepts”
Chapter 11, “Using Ajax with JavaServer Faces Technology”

Chapter 12, “Composite Components: Advanced Topics and Example”
Chapter 13, “Creating Custom UI Components and Other Custom Objects”
Chapter 14, “Configuring JavaServer Faces Applications”

Chapter 15, “Java Servlet Technology”

Chapter 16, “Uploading Files with Java Servlet Technology”

Chapter 17, “Internationalizing and Localizing Web Applications”

79



80



L K R 4 CHAPTER 3

Getting Started with Web Applications

A web application is a dynamic extension of a web or application server. Web applications are of
the following types:

= Presentation-oriented: A presentation-oriented web application generates interactive web
pages containing various types of markup language (HTML, XHTML, XML, and so on) and
dynamic content in response to requests. Development of presentation-oriented web
applications is covered in Chapter 4, “JavaServer Faces Technology,” through Chapter 9,
“Developing with JavaServer Faces Technology”

= Service-oriented: A service-oriented web application implements the endpoint of a web
service. Presentation-oriented applications are often clients of service-oriented web
applications. Development of service-oriented web applications is covered in Chapter 19,
“Building Web Services with JAX-WS,” and Chapter 20, “Building RESTful Web Services
with JAX-RS,” in Part III, “Web Services.”

The following topics are addressed here:

“Web Applications” on page 81

“Web Application Lifecycle” on page 83

“Web Modules: The hellol Example” on page 84

“Configuring Web Applications: The hello2 Example” on page 93
“Further Information about Web Applications” on page 101

Web Applications

In the Java EE platform, web components provide the dynamic extension capabilities for a web
server. Web components can be Java servlets, web pages implemented with JavaServer Faces
technology, web service endpoints, or JSP pages. Figure 3-1 illustrates the interaction between a
web client and a web application that uses a servlet. The client sends an HTTP request to the
web server. A web server that implements Java Servlet and JavaServer Pages technology
converts the request into an HTTPServletRequest object. This object is delivered to a web
component, which can interact with JavaBeans components or a database to generate dynamic

81



Web Applications

82

content. The web component can then generate an HTTPServletResponse or can pass the
request to another web component. A web component eventually generates a
HTTPServletResponse object. The web server converts this object to an HT'TP response and
returns it to the client.

FIGURE3-1 Java Web Application Request Handling

Web @ ,| HttpServlet (2 @
Client ~ prrp Request — ||| Web —

Request ||| Components

& Database
¢/ 1o
® HttpServlet
L THTTP Response JavaBeans
[ a—— Components
Response 4]

@

Database

Servlets are Java programming language classes that dynamically process requests and
construct responses. Java technologies, such as JavaServer Faces and Facelets, are used for
building interactive web applications. (Frameworks can also be used for this purpose.)
Although servlets and Java Server Faces and Facelets pages can be used to accomplish similar
things, each has its own strengths. Servlets are best suited for service-oriented applications (web
service endpoints can be implemented as servlets) and the control functions of a
presentation-oriented application, such as dispatching requests and handling nontextual data.
Java Server Faces and Facelets pages are more appropriate for generating text-based markup,
such as XHTML, and are generally used for presentation-oriented applications.

Web components are supported by the services of a runtime platform called a web container. A
web container provides such services as request dispatching, security, concurrency, and
lifecycle management. A web container also gives web components access to such APIs as
naming, transactions, and email.

Certain aspects of web application behavior can be configured when the application is installed,
or deployed, to the web container. The configuration information can be specified using Java EE
annotations or can be maintained in a text file in XML format called a web application
deployment descriptor (DD). A web application DD must conform to the schema described in
the Java Servlet specification.

The Java EE 6 Tutorial « January 2013



Web Application Lifecycle

This chapter gives a brief overview of the activities involved in developing web applications.
First, it summarizes the web application lifecycle and explains how to package and deploy very
simple web applications on the GlassFish Server. The chapter moves on to configuring web
applications and discusses how to specify the most commonly used configuration parameters.

Web Application Lifecycle

A web application consists of web components; static resource files, such as images; and helper
classes and libraries. The web container provides many supporting services that enhance the
capabilities of web components and make them easier to develop. However, because a web
application must take these services into account, the process for creating and running a web
application is different from that of traditional stand-alone Java classes.

The process for creating, deploying, and executing a web application can be summarized as
follows:

Develop the web component code.

Develop the web application deployment descriptor, if necessary.

Compile the web application components and helper classes referenced by the components.
Optionally, package the application into a deployable unit.

Deploy the application into a web container.

AN S o o

Access a URL that references the web application.

Developing web component code is covered in the later chapters. Steps 2 through 4 are
expanded on in the following sections and illustrated with a Hello, World-style
presentation-oriented application. This application allows a user to enter a name into an HTML
form and then displays a greeting after the name is submitted.

The Hello application contains two web components that generate the greeting and the
response. This chapter discusses the following simple applications:

= hellol, aJavaServer Faces technology-based application that uses two XHTML pages and a
managed bean

= hello2, aservlet-based web application in which the components are implemented by two
servlet classes

The applications are used to illustrate tasks involved in packaging, deploying, configuring, and
running an application that contains web components. The source code for the examples is in
the tut-install/examples/web/hellol/ and tut-install/examples/web/hello2/ directories.

Chapter3 - Getting Started with Web Applications 83



Web Modules: The hello1 Example

Web Modules: The hello1 Example

84

In the Java EE architecture, a web module is the smallest deployable and usable unit of web
resources. A web module contains web components and static web content files, such as images,
which are called web resources. A Java EE web module corresponds to a web application as
defined in the Java Servlet specification.

In addition to web components and web resources, a web module can contain other files:

= Server-side utility classes, such as shopping carts
= Client-side classes, such as applets and utility classes

A web module has a specific structure. The top-level directory of a web module is the document
root of the application. The document root is where XHTML pages, client-side classes and
archives, and static web resources, such as images, are stored.

The document root contains a subdirectory named WEB- INF, which can contain the following
files and directories:

= classes: A directory that contains server-side classes: servlets, enterprise bean class files,
utility classes, and JavaBeans components

®  lib: A directory that contains JAR files that contain enterprise beans, and JAR archives of
libraries called by server-side classes

= Deployment descriptors, such as web . xml (the web application deployment descriptor) and
ejb-jar.xml (an EJB deployment descriptor)

A web module needs a web . xm1 file if it uses JavaServer Faces technology, if it must specify
certain kinds of security information, or if you want to override information specified by web
component annotations.

You can also create application-specific subdirectories (that is, package directories) in either the
document root or the WEB- INF/classes/ directory.

A web module can be deployed as an unpacked file structure or can be packaged in a JAR file
known as a Web Archive (WAR) file. Because the contents and use of WAR files differ from
those of JAR files, WAR file names use a .war extension. The web module just described is
portable; you can deploy it into any web container that conforms to the Java Servlet
specification.

To deploy a WAR on the GlassFish Server, the file must contain a runtime deployment
descriptor. The runtime DD is an XML file that contains such information as the context root of
the web application and the mapping of the portable names of an application’s resources to the
GlassFish Server’s resources. The GlassFish Server web application runtime DD is named
glassfish-web.xml and is located in the WEB- INF directory. The structure of a web module that
can be deployed on the GlassFish Server is shown in Figure 3-2.

For example, the glassfish-web.xml file for the hellol application specifies the following
context root:

The Java EE 6 Tutorial « January 2013



Web Modules: The hello1 Example

<context-root>/hellol</context-root>

FIGURE3-2 Web Module Structure

‘ Assembly Root
[

WEB-INF
lib classes
Web pages

web.xml
glassfish-web.xml
(optional) )

lere}ry _ All server-side

archive files .class files for

this web module

Examining the hello1 Web Module

The hellol application is a web module that uses JavaServer Faces technology to display a
greeting and response. You can use a text editor to view the application files, or you can use
NetBeans IDE.

¥ ToView the hello1 Web Module Using NetBeans IDE

1 From the File menu, choose Open Project.

2 Inthe Open Project dialog, navigate to:

tut-install/examples/web/

3 Selectthe hellolfolder.

4 Select the Open as Main Project check box.

Chapter3 - Getting Started with Web Applications 85



Web Modules: The hello1 Example

86

Expand the Web Pages node and double-click the index. xhtml file to view it in the right-hand
pane.

The index.xhtml file is the default landing page for a Facelets application. For this application,
the page uses simple tag markup to display a form with a graphic image, a header, a text field,
and two command buttons:

<?xml version='1.0' encoding='UTF-8’ 7>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-transitional.dtd">
<html lang="en"
xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<title>Facelets Hello Greeting</title>
</h:head>
<h:body>
<h:form>
<h:graphicImage url="duke.waving.gif" alt="Duke waving his hand"/>
<h2>Hello, my name is Duke. What's yours?</h2>
<h:inputText id="username"
title="My name is: "
value="#{hello.name}"
required="true"
requiredMessage="Error: A name is required."
maxlength="25" />
<p></p>
<h:commandButton id="submit" value="Submit" action="response">
</h:commandButton>
<h:commandButton id="reset" value="Reset" type="reset">
</h:commandButton>
</h:form>

</h:65&y>
</html>
The most complex element on the page is the inputText text field. The maxlength attribute
specifies the maximum length of the field. The required attribute specifies that the field must
be filled out; the requiredMessage attribute provides the error message to be displayed if the
field is left empty. The title attribute provides the text to be used by screen readers for the
visually disabled. Finally, the value attribute contains an expression that will be provided by the
Hello managed bean.

The Submit commandButton element specifies the action as response, meaning that when the
button is clicked, the response.xhtml page is displayed.

Double-click the response.xhtml file to view it.

The response page appears. Even simpler than the greeting page, the response page contains a
graphic image, a header that displays the expression provided by the managed bean, and a
single button whose action element transfers you back to the index.xhtml page:

<?xml version="1.0" encoding='UTF-8' 7>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-transitional.dtd">
<html lang="en"

The Java EE 6 Tutorial « January 2013



Web Modules: The hello1 Example

xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<title>Facelets Hello Response</title>
</h:head>
<h:body>
<h:form>
<h:graphicImage url="duke.waving.gif" alt="Duke waving his hand"/>
<h2>Hello, #{hello.name}!</h2>
<p></p>
<h:commandButton id="back" value="Back" action="index" />
</h:form>
</h:body>
</html>

Expand the Source Packages node, then the hellol node.

Double-click the Hello. javafile to viewit.

The Hello class, called a managed bean class, provides getter and setter methods for the name
property used in the Facelets page expressions. By default, the expression language refers to the
class name, with the first letter in lowercase (hello.name).

package hellol;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.RequestScoped;

@ManagedBean
@RequestScoped
public class Hello {

private String name;

public Hello() {
}

public String getName() {
return name;
}

public void setName(String user name) {
this.name = user name;
}
}

Under the Web Pages node, expand the WEB-INF node and double-click the web . xm1 file to view
it.

The web. xml file contains several elements that are required for a Facelets application. All these
are created automatically when you use NetBeans IDE to create an application:

= A context parameter specifying the project stage:

<context-param>
<param-name>javax.faces.PROJECT STAGE</param-name>
<param-value>Development</param-value>
</context-param>

Chapter3 - Getting Started with Web Applications 87



Web Modules: The hello1 Example

88

A context parameter provides configuration information needed by a web application. An
application can define its own context parameters. In addition, JavaServer Faces technology
and Java Servlet technology define context parameters that an application can use.

m  Aservlet element and its serviet-mapping element specifying the FacesServlet:

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1l</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/*</url-pattern>

</servlet-mapping>

= Awelcome-file-list element specifying the location of the landing page; note that the

location is faces/index.xhtml, not just index.xhtml:
<welcome-file-list>

<welcome-file>faces/index.xhtml</welcome-file>
</welcome-file-list>

Introduction to Scopes

In the Hello. java class, the annotations javax. faces.bean.ManagedBean and
javax.faces.bean.RequestScoped identify the class as a JavaServer Faces managed bean using
request scope. Scope defines how application data persists and is shared.

The most commonly used scopes in JavaServer Faces applications are the following:

= Request (@RequestScoped): Request scope persists during a single HTTP request in a web
application. In an application like hello1l, where the application consists of a single request
and response, the bean uses request scope.

= Session (@SessionScoped): Session scope persists across multiple HTTP requests in a web
application. When an application consists of multiple requests and responses where data
needs to be maintained, beans use session scope.

= Application (@ApplicationScoped): Application scope persists across all users’ interactions
with a web application.

For more information on scopes in JavaServer Faces technology, see “Using Managed Bean
Scopes” on page 296.

Packaging aWeb Module

A web module must be packaged into a WAR in certain deployment scenarios and whenever
you want to distribute the web module. You package a web module into a WAR by executing
the jar command in a directory laid out in the format of a web module, by using the Ant utility,
or by using the IDE tool of your choice. This tutorial shows you how to use NetBeans IDE or
Ant to build, package, and deploy the hellol sample application.

The Java EE 6 Tutorial « January 2013



Web Modules: The hello1 Example

To Set the Context Root

A context root identifies a web application in a Java EE server. A context root must start with a
forward slash (/) and end with a string.

In a packaged web module for deployment on the GlassFish Server, the context root is stored in
glassfish-web.xml.

To view or edit the context root, follow these steps.
Expand the Web Pages and WEB-INF nodes of the hello1 project.
Double-click glassfish-web.xml.

In the General tab, observe that the Context Root field is set to /hellol.

If you needed to edit this value, you could do so here. When you create a new application, you
type the context root here.

(Optional) Click the XML tab.

Observe that the context root value /hellol is enclosed by the context-root element. You
could also edit the value here.

To Build and Package the hello1 Web Module Using NetBeans IDE

From the File menu, choose Open Project.

In the Open Project dialog, navigate to:

tut-install/examples/web/

Select the hellol folder.
Select the Open as Main Project check box.
Click Open Project.

In the Projects tab, right-click the hello1l project and select Build.

To Build and Package the hello1 Web Module Using Ant

In a terminal window, go to:
tut-install/examples/web/hellol/

Type the following command:

ant

Chapter3 - Getting Started with Web Applications 89



Web Modules: The hello1 Example

This command spawns any necessary compilations, copies files to the directory
tut-install/examples/web/hellol/build/, creates the WAR file, and copies it to the directory
tut-install/examples/web/hellol/dist/.

Deploying a Web Module
You can deploy a WAR file to the GlassFish Server by

Using NetBeans IDE

Using the Ant utility

Using the asadmin command

Using the Administration Console

Copying the WAR file into the domain-dir/autodeploy/ directory

Throughout the tutorial, you will use NetBeans IDE or Ant for packaging and deploying.

V¥ ToDeploy the hello1 Web Module Using NetBeans IDE

® Right-click the hellol project and select Deploy.

¥ To Deploy the hello1 Web Module Using Ant

1 Inaterminal window, go to:
tut-install/examples/web/hellol/

2 Typethe following command:
ant deploy

Running a Deployed Web Module

Now that the web module is deployed, you can view it by opening the application in a web
browser. By default, the application is deployed to host Localhost on port 8080. The context
root of the web application is hellol.

¥ ToRun aDeployed Web Module

1 Openaweb browser.

2 Typethefollowing URL:
http://localhost:8080/hellol/

3 Typeyour name and click Submit.
The response page displays the name you submitted. Click the Back button to try again.

90 The Java EE 6 Tutorial « January 2013



Web Modules: The hello1 Example

Listing Deployed Web Modules

The GlassFish Server provides two ways to view the deployed web modules: the Administration
Console and the asadmin command.

To List Deployed Web Modules Using the Administration Console
Openthe URL http://localhost:4848/ in a browser.

Select the Applications node.
The deployed web modules appear in the Deployed Applications table.

To List Deployed Web Modules Using the asadmin Command

Type the following command:

asadmin list-applications

Updating a Web Module

A typical iterative development cycle involves deploying a web module and then making
changes to the application components. To update a deployed web module, follow these steps.

To Update a Deployed Web Module
Recompile any modified classes.
Redeploy the module.

Reload the URL in the client.

Dynamic Reloading

If dynamic reloading is enabled, you do not have to redeploy an application or module when
you change its code or deployment descriptors. All you have to do is copy the changed pages or
class files into the deployment directory for the application or module. The deployment
directory for a web module named context-root is domain-dir/applications/context-root. The
server checks for changes periodically and redeploys the application, automatically and
dynamically, with the changes.

Chapter3 - Getting Started with Web Applications 91



Web Modules: The hello1 Example

92

This capability is useful in a development environment because it allows code changes to be
tested quickly. Dynamic reloading is not recommended for a production environment,
however, because it may degrade performance. In addition, whenever a reload is done, the
sessions at that time become invalid, and the client must restart the session.

In the GlassFish Server, dynamic reloading is enabled by default.

To Disable or Modify Dynamic Reloading

If for some reason you do not want the default dynamic reloading behavior, follow these steps in
the Administration Console.

Openthe URL http://localhost:4848/ inabrowser.

Select the GlassFish Server node.

Select the Advanced tab.

To disable dynamic reloading, deselect the Reload Enabled check box.

To change the interval at which applications and modules are checked for code changes and
dynamically reloaded, type a number of seconds in the Reload Poll Interval field.

The default value is 2 seconds.

Click the Save button.

Undeploying Web Modules

You can undeploy web modules and other types of enterprise applications by using either
NetBeans IDE or the Ant tool.

To Undeploy the hello1 Web Module Using NetBeans IDE

Ensure that the GlassFish Server is running.

In the Services window, expand the Servers node, GlassFish Server instance, and the
Applications node.

Right-click the hellol module and choose Undeploy.

To delete the class files and other build artifacts, right-click the project and choose Clean.

The Java EE 6 Tutorial « January 2013



Configuring Web Applications: The hello2 Example

V¥ To Undeploy the hello1 Web Module Using Ant

1 Inaterminal window, go to:
tut-install/examples/web/hellol/

2 Typethefollowing command:
ant undeploy

3 Todelete the class files and other build artifacts, type the following command:

ant clean

Configuring Web Applications: The hello2 Example

Web applications are configured by means of annotations or by elements contained in the web
application deployment descriptor.

The following sections give a brief introduction to the web application features you will usually
want to configure. Examples demonstrate procedures for configuring the Hello, World
application.

Mapping URLs to Web Components

When it receives a request, the web container must determine which web component should
handle the request. The web container does so by mapping the URL path contained in the
request to a web application and a web component. A URL path contains the context root and,
optionally, a URL pattern:

http://host:port/context-root[ /url-pattern]

You set the URL pattern for a servlet by using the @WebServlet annotation in the servlet source
file. For example, the GreetingServlet. java file in the hello2 application contains the
following annotation, specifying the URL pattern as /greeting:

@webServlet("/greeting")
public class GreetingServlet extends HttpServlet {

This annotation indicates that the URL pattern /greeting follows the context root. Therefore,
when the servlet is deployed locally, it is accessed with the following URL:

http://localhost:8080/hello2/greeting

To access the servlet by using only the context root, specify "/" as the URL pattern.

Chapter3 - Getting Started with Web Applications 93



Configuring Web Applications: The hello2 Example

94

Examining the hello2 Web Module

The hello2 application behaves almost identically to the hellol application, but it is
implemented using Java Servlet technology instead of JavaServer Faces technology. You can use
a text editor to view the application files, or you can use NetBeans IDE.

To View the hello2 Web Module Using NetBeans IDE
From the File menu, choose Open Project.

In the Open Project dialog, navigate to:

tut-install/examples/web/

Select the helloz2 folder.
Select the Open as Main Project check box.
Expand the Source Packages node, then the servlets node.

Double-click the GreetingServlet. java file to viewit.

This servlet overrides the doGet method, implementing the GET method of HTTP. The servlet
displays a simple HTML greeting form whose Submit button, like that of hello1, specifies a
response page for its action. The following excerpt begins with the @WebServlet annotation
that specifies the URL pattern, relative to the context root:

@WebServlet("/greeting")
public class GreetingServlet extends HttpServlet {

@Override

public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

response.setContentType("text/html")
response.setBufferSize(8192);
PrintWriter out = response.getWriter();

// then write the data of the response

out.println("<html lang=\"en\">
+ "<head><title>Servlet Hello</title></head>");

// then write the data of the response
out.println("<body bgcolor=\"#ffffff\">"
+ "<img src=\"duke.waving.gif\" alt=\"Duke waving his hand\">"
+ "<form method=\"get\">"
+ "<h2>Hello, my name is Duke. What's yours?</h2>"
+ "<input title=\"My name is: \"type=\"text\" '
+ "name=\"username\" size=\"25\">"
+ "<p></p>"
+ "<input type=\"submit\" value=\"Submit\">"

The Java EE 6 Tutorial « January 2013



Configuring Web Applications: The hello2 Example

7

+ "<input type=\"reset\" value=\"Reset\">
+ "</form>")

String username = request.getParameter("username");
if (username != null && username.length() > 0) {
RequestDispatcher dispatcher =
getServletContext().getRequestDispatcher("/response");

if (dispatcher !'= null) {
dispatcher.include(request, response);
}
}
out.println("</body></html>");
out.close();

Double-click the ResponseServlet. java file to view it.

This servlet also overrides the doGet method, displaying only the response. The following
excerpt begins with the @WebServlet annotation, which specifies the URL pattern, relative to
the context root:

@WebServlet("/response")
public class ResponseServlet extends HttpServlet {

@Override
public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
PrintWriter out = response.getWriter();

// then write the data of the response

String username = request.getParameter("username");

if (username != null && username.length() > 0) {
out.println("<h2>Hello, " + username + "!</h2>")

}

Under the Web Pages node, expand the WEB-INF node and double-click the
glassfish-web.xml file to view it.

In the General tab, observe that the Context Root field is set to /hello2.

For this simple servlet application, a web . xm1 file is not required.

Running the hello2 Example

You can use either NetBeans IDE or Ant to build, package, deploy, and run the hello2 example.

Chapter3 - Getting Started with Web Applications 95



Configuring Web Applications: The hello2 Example

96

¥ ToRun the hello2 Example Using NetBeans IDE

1

From the File menu, choose Open Project.

In the Open Project dialog, navigate to:

tut-install/examples/web/

Select the hello2 folder.

Select the Open as Main Project check box.

Click Open Project.

In the Projects tab, right-click the hello2 project and select Build.
Right-click the project and select Deploy.

In a web browser, open the URL http://localhost:8080/hello2/greeting.
The URL specifies the context root, followed by the URL pattern.

The application looks much like the hello1l application. The major difference is that after you
click the Submit button, the response appears below the greeting, not on a separate page.

To Run the hello2 Example Using Ant

In a terminal window, go to:
tut-install/examples/web/hello2/

Type the following command:

ant

This target builds the WAR file and copies it to the tut-install/examples/web/hello2/dist/
directory.

Type ant deploy.
Ignore the URL shown in the deploy target output.

Inaweb browser, open the URL http://localhost:8080/hello2/greeting.
The URL specifies the context root, followed by the URL pattern.

The application looks much like the hellol application. The major difference is that after you
click the Submit button, the response appears below the greeting, not on a separate page.

The Java EE 6 Tutorial « January 2013



Configuring Web Applications: The hello2 Example

Declaring Welcome Files

The welcome files mechanism allows you to specify a list of files that the web container will use
for appending to a request for a URL (called a valid partial request) that is not mapped to a web
component. For example, suppose that you define a welcome file welcome. html. When a client
requests a URL such as host: port/webapp/directory, where directory is not mapped to a servlet
or XHTML page, the file host: port/webapp/directory/welcome. html is returned to the client.

Ifa web container receives a valid partial request, the web container examines the welcome file
list and appends to the partial request each welcome file in the order specified and checks
whether a static resource or servlet in the WAR is mapped to that request URL. The web
container then sends the request to the first resource that matches in the WAR.

If no welcome file is specified, the GlassFish Server will use a file named index. html as the
default welcome file. If there is no welcome file and no file named index. html, the GlassFish
Server returns a directory listing.

By convention, you specify the welcome file for a JavaServer Faces application as
faces/file-name.xhtml.

Setting Context Parameters

The web components in a web module share an object that represents their application context.
You can pass context parameters to the context, or initialization parameters to a servlet.
Context parameters are available to the entire web application. For information on
initialization parameters, see “Creating and Initializing a Servlet” on page 331.

To Add a Context Parameter Using NetBeans IDE

These steps apply generally to web applications, but do not apply specifically to the examples in
this chapter.

Open the project.
Expand the project’s node in the Projects pane.
Expand the Web Pages node and then the WEB-INF node.

Double-click web . xm1.

If the project does not have a web . xml file, follow the steps in “To Create a web . xm1 File Using
NetBeans IDE” on page 98.

Click General at the top of the editor pane.

Expand the Context Parameters node.

Chapter3 - Getting Started with Web Applications 97



Configuring Web Applications: The hello2 Example

98

7

Click Add.
An Add Context Parameter dialog opens.

In the Parameter Name field, type the name that specifies the context object.
In the Parameter Value field, type the parameter to pass to the context object.

Click OK.

To Create aweb. xml File Using NetBeans IDE
From the File menu, choose New File.

In the New File wizard, select the Web category, then select Standard Deployment Descriptor
under File Types.

Click Next.

Click Finish.
A basicweb. xml file appears in web/WEB-INF/.

Mapping Errors to Error Screens

When an error occurs during execution of a web application, you can have the application
display a specific error screen according to the type of error. In particular, you can specify a
mapping between the status code returned in an HTTP response or a Java programming
language exception returned by any web component and any type of error screen.

You can have multiple error-page elements in your deployment descriptor. Each element
identifies a different error that causes an error page to open. This error page can be the same for
any number of error-page elements.

To Set Up Error Mapping Using NetBeans IDE

These steps apply generally to web applications, but do not apply specifically to the examples in
this chapter.

Open the project.
Expand the project’s node in the Projects pane.

Expand the Web Pages node and then the WEB-INF node.

The Java EE 6 Tutorial « January 2013



Configuring Web Applications: The hello2 Example

10

Double-click web . xm1.

If the project does not have a web . xml file, follow the steps in “To Create a web . xm1 File Using
NetBeans IDE” on page 98.

Click Pages at the top of the editor pane.
Expand the Error Pages node.

Click Add.
The Add Error Page dialog opens.

Click Browse to locate the page that you want to act as the error page.

Specify either an error code or an exception type:

= To specify an error code, in the Error Code field, type the HTTP status code that will cause
the error page to be opened, or leave the field blank to include all error codes.

= To specify an exception type, in the Exception Type field, type the exception that will cause
the error page to load. To specify all throwable errors and exceptions, type
java.lang.Throwable.

Click OK.

Declaring Resource References

If your web component uses such objects as enterprise beans, data sources, or web services, you
use Java EE annotations to inject these resources into your application. Annotations eliminate a
lot of the boilerplate lookup code and configuration elements that previous versions of Java EE
required.

Although resource injection using annotations can be more convenient for the developer, there
are some restrictions on using it in web applications. First, you can inject resources only into
container-managed objects, since a container must have control over the creation of a
component so that it can perform the injection into a component. As a result, you cannot inject
resources into such objects as simple JavaBeans components. However, JavaServer Faces
managed beans and CDI managed beans are managed by the container; therefore, they can
accept resource injections.

Components that can accept resource injections are listed in Table 3-1.

This section explains how to use a couple of the annotations supported by a web container to
inject resources. Chapter 33, “Running the Persistence Examples,” explains how web
applications use annotations supported by the Java Persistence API. Chapter 40, “Getting

Chapter3 - Getting Started with Web Applications 99



Configuring Web Applications: The hello2 Example

100

Started Securing Web Applications,” explains how to use annotations to specify information
about securing web applications. See Chapter 45, “Resources and Resource Adapters,” for more
information on resources.

TABLE3-1 Web Components That Accept Resource Injections

Component Interface/Class

Servlets javax.servlet.Servlet

Servlet filters javax.servlet.ServletFilter

Event listeners javax.servlet.ServletContextListener

javax.servlet.ServletContextAttributelListener
javax.servlet.ServletRequestListener
javax.servlet.ServletRequestAttributelListener
javax.servlet.http.HttpSessionListener
javax.servlet.http.HttpSessionAttributeListener
javax.servlet.http.HttpSessionBindingListener

Managed beans Plain Old Java Objects

Declaring a Reference to a Resource

The @Resource annotation is used to declare a reference to a resource, such as a data source, an
enterprise bean, or an environment entry.

The @Resource annotation is specified on a class, a method, or a field. The container is
responsible for injecting references to resources declared by the @Resource annotation and
mapping it to the proper JNDI resources.

In the following example, the @Resource annotation is used to inject a data source into a
component that needs to make a connection to the data source, as is done when using JDBC
technology to access a relational database:

@Resource javax.sql.DataSource catalogDS;

public getProductsByCategory() {
// get a connection and execute the query
Connection conn = catalogDS.getConnection();

}

The container injects this data source prior to the component’s being made available to the
application. The data source JNDI mapping is inferred from the field name catalogDS and the
type, javax.sql.DataSource.

If you have multiple resources that you need to inject into one component, you need to use the
@Resources annotation to contain them, as shown by the following example:

The Java EE 6 Tutorial « January 2013



Further Information about Web Applications

@Resources ({
@Resource (name="myDB" type=java.sql.DataSource),
@Resource(name="myMQ" type=javax.jms.ConnectionFactory)
1)

The web application examples in this tutorial use the Java Persistence API to access relational
databases. This API does not require you to explicitly create a connection to a data source.
Therefore, the examples do not use the @Resource annotation to inject a data source. However,
this API supports the @PersistenceUnit and @PersistenceContext annotations for injecting
EntityManagerFactory and EntityManager instances, respectively. Chapter 33, “Running the
Persistence Examples,” describes these annotations and the use of the Java Persistence API in
web applications.

Declaring a Reference to aWeb Service

The @WebServiceRef annotation provides a reference to a web service. The following example
shows uses the @WebServiceRef annotation to declare a reference to a web service.
WebServiceRef uses thewsdlLocation element to specify the URI of the deployed service’s
WSDL file:

import javax.xml.ws.WebServiceRef;

public class ResponseServlet extends HTTPServlet {
@WebServiceRef(wsdlLocation=

"http://localhost:8080/helloservice/hello?wsdl")
static HelloService service;

Further Information about Web Applications

For more information on web applications, see
= JavaServer Faces 2.0 specification:
http://jcp.org/en/jsr/detail?id=314
= JavaServer Faces technology web site:
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
= Java Servlet 3.0 specification:
http://jcp.org/en/jsr/detail?id=315
m  Java Servlet web site:

http://www.oracle.com/technetwork/java/index-jsp-135475.html

Chapter3 - Getting Started with Web Applications 101


http://jcp.org/en/jsr/detail?id=314
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://jcp.org/en/jsr/detail?id=315
http://www.oracle.com/technetwork/java/index-jsp-135475.html

102



CHAPTER 4

JavaServer Faces Technology

JavaServer Faces technology is a server-side component framework for building Java
technology-based web applications.

JavaServer Faces technology consists of the following:

= An API for representing components and managing their state; handling events, server-side
validation, and data conversion; defining page navigation; supporting internationalization
and accessibility; and providing extensibility for all these features

= Taglibraries for adding components to web pages and for connecting components to
server-side objects

JavaServer Faces technology provides a well-defined programming model and various tag
libraries. The tag libraries contain tag handlers that implement the component tags. These
features significantly ease the burden of building and maintaining web applications with
server-side user interfaces (Uls). With minimal effort, you can complete the following tasks.

Create a web page.

Drop components onto a web page by adding component tags.
Bind components on a page to server-side data.

Wire component-generated events to server-side application code.
Save and restore application state beyond the life of server requests.
Reuse and extend components through customization.

This chapter provides an overview of JavaServer Faces technology. After explaining what a
JavaServer Faces application is and reviewing some of the primary benefits of using JavaServer
Faces technology, this chapter describes the process of creating a simple JavaServer Faces
application. This chapter also introduces the JavaServer Faces lifecycle by describing the
example JavaServer Faces application progressing through the lifecycle stages.

The following topics are addressed here:

= “What Is a JavaServer Faces Application?” on page 104
= “JavaServer Faces Technology Benefits” on page 105

103



What Is a JavaServer Faces Application?

“Creating a Simple JavaServer Faces Application” on page 106

“Further Information about JavaServer Faces Technology” on page 110

What Is a JavaServer Faces Application?

The functionality provided by a JavaServer Faces application is similar to that of any other Java
web application. A typical JavaServer Faces application includes the following parts:

A set of web pages in which components are laid out
A set of tags to add components to the web page

A set of managed beans, which are lightweight container-managed objects (POJOs) with
minimal requirements. They support a small set of basic services, such as resource injection,
lifecycle callbacks and interceptors.

A web deployment descriptor (web . xml file)

Optionally, one or more application configuration resource files, such as a
faces-config.xml file, which can be used to define page navigation rules and configure
beans and other custom objects, such as custom components

Optionally, a set of custom objects, which can include custom components, validators,
converters, or listeners, created by the application developer

Optionally, a set of custom tags for representing custom objects on the page

Figure 4-1 shows the interaction between client and server in a typical JavaServer Faces
application. In response to a client request, a web page is rendered by the web container that
implements JavaServer Faces technology.

FIGURE 4-1

104

o8

Responding to a Client Request for a JavaServer Faces Page

g : | Web Container

Access page LQQ myfacelet.xhtml

HTTP Request
|

Browser

Renders HTML

myUl
HTTP Response

The Java EE 6 Tutorial « January 2013



JavaServer Faces Technology Benefits

The web page, myfacelet.xhtml, is built using JavaServer Faces component tags. Component
tags are used to add components to the view (represented by myUI in the diagram), which is the
server-side representation of the page. In addition to components, the web page can also
reference objects, such as the following:

= Any event listeners, validators, and converters that are registered on the components

= The JavaBeans components that capture the data and process the application-specific
functionality of the components

On request from the client, the view is rendered as a response. Rendering is the process
whereby, based on the server-side view, the web container generates output, such as HTML or
XHTML, that can be read by the client, such as a browser.

JavaServer Faces Technology Benefits

One of the greatest advantages of JavaServer Faces technology is that it offers a clean separation
between behavior and presentation for web applications. A JavaServer Faces application can
map HTTP requests to component-specific event handling and manage components as stateful
objects on the server. JavaServer Faces technology allows you to build web applications that
implement the finer-grained separation of behavior and presentation that is traditionally
offered by client-side UI architectures.

The separation of logic from presentation also allows each member of a web application
development team to focus on a single piece of the development process and provides a simple
programming model to link the pieces. For example, page authors with no programming
expertise can use JavaServer Faces technology tags in a web page to link to server-side objects
without writing any scripts.

Another important goal of JavaServer Faces technology is to leverage familiar component and
web-tier concepts without limiting you to a particular scripting technology or markup
language. JavaServer Faces technology APIs are layered directly on top of the Servlet API, as
shown in Figure 4-2.

FIGURE4-2 Java Web Application Technologies

JavaServer Faces JavaServer Pages
Standard Tag Library

JavaServer Pages

Chapter4 - JavaServer Faces Technology 105




Creating a Simple JavaServer Faces Application

This layering of APIs enables several important application use cases, such as using different
presentation technologies, creating your own custom components directly from the component
classes, and generating output for various client devices.

Facelets technology, available as part of JavaServer Faces 2.0, is now the preferred presentation
technology for building JavaServer Faces technology-based web applications. For more
information on Facelets technology features, see Chapter 5, “Introduction to Facelets”

Facelets technology offers several advantages.

= Code can be reused and extended for components through the templating and composite
component features.

= When you use the JavaServer Faces Annotations feature, you can automatically register the
managed bean as a resource available for JavaServer Faces applications. In addition, implicit
navigation rules allow developers to quickly configure page navigation. These features
reduce the manual configuration process for applications.

= Most important, JavaServer Faces technology provides a rich architecture for managing
component state, processing component data, validating user input, and handling events.

Creating a Simple JavaServer Faces Application

106

JavaServer Faces technology provides an easy and user-friendly process for creating web
applications. Developing a simple JavaServer Faces application typically requires the following
tasks:

= Developing managed beans
= Creating web pages using component tags
= Mapping the javax. faces.webapp.FacesServlet instance

This section describes those tasks through the process of creating a simple JavaServer Faces
Facelets application.

The example is a Hello application that includes a managed bean and a web page. When
accessed by a client, the web page prints out a Hello World message. The example application is
located in the tut-install/examples/web/hello/ directory. The tasks involved in developing
this application can be examined by looking at the application components in detail.

Developing the Managed Bean

As mentioned earlier in this chapter, a managed bean is a lightweight container-managed
object. Components in a page are associated with managed beans that provide application logic.
The example managed bean, Hello. java, contains the following code:

The Java EE 6 Tutorial « January 2013



Creating a Simple JavaServer Faces Application

package hello;
import javax.faces.bean.ManagedBean;

@ManagedBean
public class Hello {

final String world = "Hello World!"

public String getworld() {
return world;
}
}

The example managed bean sets the value of the variable world with the string "HelloWorld!".
The @ManagedBean annotation registers the managed bean as a resource with the JavaServer
Faces implementation. For more information on managed beans and annotations, see

Chapter 9, “Developing with JavaServer Faces Technology”

Creating the Web Page

In a typical Facelets application, web pages are created in XHTML. The example web page,
beanhello.xhtml, is a simple XHTML page. It has the following content:

<html lang="en"
xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<title>Facelets Hello World</title>
</h:head>
<h:body>
#{hello.world}
</h:body>
</html>

A Facelets XHTML web page can also contain several other elements, which are covered later in
this tutorial.

The web page connects to the managed bean through the Expression Language (EL) value
expression #{hello.world}, which retrieves the value of the world property from the managed
bean Hello. Note the use of hello to reference the managed bean Hello. If no name is specified
in the @ManagedBean annotation, the managed bean is always accessed with the first letter of the
class name in lowercase.

For more information on using EL expressions, see Chapter 6, “Expression Language.” For
more information about Facelets technology, see Chapter 5, “Introduction to Facelets” For
more information about the JavaServer Faces programming model and building web pages
using JavaServer Faces technology, see Chapter 7, “Using JavaServer Faces Technology in Web
Pages”

Chapter4 - JavaServer Faces Technology 107



Creating a Simple JavaServer Faces Application

108

Mapping the FacesServlet Instance

The final task requires mapping the FacesServlet, which is done through the web deployment
descriptor (web.xml). A typical mapping of FacesServlet is as follows:

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>l</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/*</url-pattern>

</servlet-mapping>

The preceding file segment represents part of a typical JavaServer Faces web deployment
descriptor. The web deployment descriptor can also contain other content relevant to a
JavaServer Faces application configuration, but that information is not covered here.

Mapping the FacesServlet is automatically done for you if you are using an IDE such as
NetBeans IDE.

The Lifecycle of the hello Application

Every web application has a lifecycle. Common tasks, such as handling incoming requests,
decoding parameters, modifying and saving state, and rendering web pages to the browser, are
all performed during a web application lifecycle. Some web application frameworks hide the
details of the lifecycle from you, whereas others require you to manage them manually.

By default, JavaServer Faces automatically handles most of the lifecycle actions for you.
However, it also exposes the various stages of the request lifecycle, so that you can modify or
perform different actions if your application requirements warrant it.

It is not necessary for the beginning user to understand the lifecycle of a JavaServer Faces
application, but the information can be useful for creating more complex applications.

The lifecycle of a JavaServer Faces application starts and ends with the following activity: The
client makes a request for the web page, and the server responds with the page. The lifecycle
consists of two main phases: execute and render.

During the execute phase, several actions can take place:

The application view is built or restored.

The request parameter values are applied.

Conversions and validations are performed for component values.
Managed beans are updated with component values.

Application logic is invoked.

The Java EE 6 Tutorial « January 2013



Creating a Simple JavaServer Faces Application

For a first (initial) request, only the view is built. For subsequent (postback) requests, some or all
of the other actions can take place.

In the render phase, the requested view is rendered as a response to the client. Rendering is
typically the process of generating output, such as HTML or XHTML, that can be read by the
client, usually a browser.

The following short description of the example JavaServer Faces application passing through its
lifecycle summarizes the activity that takes place behind the scenes.

The hello example application goes through the following stages when it is deployed on the
GlassFish Server.

1.

® N D

When the hello application is built and deployed on the GlassFish Server, the application is
in an uninitiated state.

When a client makes an initial request for the beanhello.xhtml web page, the hello
Facelets application is compiled.

The compiled Facelets application is executed, and a new component tree is constructed for
the hello application and is placed in a javax. faces.context.FacesContext.

The component tree is populated with the component and the managed bean property
associated with it, represented by the EL expression hello.world.

A new view is built, based on the component tree.
The view is rendered to the requesting client as a response.
The component tree is destroyed automatically.

On subsequent (postback) requests, the component tree is rebuilt, and the saved state is
applied.

For more detailed information on the JavaServer Faces lifecycle, see Chapter 10, “JavaServer
Faces Technology: Advanced Concepts”

Running the hello Application

You can use either NetBeans IDE or Ant to build, package, deploy, and run the hello example.

To Run the hello Applicationin NetBeans IDE

From the File menu, choose Open Project.

In the Open Project dialog box, navigate to:

tut-install/examples/web

Select the hello folder.

Chapter4 - JavaServer Faces Technology 109



Further Information about JavaServer Faces Technology

Select the Open as Main Project check box.
Click Open Project.

In the Projects tab, right-click the hello project and select Run.

This step compiles, assembles, and deploys the application and then brings up a web browser
window displaying the following URL:

http://localhost:8080/hello
The output looks like this:

Hello World!

To Run the hello Example Using Ant

In a terminal window, go to:
tut-install/examples/web/hello/

Type the following command:

ant

This target builds the WAR file and copies it to the tut-install/examples/web/hello/dist/
directory.

Type ant deploy.

In a web browser, type the following URL:
http://localhost:8080/hello/

The output looks like this:

Hello World!

Further Information about JavaServer Faces Technology

110

For more information on JavaServer Faces technology, see

= JavaServer Faces 2.0 specification:
http://jcp.org/en/jsr/detail?id=314

= JavaServer Faces project web site:
http://javaserverfaces.java.net/

= Mojarra (JavaServer Faces 2.0 implementation) Release Notes:

http://javaserverfaces.java.net/nonav/rlnotes/2.1.4/

The Java EE 6 Tutorial « January 2013


http://jcp.org/en/jsr/detail?id=314
http://javaserverfaces.java.net/
http://javaserverfaces.java.net/nonav/rlnotes/2.1.4/

L K R 4 CHAPTER 5

Introduction to Facelets

The term Facelets refers to the view declaration language for JavaServer Faces technology.
JavaServer Pages (JSP) technology, previously used as the presentation technology for
JavaServer Faces, does not support all the new features available in JavaServer Faces in the Java
EE 6 platform. JSP technology is considered to be a deprecated presentation technology for
JavaServer Faces. Facelets is a part of the JavaServer Faces specification and also the preferred
presentation technology for building JavaServer Faces technology-based applications.

The following topics are addressed here:

“What Is Facelets?” on page 111

“Developing a Simple Facelets Application” on page 113
“Using Facelets Templates” on page 119

“Composite Components” on page 121

“Web Resources” on page 123

What s Facelets?

Facelets is a powerful but lightweight page declaration language that is used to build JavaServer
Faces views using HTML style templates and to build component trees. Facelets features
include the following:

= Use of XHTML for creating web pages
= Support for Facelets tag libraries in addition to JavaServer Faces and JSTL tag libraries
= Support for the Expression Language (EL)

= Templating for components and pages

Advantages of Facelets for large-scale development projects include the following:

= Support for code reuse through templating and composite components

= Functional extensibility of components and other server-side objects through customization

11



What Is Facelets?

= Faster compilation time
®  Compile-time EL validation

= High-performance rendering

In short, the use of Facelets reduces the time and effort that needs to be spent on development
and deployment.

Facelets views are usually created as XHTML pages. JavaServer Faces implementations support
XHTML pages created in conformance with the XHTML Transitional Document Type
Definition (DTD), as listed at http://www.w3.0rg/TR/xhtml1/
#a_dtd_XHTML-1.0-Transitional. By convention, web pages built with XHTML have an
.xhtml extension.

JavaServer Faces technology supports various tag libraries to add components to a web page. To
support the JavaServer Faces tag library mechanism, Facelets uses XML namespace
declarations. Table 5-1 lists the tag libraries supported by Facelets.

TABLE5-1 Tag Libraries Supported by Facelets

Tag Library URI Prefix  Example Contents
JavaServer http://java.sun.com/jsf/facelets ui: ui:component Tags for
Faces Facelets o templating
Tag Library ui:insert
JavaServer http://java.sun.com/jsf/html h: h:head JavaServer
Faces HTML Faces
Tag Library h:body component
h:outputText tags for all
UIComponent
h:inputText objects
JavaServer http://java.sun.com/jsf/core f: f:actionListener Tags for
Faces Core JavaServer
. f:attribute
Tag Library Faces
custom
actions that
are
independent
of any
particular
render kit
JSTL Core Tag http://java.sun.com/jsp/jstl/core c: c:forEach JSTL1.2
Library Core Tags
c:catch
JSTL http://java.sun.com/jsp/jstl/ fn: fn:toUpperCase JSTL1.2
Functions Tag functions Functions
. fn:toLowerCase
Library Tags

112 The Java EE 6 Tutorial « January 2013


http://www.w3.org/TR/xhtml1/#a_dtd_XHTML-1.0-Transitional
http://www.w3.org/TR/xhtml1/#a_dtd_XHTML-1.0-Transitional

Developing a Simple Facelets Application

In addition, Facelets supports tags for composite components, for which you can declare
custom prefixes. For more information on composite components, see “Composite
Components” on page 121.

Based on the JavaServer Faces support for Expression Language (EL) syntax, Facelets uses EL
expressions to reference properties and methods of managed beans. EL expressions can be used
to bind component objects or values to methods or properties of managed beans. For more
information on using EL expressions, see “Using the EL to Reference Managed Beans” on

page 191.

Developing a Simple Facelets Application

This section describes the general steps involved in developing a JavaServer Faces application.
The following tasks are usually required:

Developing the managed beans

Creating the pages using the component tags

Defining page navigation

Mapping the javax. faces.webapp.FacesServlet instance
Adding managed bean declarations

Creating a Facelets Application

The example used in this tutorial is the guessnumber application. The application presents you
with a page that asks you to guess a number between 0 and 10, validates your input against a
random number, and responds with another page that informs you whether you guessed the
number correctly or incorrectly.

Developing a Managed Bean

In a typical JavaServer Faces application, each page of the application connects to a managed
bean. The managed bean defines the methods and properties that are associated with the
components. In this example, both pages use the same managed bean.

The following managed bean class, UserNumberBean. java, generates a random number from 0
to 10:

package guessNumber;

import java.io.Serializable;

import java.util.Random;

import javax.faces.bean.ManagedBean;

import javax.faces.bean.SessionScoped;

@ManagedBean

Chapter5 -« Introduction to Facelets 113



Developing a Simple Facelets Application

@SessionScoped
public class UserNumberBean implements Serializable {

private static final long serialVersionUID = 5443351151396868724L;
Integer randomInt = null;

Integer userNumber = null;

String response = null;

private long maximum=10;

private long minimum=0;

public UserNumberBean() {
Random randomGR = new Random();
randomInt = new Integer(randomGR.nextInt(10));
System.out.println("Duke’s number: " + randomInt);

}

public void setUserNumber(Integer user number) {
userNumber = user_number;

}

public Integer getUserNumber() {
return userNumber;

}
public String getResponse() {
if ((userNumber !'= null) && (userNumber.compareTo(randomInt) == 0)) {
return "Yay! You got it!"
} else {

return "Sorry, " + userNumber + " is incorrect."

}
}

public long getMaximum() {
return (this.maximum);

}

public void setMaximum(long maximum) {
this.maximum = maximum;
}

public long getMinimum() {
return (this.minimum);
}

public void setMinimum(long minimum) {
this.minimum = minimum;
}
}

Note the use of the @ManagedBean annotation, which registers the managed bean as a resource
with the JavaServer Faces implementation. The @SessionScoped annotation registers the bean
scope as session.

Creating Facelets Views

To create a page or view, you add components to the pages, wire the components to managed
bean values and properties, and register converters, validators, or listeners on the components.

114 The Java EE 6 Tutorial « January 2013



Developing a Simple Facelets Application

For the example application, XHTML web pages serve as the front end. The first page of the
example application is a page called greeting.xhtml. A closer look at various sections of this
web page provides more information.

The first section of the web page declares the content type for the page, which is XHTML:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-transitional.dtd">

The next section specifies the language of the XHTML page, then declares the XML namespace
for the tag libraries that are used in the web page:

<html lang="en"
xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

The next section uses various tags to insert components into the web page:

<h:head>
<h:outputStylesheet library="css" name="default.css"/>
<title>Guess Number Facelets Application</title>

</h:head>
<h:body>
<h:form>

<h:graphicImage library="images" name="wave.med.gif"
alt="Duke waving his hand"/>
<h2>
Hi, my name is Duke. I am thinking of a number from
#{userNumberBean.minimum} to #{userNumberBean.maximum}.
Can you guess it?
</h2>
<p><h:inputText
id="userNo"
title="Type a number from @ to 10:"
value="#{userNumberBean.userNumber}">
<f:validatelLongRange
minimum="#{userNumberBean.minimum}"
maximum="#{userNumberBean.maximum}"/>
</h:inputText>

<h:commandButton id="submit" value="Submit"
action="response"/>

</p>

<h:message showSummary="true" showDetail="false"
style="color: #d20005;
font-family: ’'New Century Schoolbook’, serif;
font-style: oblique;
text-decoration: overline"
id="errorsl"
for="userNo"/>

</h:form>
</h:body>

Chapter5 -« Introduction to Facelets 115



Developing a Simple Facelets Application

116

Note the use of the following tags:

= Facelets HTML tags (those beginning with h:) to add components
= The Facelets core tag f: validateLongRange to validate the user input

An h:inputText tag accepts user input and sets the value of the managed bean property
userNumber through the EL expression #{userNumberBean.userNumber}. The input value is
validated for value range by the JavaServer Faces standard validator tag f: validatelLongRange.

The image file, wave . med. gif, is added to the page as a resource; so is the style sheet. For more
details about the resources facility, see “Web Resources” on page 123.

An h:commandButton tag with the ID submit starts validation of the input data when a user
clicks the button. Using implicit navigation, the tag redirects the client to another page,
response.xhtml, which shows the response to your input. The page specifies only response,
which by default causes the server to look for response. xhtml.

You can now create the second page, response.xhtml, with the following content:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-transitional.dtd">

<html lang="en"
xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>
<h:outputStylesheet library="css" name="default.css"/>
<title>Guess Number Facelets Application</title>

</h:head>
<h:body>
<h:form>

<h:graphicImage library="images" name="wave.med.gif"
alt="Duke waving his hand"/>

<h2>
<h:outputText id="result" value="#{userNumberBean.response}"/>
</h2>
<h:commandButton id="back" value="Back" action="greeting"/>
</h:form>
</h:body>

</html>

Configuring the Application

Configuring a JavaServer Faces application involves mapping the Faces Servlet in the web
deployment descriptor file, such as aweb . xm1 file, and possibly adding managed bean
declarations, navigation rules, and resource bundle declarations to the application
configuration resource file, faces-config.xml.

The Java EE 6 Tutorial « January 2013



Developing a Simple Facelets Application

If you are using NetBeans IDE, a web deployment descriptor file is automatically created for
you. In such an IDE-created web . xm1 file, change the default greeting page, which is
index.xhtml, to greeting.xhtml. Here is an example web.xm1 file, showing this change in
bold.

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app 3 0.xsd">
<context-param>
<param-name>javax.faces.PROJECT STAGE</param-name>
<param-value>Development</param-value>
</context-param>
<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1l</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/*</url-pattern>
</servlet-mapping>
<session-config>
<session-timeout>
30
</session-timeout>
</session-config>
<welcome-file-list>
<welcome-file>faces/greeting.xhtml</welcome-file>
</welcome-file-list>
</web-app>

Note the use of the context parameter PROJECT_STAGE. This parameter identifies the status of a
JavaServer Faces application in the software lifecycle.

The stage of an application can affect the behavior of the application. For example, if the project
stage is defined as Development, debugging information is automatically generated for the user.
If not defined by the user, the default project stage is Production.

Running the guessnumber Facelets Example

You can use either NetBeans IDE or Ant to build, package, deploy, and run the guessnumber
example. The source code for this example is available in the
tut-install/examples/web/guessnumber/ directory.

Chapter5 -« Introduction to Facelets 17



Developing a Simple Facelets Application

118

v

To Build, Package, and Deploy the guessnumber Example Using
NetBeans IDE

From the File menu, choose Open Project.

In the Open Project dialog, navigate to:

tut-install/examples/web/

Select the guessnumber folder.
Select the Open as Main Project check box.
Click Open Project.

In the Projects tab, right-click the guessnumber project and select Deploy.

This option builds and deploys the example application to your GlassFish Server instance.

To Build, Package, and Deploy the guessnumber Example Using Ant

In a terminal window, go to:

tut-install/examples/web/guessnumber/

Type the following command:

ant

This command calls the default target, which builds and packages the application intoa WAR
file, guessnumber.war, thatis located in the dist directory.

Make sure that the GlassFish Server is started.

To deploy the application, type the following command:
ant deploy

To Run the guessnumber Example

Open aweb browser.

Type the following URL in your web browser:
http://localhost:8080/guessnumber

A web page opens.

The Java EE 6 Tutorial « January 2013



Using Facelets Templates

3 Inthetextfield, type a numberfrom 0to 10 and click Submit.

Another page appears, reporting whether your guess is correct or incorrect.

4 Ifyou guessed incorrectly, click the Back button to return to the main page.

You can continue to guess until you get the correct answer.

Using Facelets Templates

JavaServer Faces technology provides the tools to implement user interfaces that are easy to
extend and reuse. Templating is a useful Facelets feature that allows you to create a page that
will act as the base, or template, for the other pages in an application. By using templates, you
can reuse code and avoid recreating similarly constructed pages. Templating also helps in
maintaining a standard look and feel in an application with a large number of pages.

Table 5-2 lists Facelets tags that are used for templating and their respective functionality.

TABLE5-2 Facelets Templating Tags

Tag Function

ui:component Defines a component that is created and added to the component tree.

ui:composition Defines a page composition that optionally uses a template. Content outside of this
tag is ignored.

ui:debug Defines a debug component that is created and added to the component tree.

ui:decorate Similar to the composition tag but does not disregard content outside this tag.

ui:define Defines content that is inserted into a page by a template.

ui:fragment Similar to the component tag but does not disregard content outside this tag.

ui:include Encapsulate and reuse content for multiple pages.

ui:insert Inserts content into a template.

ui:param Used to pass parameters to an included file.

ui:repeat Used as an alternative for loop tags, such as c: forEach or h:dataTable.

ui:remove Removes content from a page.

For more information on Facelets templating tags, see the documentation at
http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/.

The Facelets tag library includes the main templating tag ui:insert. A template page that is
created with this tag allows you to define a default structure for a page. A template page is used
as a template for other pages, usually referred to as client pages.

Chapter5 -« Introduction to Facelets 119


http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/

Using Facelets Templates

Here is an example of a template saved as template.xhtml:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>
<meta http-equiv="Content-Type"
content="text/html; charset=UTF-8" />
<h:outputStylesheet library="css" name="default.css"/>
<h:outputStylesheet library="css" name="cssLayout.css"/>
<title>Facelets Template</title>
</h:head>

<h:body>
<div id="top" class="top">
<ui:insert name="top">Top Section</ui:insert>
</div>
<div>
<div id="left">
<ui:insert name="left"sLeft Section</ui:insert>
</div>
<div id="content" class="left content">
<ui:insert name="content">Main Content</ui:insert>
</div>
</div>
</h:body>
</html>

The example page defines an XHTML page that is divided into three sections: a top section, a
left section, and a main section. The sections have style sheets associated with them. The same
structure can be reused for the other pages of the application.

The client page invokes the template by using the ui: composition tag. In the following
example, a client page named templateclient.xhtml invokes the template page named
template.xhtml from the preceding example. A client page allows content to be inserted with
the help of the ui:define tag.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1l-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html">

<h:body>
<ui:composition template="./template.xhtml">
<ui:define name="top">
Welcome to Template Client Page
</ui:define>

<ui:define name="left">

<h:outputLabel value="You are in the Left Section"/>
</ui:define>

120 The Java EE 6 Tutorial « January 2013



Composite Components

<ui:define name="content">
<h:graphicImage value="#{resource['images:wave.med.gif’]1}"/>
<h:outputText value="You are in the Main Content Section"/>
</ui:define>
</ui:composition>
</h:body>
</html>
You can use NetBeans IDE to create Facelets template and client pages. For more information

on creating these pages, see http://netbeans.org/kb/docs/web/jsf20-intro.html.

Composite Components

JavaServer Faces technology offers the concept of composite components with Facelets. A
composite component is a special type of template that acts as a component.

Any component is essentially a piece of reusable code that behaves in a particular way. For
example, an input component accepts user input. A component can also have validators,
converters, and listeners attached to it to perform certain defined actions.

A composite component consists of a collection of markup tags and other existing components.
This reusable, user-created component has a customized, defined functionality and can have
validators, converters, and listeners attached to it like any other component.

With Facelets, any XHTML page that contains markup tags and other components can be
converted into a composite component. Using the resources facility, the composite component
can be stored in a library that is available to the application from the defined resources location.

Table 5-3 lists the most commonly used composite tags and their functions.

TABLE5-3 Composite Component Tags

Tag Function

composite:interface Declares the usage contract for a composite component. The
composite component can be used as a single component whose
feature set is the union of the features declared in the usage contract.

composite:implementation Defines the implementation of the composite component. Ifa
composite:interface element appears, there must be a
corresponding composite:implementation.

composite:attribute Declares an attribute that may be given to an instance of the
composite component in which this tag is declared.

composite:insertChildren Any child components or template text within the composite
component tag in the using page will be reparented into the
composite component at the point indicated by this tag’s placement
within the composite:implementation section.

Chapter5 -« Introduction to Facelets 121


http://netbeans.org/kb/docs/web/jsf20-intro.html

Composite Components

122

TABLE5-3 Composite Component Tags (Continued)
Tag Function
composite:valueHolder Declares that the composite component whose contract is declared

by the composite:interface in which this element is nested exposes
an implementation of javax. faces.component.ValueHolder
suitable for use as the target of attached objects in the using page.

composite:editableValueHolder Declares that the composite component whose contract is declared
by the composite:interface in which this element is nested exposes
an implementation of
javax.faces.component.EditableValueHolder suitable for use as
the target of attached objects in the using page.

composite:actionSource Declares that the composite component whose contract is declared
by the composite:interface in which this element is nested exposes
an implementation of javax. faces.component.ActionSource2
suitable for use as the target of attached objects in the using page.

For more information and a complete list of Facelets composite tags, see the documentation at
http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/.

The following example shows a composite component that accepts an email address as input:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:composite="http://java.sun.com/jsf/composite"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>
<title>This content will not be displayed</title>
</h:head>
<h:body>
<composite:interface>
<composite:attribute name="value" required="false"/>
</composite:interface>

<composite:implementation>
<h:outputLabel value="Email id: "></h:outputLabel>
<h:inputText value="#{cc.attrs.value}"></h:inputText>
</composite:implementation>
</h:body>
</html>

Note the use of cc.attrs.value when defining the value of the inputText component. The
word cc in JavaServer Faces is a reserved word for composite components. The
#{cc.attrs.attribute-name} expression is used to access the attributes defined for the
composite component’s interface, which in this case happens to be value.

The preceding example content is stored as a file named email.xhtml in a folder named
resources/emcomp, under the application web root directory. This directory is considered a

The Java EE 6 Tutorial « January 2013


http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/

Web Resources

library by JavaServer Faces, and a component can be accessed from such a library. For more
information on resources, see “Web Resources” on page 123.

The web page that uses this composite component is generally called a using page. The using
page includes a reference to the composite component, in the xml namespace declarations:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:em="http://java.sun.com/jsf/composite/emcomp/">

<h:head>
<title>Using a sample composite component</title>
</h:head>

<body>
<h:form>
<em:email value="Enter your email id" />
</h:form>
</body>
</html>

The local composite component library is defined in the xmlns namespace with the declaration
xmlns:em="http://java.sun.com/jsf/composite/emcomp/". The component itselfis
accessed through the em: email tag. The preceding example content can be stored as a web page
named emuserpage . xhtml under the web root directory. When compiled and deployed on a
server, it can be accessed with the following URL:

http://localhost:8080/application-name/faces/emuserpage.xhtml

Web Resources

Web resources are any software artifacts that the web application requires for proper rendering,
including images, script files, and any user-created component libraries. Resources must be
collected in a standard location, which can be one of the following.

= Aresource packaged in the web application root must be in a subdirectory of a resources
directory at the web application root: resources/resource-identifier.

= Aresource packaged in the web application’s classpath must be in a subdirectory of the
META-INF/resources directory within a web application:
META-INF/resources/resource-identifier. You can use this file structure to package
resources in a JAR file bundled in the web application. See Chapter 53, “Duke’s Forest Case
Study Example,” for an application that uses this mechanism.

The JavaServer Faces runtime will look for the resources in the preceding listed locations, in
that order.

Resource identifiers are unique strings that conform to the following format:

Chapter5 -« Introduction to Facelets 123



Web Resources

124

[locale-prefix/1[library-name/ [library-version/ 1 resource-namel / resource-version]

Elements of the resource identifier in brackets ([ ]) are optional, indicating that only a
resource-name, which is usually a file name, is a required element. For example, the most
common way to specify a style sheet, image, or script is to use the library and name attributes,
as in the following tag from the guessnumber example:

<h:outputStylesheet library="css" name="default.css"/>

This tag specifies that the default. css style sheet is in the directory web/resources/css.

You can also specify the location of an image using the following syntax, also from the
guessnumber example:

<h:graphicImage value="#{resource[’images:wave.med.gif’]}"/>

This tag specifies that the image named wave .med . gif is in the directory
web/resources/images.

Resources can be considered as a library location. Any artifact, such as a composite component
or a template that is stored in the resources directory, becomes accessible to the other
application components, which can use it to create a resource instance.

The Java EE 6 Tutorial « January 2013



L K R 4 CHAPTER 6

Expression Language

This chapter introduces the Expression Language (also referred to as the EL), which provides an
important mechanism for enabling the presentation layer (web pages) to communicate with the
application logic (managed beans). The EL is used by both JavaServer Faces technology and
JavaServer Pages (JSP) technology. The EL represents a union of the expression languages
offered by JavaServer Faces technology and JSP technology.

The following topics are addressed here:

“Overview of the EL” on page 125

“Immediate and Deferred Evaluation Syntax” on page 126
“Value and Method Expressions” on page 128

“Defining a Tag Attribute Type” on page 134

“Literal Expressions” on page 135

“Operators” on page 136

“Reserved Words” on page 136

“Examples of EL Expressions” on page 137

Overview of the EL

The EL allows page authors to use simple expressions to dynamically access data from
JavaBeans components. For example, the test attribute of the following conditional tag is
supplied with an EL expression that compares 0 with the number of items in the session-scoped
bean named cart.

<c:if test="${sessionScope.cart.numberOfItems > 0}">

</é;if>

JavaServer Faces technology uses the EL for the following functions:

= Deferred and immediate evaluation of expressions
= The ability to set as well as get data

125



Immediate and Deferred Evaluation Syntax

= The ability to invoke methods

See “Using the EL to Reference Managed Beans” on page 191 for more information on how to
use the EL in JavaServer Faces applications.

To summarize, the EL provides a way to use simple expressions to perform the following tasks:

= Dynamically read application data stored in JavaBeans components, various data structures,
and implicit objects

= Dynamically write data, such as user input into forms, to JavaBeans components
= Invoke arbitrary static and public methods
= Dynamically perform arithmetic operations

The EL is also used to specify the following kinds of expressions that a custom tag attribute will
accept:

=  Immediate evaluation expressions or deferred evaluation expressions. An immediate
evaluation expression is evaluated at once by the underlying technology, such as JavaServer
Faces. A deferred evaluation expression can be evaluated later by the underlying technology
using the EL.

= Value expression or method expression. A value expression references data, whereas a
method expression invokes a method.

= Rvalue expression or Ivalue expression. An rvalue expression can only read a value,
whereas an Ivalue expression can both read and write that value to an external object.

Finally, the EL provides a pluggable API for resolving expressions so custom resolvers that can
handle expressions not already supported by the EL can be implemented.

Immediate and Deferred Evaluation Syntax

126

The EL supports both immediate and deferred evaluation of expressions. Immediate evaluation
means that the expression is evaluated and the result returned as soon as the page is first
rendered. Deferred evaluation means that the technology using the expression language can use
its own machinery to evaluate the expression sometime later during the page’s lifecycle,
whenever it is appropriate to do so.

Those expressions that are evaluated immediately use the ${} syntax. Expressions whose
evaluation is deferred use the #{} syntax.

Because of its multiphase lifecycle, JavaServer Faces technology uses mostly deferred evaluation
expressions. During the lifecycle, component events are handled, data is validated, and other
tasks are performed in a particular order. Therefore, a JavaServer Faces implementation must
defer evaluation of expressions until the appropriate point in the lifecycle.

Other technologies using the EL might have different reasons for using deferred expressions.

The Java EE 6 Tutorial « January 2013



Immediate and Deferred Evaluation Syntax

Immediate Evaluation

All expressions using the ${} syntax are evaluated immediately. These expressions can be used
only within template text or as the value of a tag attribute that can accept runtime expressions.

The following example shows a tag whose value attribute references an immediate evaluation
expression that gets the total price from the session-scoped bean named cart:

<fmt:formatNumber value="${sessionScope.cart.total}"/>

The JavaServer Faces implementation evaluates the expression ${sessionScope.cart.total},
converts it, and passes the returned value to the tag handler.

Immediate evaluation expressions are always read-only value expressions. The preceding
example expression cannot set the total price, but instead can only get the total price from the
cart bean.

Deferred Evaluation

Deferred evaluation expressions take the form #{expr} and can be evaluated at other phases of
a page lifecycle as defined by whatever technology is using the expression. In the case of
JavaServer Faces technology, its controller can evaluate the expression at different phases of the
lifecycle, depending on how the expression is being used in the page.

The following example shows a JavaServer Faces h: inputText tag, which represents a text field
component into which a user enters a value. The h: inputText tag’s value attribute references a
deferred evaluation expression that points to the name property of the customer bean:

<h:inputText id="name" value="#{customer.name}" />

For an initial request of the page containing this tag, the JavaServer Faces implementation
evaluates the #{customer.name} expression during the render-response phase of the lifecycle.
During this phase, the expression merely accesses the value of name from the customer bean, as
is done in immediate evaluation.

For a postback request, the JavaServer Faces implementation evaluates the expression at
different phases of the lifecycle, during which the value is retrieved from the request, validated,
and propagated to the customer bean.

As shown in this example, deferred evaluation expressions can be

= Value expressions that can be used to both read and write data
= Method expressions

Value expressions (both immediate and deferred) and method expressions are explained in the
next section.

Chapter6 - Expression Language 127



Value and Method Expressions

Value and Method Expressions

128

The EL defines two kinds of expressions: value expressions and method expressions. Value
expressions can either yield a value or set a value. Method expressions reference methods that
can be invoked and can return a value.

Value Expressions

Value expressions can be further categorized into rvalue and Ivalue expressions. Rvalue
expressions can read data but cannot write it. Lvalue expressions can both read and write data.

All expressions that are evaluated immediately use the ${} delimiters and are always rvalue
expressions. Expressions whose evaluation can be deferred use the #{} delimiters and can act as
both rvalue and Ivalue expressions. Consider the following two value expressions:

${customer.name}

#{customer.name}

The former uses immediate evaluation syntax, whereas the latter uses deferred evaluation
syntax. The first expression accesses the name property, gets its value, adds the value to the
response, and gets rendered on the page. The same can happen with the second expression.
However, the tag handler can defer the evaluation of this expression to a later time in the page
lifecycle, if the technology using this tag allows.

In the case of JavaServer Faces technology, the latter tag’s expression is evaluated immediately
during an initial request for the page. In this case, this expression acts as an rvalue expression.
During a postback request, this expression can be used to set the value of the name property with
user input. In this case, the expression acts as an lvalue expression.

Referencing Objects Using Value Expressions

Both rvalue and Ivalue expressions can refer to the following objects and their properties or
attributes:

= JavaBeans components

= Collections

= Java SE enumerated types

= Implicit objects

To refer to these objects, you write an expression using a variable that is the name of the object.
The following expression references a managed bean called customer:

${customer}

The Java EE 6 Tutorial « January 2013



Value and Method Expressions

The web container evaluates the variable that appears in an expression by looking up its value
according to the behavior of PageContext. findAttribute(String), where the String
argument is the name of the variable. For example, when evaluating the expression
${customer}, the container will look for customer in the page, request, session, and application
scopes and will return its value. If customer is not found, a null value is returned.

You can use a custom EL resolver to alter the way variables are resolved. For instance, you can
provide an EL resolver that intercepts objects with the name customer, so that ${customer}
returns a value in the EL resolver instead.

To reference an enum constant with an expression, use a String literal. For example, consider
this Enum class:

public enum Suit {hearts, spades, diamonds, clubs}

To refer to the Suit constant Suit.hearts with an expression, use the String literal "hearts".
Depending on the context, the String literal is converted to the enum constant automatically.
For example, in the following expression in which mySuit is an instance of Suit, "hearts" is
first converted to Suit.hearts before it is compared to the instance:

${mySuit == "hearts"}

Referring to Object Properties Using Value Expressions

To refer to properties of a bean or an enum instance, items of a collection, or attributes of an
implicit object, you use the . or [] notation.

To reference the name property of the customer bean, use either the expression
${customer.name} or the expression ${customer["name"]}. The part inside the brackets is a
String literal that is the name of the property to reference.

You can use double or single quotes for the String literal. You can also combine the [] and .
notations, as shown here:

${customer.address["street"]}

Properties of an enum constant can also be referenced in this way. However, as with JavaBeans
component properties, the properties of an Enum class must follow JavaBeans component
conventions. This means that a property must at least have an accessor method called
getProperty, where Property is the name of the property that can be referenced by an
expression.

For example, consider an Enum class that encapsulates the names of the planets of our galaxy and
includes a method to get the mass of a planet. You can use the following expression to reference
the method getMass of the Enum class Planet:

${myPlanet.mass}

Chapter6 - Expression Language 129



Value and Method Expressions

130

If you are accessing an item in an array or list, you must use either a literal value that can be
converted to int or the [] notation with an int and without quotes. The following examples
could resolve to the same item in a list or array, assuming that socks can be converted to int:

m  ${customer.orders[1]}

m  ¢${customer.orders.socks}

In contrast, an item in a Map can be accessed using a string literal key; no coercion is required:

${customer.orders["socks"1}

An rvalue expression also refers directly to values that are not objects, such as the result of
arithmetic operations and literal values, as shown by these examples:

" ${"literal"}

m  ¢{customer.age + 20}
= ¢{true}

= ${57}

The EL defines the following literals:
= Boolean: trueand false
= Integer:asin Java

= Floating-point: as in Java

= String: with single and double quotes; " is escaped as \", * is escaped as \ ', and \ is escaped as

\\
= Null: null

You can also write expressions that perform operations on an enum constant. For example,
consider the following Enum class:

public enum Suit {club, diamond, heart, spade}

After declaring an enum constant called mySuit, you can write the following expression to test
whether mySuit is spade:

${mySuit == "spade"}

When it resolves this expression, the EL resolving mechanism will invoke the value0Of method
of the Enum class with the Suit class and the spade type, as shown here:

mySuit.valueOf(Suit.class, "spade"}

The Java EE 6 Tutorial « January 2013



Value and Method Expressions

Where Value Expressions Can Be Used
Value expressions using the ${} delimiters can be used in

= Static text
= Anystandard or custom tag attribute that can accept an expression

The value of an expression in static text is computed and inserted into the current output. Here
is an example of an expression embedded in static text:

<some:tag>
some text ${expr} some text
</some:tag>

If the static text appears in a tag body, note that an expression will not be evaluated if the body is
declared to be tagdependent.

Lvalue expressions can be used only in tag attributes that can accept Ivalue expressions.

A tag attribute value using either an rvalue or Ivalue expression can be set in the following ways:
= With a single expression construct:

<some:tag value="${expr}"/>

<another:tag value="#{expr}"/>

These expressions are evaluated, and the result is converted to the attribute’s expected type.

= With one or more expressions separated or surrounded by text:

<some:tag value="some${expr}${expritext${expr}"/>

<another:tag value="some#{expr}#{expr}text#{expr}"/>

These kinds of expression, called composite expressions, are evaluated from left to right. Each
expression embedded in the composite expression is converted to a String and then
concatenated with any intervening text. The resulting String is then converted to the
attribute’s expected type.

= With text only:
<some:tag value="sometext"/>

This expression is called a literal expression. In this case, the attribute’s St ring value is
converted to the attribute’s expected type. Literal value expressions have special syntax rules.
See “Literal Expressions” on page 135 for more information. When a tag attribute has an
enum type, the expression that the attribute uses must be a literal expression. For example,
the tag attribute can use the expression "hearts" to mean Suit.hearts. The literal is
converted to Suit, and the attribute gets the value Suit.hearts.

All expressions used to set attribute values are evaluated in the context of an expected type. If
the result of the expression evaluation does not match the expected type exactly, a type
conversion will be performed. For example, the expression ${1.2E4} provided as the value of
an attribute of type float will result in the following conversion:

Chapter6 - Expression Language 131



Value and Method Expressions

132

Float.valueOf("1.2E4").floatValue()

See Section 1.18 of the JavaServer Pages 2.2 Expression Language specification (available from
http://jcp.org/aboutJava/communityprocess/final/jsr245/) for the complete type
conversion rules.

Method Expressions

Another feature of the EL is its support of deferred method expressions. A method expression is
used to invoke an arbitrary public method of a bean, which can return a result.

In JavaServer Faces technology, a component tag represents a component on a page. The
component tag uses method expressions to invoke methods that perform some processing for
the component. These methods are necessary for handling events that the components generate
and for validating component data, as shown in this example:

<h:form>
<h:inputText
id="name"
value="#{customer.name}"
validator="#{customer.validateName}"/>
<h:commandButton

id="submit"
action="#{customer.submit}" />
</h:form>

The h:inputText tag displays as a text field. The validator attribute of this h: inputText tag
references a method, called validateName, in the bean, called customer.

Because a method can be invoked during different phases of the lifecycle, method expressions
must always use the deferred evaluation syntax.

Like Ivalue expressions, method expressions can use the . and the [ ] operators. For example,
#{object.method} is equivalent to #{object ["method"]}. The literal inside the [] is converted
to String and is used to find the name of the method that matches it. Once the method is found,
itis invoked, or information about the method is returned.

Method expressions can be used only in tag attributes and only in the following ways:

= With a single expression construct, where bean refers to a JavaBeans component and
method refers to a method of the JavaBeans component:

<some:tag value="#{bean.method}"/>

The expression is evaluated to a method expression, which is passed to the tag handler. The
method represented by the method expression can then be invoked later.

= With text only:

<some:tag value="sometext"/>

The Java EE 6 Tutorial « January 2013


http://jcp.org/aboutJava/communityprocess/final/jsr245/

Value and Method Expressions

Method expressions support literals primarily to support action attributes in JavaServer
Faces technology. When the method referenced by this method expression is invoked, the
method returns the String literal, which is then converted to the expected return type, as
defined in the tag’s tag library descriptor.

Parameterized Method Calls

The EL offers support for parameterized method calls. Method calls can use parameters without
having to use static EL functions.

Both the . and [] operators can be used for invoking method calls with parameters, as shown in
the following expression syntax:

= expr-alexpr-b] (parameters)
= expr-a.identifier-b(parameters)

In the first expression syntax, expr-a is evaluated to represent a bean object. The expression
expr-b is evaluated and cast to a string that represents a method in the bean represented by
expr-a. In the second expression syntax, expr-a is evaluated to represent a bean object, and
identifier-b is a string that represents a method in the bean object. The parameters in
parentheses are the arguments for the method invocation. Parameters can be zero or more
values or expressions, separated by commas.

Parameters are supported for both value expressions and method expressions. In the following
example, which is a modified tag from the guessnumber application, a random number is
provided as an argument rather than from user input to the method call:

<h:inputText value="#{userNumberBean.userNumber(’5’)}">

The preceding example uses a value expression.

Consider the following example of a JavaServer Faces component tag that uses a method
expression:

<h:commandButton action="#{trader.buy}" value="buy"/>

The EL expression trader.buy calls the trader bean’s buy method. You can modify the tag to
pass on a parameter. Here is the revised tag where a parameter is passed:

<h:commandButton action="#{trader.buy(’SOMESTOCK’)}" value="buy"/>

In the preceding example, you are passing the string ' SOMESTOCK’ (a stock symbol) as a
parameter to the buy method.

For more information on the updated EL, see http://uel.java.net/.

Chapter6 - Expression Language 133


http://uel.java.net/

Defining a Tag Attribute Type

Defining a Tag Attribute Type

134

As explained in the previous section, all kinds of expressions can be used in tag attributes.
Which kind of expression and how it is evaluated, whether immediately or deferred, are
determined by the type attribute of the tag’s definition in the View Description Language
(VDL) that defines the tag.

If you plan to create custom tags, for each tag in the VDL, you need to specify what kind of
expression to accept. Table 6-1 shows the kinds of tag attributes that accept EL expressions,
gives examples of expressions they accept, and provides the type definitions of the attributes
that must be added to the VDL. You cannot use #{} syntax for a dynamic attribute, meaning an
attribute that accepts dynamically calculated values at runtime. Similarly, you also cannot use
the ${} syntax for a deferred attribute.

TABLE6-1 Definitions of Tag Attributes That Accept EL Expressions

Attribute Type Example Expression Type Attribute Definition
Dynamic "literal" <rtexprvalue>true</rtexprvalue>
Dynamic ${literal} <rtexprvalue>true</rtexprvalue>
Deferred value "literal" <deferred-value>

<type>java.lang.String</type>
</deferred-value>

Deferred value #{customer.age} <deferred-value>
<type>int</type>
</deferred-value>

Deferred method "literal" <deferred-method>
<method-signature>
java.lang.String submit()
</method-signature>
<deferred-method>

Deferred method #{customer.calcTotal} <deferred-method>
<method-signature>
double calcTotal(int, double)
</method-signature>
</deferred-method>

In addition to the tag attribute types shown in Table 6-1, you can define an attribute to accept
both dynamic and deferred expressions. In this case, the tag attribute definition contains both
an rtexprvalue definition set to true and either a deferred-value or deferred-method
definition.

The Java EE 6 Tutorial « January 2013



Literal Expressions

Literal Expressions

A literal expression is evaluated to the text of the expression, which is of type String. A literal
expression does not use the ${} or #{} delimiters.

If you have a literal expression that includes the reserved ${} or #{} syntax, you need to escape
these characters as follows:
= By creating a composite expression as shown here:

${"${ texprA}

#{'#{'}exprB}

The resulting values would then be the strings ${exprA} and #{exprB}.

= By using the escape characters \$ and \# to escape what would otherwise be treated as an
eval-expression:

\${exprA}
\#{exprB}

The resulting values would again be the strings ${exprA} and #{exprB}.

When a literal expression is evaluated, it can be converted to another type. Table 6-2 shows
examples of various literal expressions and their expected types and resulting values.

TABLE6-2 Literal Expressions

Expression Expected Type Result

Hi String Hi

true Boolean Boolean.TRUE
42 int 42

Literal expressions can be evaluated immediately or deferred and can be either value or method
expressions. At what point a literal expression is evaluated depends on where it is being used. If
the tag attribute that uses the literal expression is defined to accept a deferred value expression,
when referencing a value, the literal expression is evaluated at a point in the lifecycle that is
determined by other factors, such as where the expression is being used and to what it is
referring.

In the case of a method expression, the method that is referenced is invoked and returns the
specified String literal. For example, the h: commandButton tag of the guessnumber application
uses a literal method expression as a logical outcome to tell the JavaServer Faces navigation
system which page to display next.

Chapter6 - Expression Language 135



Operators

Operators
In addition to the . and [] operators discussed in “Value and Method Expressions” on
page 128, the EL provides the following operators, which can be used in rvalue expressions only:
= Arithmetic: +, - (binary), *, / and div, % and mod, - (unary)
®  Logical: and, &, or, | |, not, !
= Relational: ==, eq, =, ne, <, 1t, >, gt, <=, ge, >=, le. Comparisons can be made against other

values or against Boolean, string, integer, or floating-point literals.
= Empty: The empty operator is a prefix operation that can be used to determine whether a
value is null or empty.

= Conditional: A ? B : C. Evaluate B or C, depending on the result of the evaluation of A.
The precedence of operators highest to lowest, left to right is as follows:
= [].
= () (used to change the precedence of operators)
= - (unary) not ! empty
= * / div % mod
=+ - (binary)
B <><=>= 1t gt le ge
m == l=eq ne
= && and
= || or
7

Reserved Words

The following words are reserved for the EL and should not be used as identifiers:

and or not eq
ne 1t gt le
ge true false null
instanceof empty div mod

136 The Java EE 6 Tutorial « January 2013



Examples of EL Expressions

Examples of EL Expressions

Table 6-3 contains example EL expressions and the result of evaluating them.

TABLE6-3 Example Expressions

EL Expression Result
${1 > (4/2)} false
${4.0 >= 3} true
${100.0 == 100} true
${(10*10) ne 100} false
${'a’ < 'b"} true
${"hip’ gt "hit'} false
${4 > 3} true
${1.2E4 + 1.4} 12001.4
${3 div 4} 0.75
${10 mod 4} 2

${'!empty param.Add}

${pageContext.request.contextPath}

${sessionScope.cart.numberOfItems}

${param[ 'mycom.productId’]}

${header["host"1}

${departments[deptName]}

${requestScope[’javax.servlet.forward.

servlet path’]}

#{customer.Name}

#{customer.calcTotal}

False if the request parameter named Add is null or an
empty string.

The context path.

The value of the numberOfItems property of the
session-scoped attribute named cart.

The value of the request parameter named
mycom.productId.

The host.

The value of the entry named deptName in the
departments map.

The value of the request-scoped attribute named
javax.servlet.forward.servlet path.

Gets the value of the property IName from the customer
bean during an initial request. Sets the value of IName
during a postback.

The return value of the method calcTotal of the
customer bean.

Chapter6 - Expression Language

137



138



L K R 4 CHAPTER 7

Using JavaServer Faces Technology in Web
Pages

Web pages represent the presentation layer for web applications. The process of creating web
pages for a JavaServer Faces application includes adding components to the page and wiring
them to managed beans, validators, listeners, converters, and other server-side objects that are
associated with the page.

This chapter explains how to create web pages using various types of component and core tags.
In the next chapter, you will learn about adding converters, validators, and listeners to
component tags to provide additional functionality to components.

Many of the examples in this chapter are taken from Chapter 51, “Duke’s Bookstore Case Study
Example”

The following topics are addressed here:

= “Setting Up a Page” on page 139
= “Adding Components to a Page Using HTML Tags” on page 140
= “Using Core Tags” on page 171

Setting Up a Page
A typical JavaServer Faces web page includes the following elements:

= A set of namespace declarations that declare the JavaServer Faces tag libraries
= Optionally, the HTML head (h:head) and body (h: body) tags
= Aform tag (h: form) that represents the user input components

To add the JavaServer Faces components to your web page, you need to provide the page access
to the two standard tag libraries: the JavaServer Faces HTML render kit tag library and the
JavaServer Faces core tag library. The JavaServer Faces standard HTML tag library defines tags
that represent common HTML user interface components. This library is linked to the HTML

139



Adding Components to a Page Using HTML Tags

render kitat http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/
renderkitdocs/. The JavaServer Faces core tag library defines tags that perform core actions
and are independent of a particular render kit.

For a complete list of JavaServer Faces Facelets tags and their attributes, refer to the
documentation at http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/
vdldocs/facelets/.

To use any of the JavaServer Faces tags, you need to include appropriate directives at the top of
each page specifying the tag libraries.

For Facelets applications, the XML namespace directives uniquely identify the tag library URI
and the tag prefix.

For example, when you create a Facelets XHTML page, include namespace directives as follows:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

The XML namespace URI identifies the tag library location, and the prefix value is used to
distinguish the tags belonging to that specific tag library. You can also use other prefixes instead
of the standard h or f. However, when including the tag in the page, you must use the prefix that
you have chosen for the taglibrary. For example, in the following web page, the form tag must
be referenced using the h prefix because the preceding tag library directive uses the h prefix to
distinguish the tags defined in HTML tag library:

<h:form ...>

The sections “Adding Components to a Page Using HTML Tags” on page 140 and “Using Core
Tags” on page 171 describe how to use the component tags from the JavaServer Faces standard
HTML tag library and the core tags from the JavaServer Faces core tag library.

Adding Components to a Page Using HTML Tags

140

The tags defined by the JavaServer Faces standard HTML tag library represent HTML form
components and other basic HTML elements. These components display data or accept data
from the user. This data is collected as part of a form and is submitted to the server, usually
when the user clicks a button. This section explains how to use each of the component tags
shown in Table 7-1.

The Java EE 6 Tutorial « January 2013


http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/renderkitdocs/
http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/renderkitdocs/
http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/
http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/

Adding Components to a Page Using HTML Tags

TABLE7-1 The Component Tags

Tag Functions Rendered as Appearance
h:column Representsa column of data A columnofdatainan A column in a table
in a data component HTML table
h:commandButton Submits a form to the An HTML <input A button
application type=type> element,
where the type value can
be "submit", "reset", or
"image"
h:commandLink Links to another page or An HTML <a href> A hyperlink
location on a page element
h:dataTable Represents a data wrapper An HTML <table> A table that can be
element updated dynamically
h:form Represents an input form An HTML <form> No appearance
(inner tags of the form receive element
the data that will be
submitted with the form)
h:graphicImage Displays an image AnHTML <img>element Animage
h:inputHidden Allows a page author to An HTML <input No appearance
include a hidden variableina type="hidden">element
page
h:inputSecret Allows a user to input astring  An HTML <input A text field, which
without the actual string type="password"> displays a row of
appearing in the field element characters instead of
the actual string
entered
h:inputText Allows a user to input a string  An HTML <input A text field
type="text"> element
h:inputTextarea Allows a user to enter a An HTML <textarea> A multi-row text
multiline string element field
h:message Displays alocalized message ~ An HTML <span>tagif A text string
styles are used
h:messages Displays localized messages A set of HTML <span> A text string
tags if styles are used
h:outputFormat Displays alocalized message ~ Plain text Plain text
h:outputLabel Displays a nested component An HTML <label> Plain text
as a label for a specified input  element

field

Chapter7 - Using JavaServer Faces Technology in Web Pages

141



Adding Components to a Page Using HTML Tags

142

TABLE7-1 The Component Tags (Continued)
Tag Functions Rendered as Appearance
h:outputLink Links to another page or AnHTML <a>element A hyperlink
location on a page without
generating an action event
h:outputText Displays a line of text Plain text Plain text
h:panelGrid Displays a table AnHTML <table> A table

h:panelGroup

h:selectBooleanCheckbox

h:selectManyCheckbox

h:selectManyListbox

h:selectManyMenu

h:selectOneListbox

h:selectOneMenu

h:selectOneRadio

Groups a set of components
under one parent

Allows a user to change the
value of a Boolean choice

Displays a set of check boxes
from which the user can
select multiple values

Allows a user to select
multiple items from a set of
items, all displayed at once

Allows a user to select
multiple items from a set of
items

Allows a user to select one
item from a set of items, all
displayed at once

Allows a user to select one
item from a set of items

Allows a user to select one
item from a set of items

element with <tr>and
<td> elements

A HTML <div>or
<span> element

An HTML <input
type="checkbox">
element.

A set of HTML <input>
elements of type
checkbox

An HTML <select>
element

An HTML <select>
element

An HTML <select>
element

An HTML <select>
element

An HTML <input
type="radio"> element

A row in a table

A check box

A set of check boxes

Alist box

A scrollable combo
box

Alist box

A scrollable combo
box

A set of radio
buttons

The next section explains the important tag attributes that are common to most component
tags. For each of the components discussed in the following sections, “Writing Bean Properties”
on page 192 explains how to write a bean property bound to a particular component or its value.

Common Component Tag Attributes

Most of the component tags support the attributes shown in Table 7-2.

The Java EE 6 Tutorial « January 2013



Adding Components to a Page Using HTML Tags

TABLE7-2 Common Component Tag Attributes

Attribute Description

binding Identifies a bean property and binds the component instance to it.

id Uniquely identifies the component.

immediate If set to true, indicates that any events, validation, and conversion associated with

the component should happen when request parameter values are applied,

rendered Specifies a condition under which the component should be rendered. If the
condition is not satisfied, the component is not rendered.

style Specifies a Cascading Style Sheet (CSS) style for the tag.
styleClass Specifies a CSS class that contains definitions of the styles.
value Specifies the value of the component, in the form of a value expression.

All the tag attributes (except id) can accept expressions, as defined by the EL, described in
Chapter 6, “Expression Language.”

Theid Attribute

The id attribute is not usually required for a component tag but is used when another
component or a server-side class must refer to the component. If you don’t include an id
attribute, the JavaServer Faces implementation automatically generates a component ID. Unlike
most other JavaServer Faces tag attributes, the id attribute takes expressions using only the
evaluation syntax described in “Immediate Evaluation” on page 127, which uses the ${}
delimiters. For more information on expression syntax, see “Value Expressions” on page 128.

The immediate Attribute

Input components and command components (those that implement the

javax. faces.component.ActionSource interface, such as buttons and hyperlinks) can set the
immediate attribute to true to force events, validations, and conversions to be processed when
request parameter values are applied.

You need to carefully consider how the combination of an input component’s immediate value
and a command component’s immediate value determines what happens when the command
component is activated.

Assume that you have a page with a button and a field for entering the quantity of a bookin a
shopping cart. If the immediate attributes of both the button and the field are set to true, the
new value entered in the field will be available for any processing associated with the event that
is generated when the button is clicked. The event associated with the button as well as the
events, validation, and conversion associated with the field are all handled when request
parameter values are applied.

Chapter7 - Using JavaServer Faces Technology in Web Pages 143



Adding Components to a Page Using HTML Tags

144

If the button’s immediate attribute is set to true but the field’s immediate attribute is set to
false, the event associated with the button is processed without updating the field’s local value
to the model layer. The reason is that any events, validation, or conversion associated with the
field occur after request parameter values are applied.

The bookshowcart.xhtml page of the Duke’s Bookstore case study has examples of
components using the immediate attribute to control which component’s data is updated when
certain buttons are clicked. The quantity field for each book does not set the immediate
attribute, so the value is false (the default).

<h:inputText id="quantity"
size="4"
value="#{item.quantity}"
title="#{bundle.ItemQuantity}">
<f:validateLongRange minimum="1"/>
</h:inputText>

The immediate attribute of the Continue Shopping hyperlink is set to true, while the
immediate attribute of the Update Quantities hyperlink is set to false:

<h:commandLink id="continue"
action="bookcatalog"
immediate="true">
<h:outputText value="#{bundle.ContinueShopping}"/>
</h:commandLink>

<h:commandLink id="update"
action="#{showcart.update}"
immediate="false">
<h:outputText value="#{bundle.UpdateQuantities}"/>
</h:commandLink>

If you click the Continue Shopping hyperlink, none of the changes entered into the quantity
input fields will be processed. If you click the Update Quantities hyperlink, the values in the
quantity fields will be updated in the shopping cart.

The rendered Attribute

A component tag uses a Boolean EL expression along with the rendered attribute to determine
whether the component will be rendered. For example, the commandLink component in the
following section of a page is not rendered if the cart contains no items:

<h:commandLink id="check"

rendered="#{cart.numberOfItems > 0}">
<h:outputText
value="#{bundle.CartCheck}"/>
</h:commandLink>

Unlike nearly every other JavaServer Faces tag attribute, the rendered attribute is restricted to
using rvalue expressions. As explained in “Value and Method Expressions” on page 128, these
rvalue expressions can only read data; they cannot write the data back to the data source.

The Java EE 6 Tutorial « January 2013



Adding Components to a Page Using HTML Tags

Therefore, expressions used with rendered attributes can use the arithmetic operators and
literals that rvalue expressions can use but Ivalue expressions cannot use. For example, the
expression in the preceding example uses the > operator.

Note - In this example and others, bundle refers to a java.util.ResourceBundle file that
contains locale-specific strings to be displayed. Resource bundles are discussed in Chapter 17,
“Internationalizing and Localizing Web Applications.”

The style and styleClass Attributes

The style and styleClass attributes allow you to specify CSS styles for the rendered output of
your tags. “Displaying Error Messages with the h:message and h:messages Tags” on page 164
describes an example of using the style attribute to specify styles directly in the attribute. A
component tag can instead refer to a CSS class.

The following example shows the use of a dataTable tag that references the style class
list-background:
<h:dataTable id="items"

é‘.c)IIIeCIass="list-backg round"

value="#{cart.items}"

var="book">

The style sheet that defines this class is stylesheet. css, which will be included in the
application. For more information on defining styles, see Cascading Style Sheets Specification at
http://www.w3.0rg/Style/CSS/.

The value and binding Attributes

A tag representing an output component uses the value and binding attributes to bind its
component’s value or instance, respectively, to a data object.

Adding HTML Head and Body Tags

The HTML head (h:head) and body (h:body) tags add HTML page structure to JavaServer
Faces web pages.

= The h:head tag represents the head element of an HTML page
= The h:body tag represents the body element of an HTML page

The following is an example of an XHTML page using the usual head and body markup tags:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1l-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">

Chapter7 - Using JavaServer Faces Technology in Web Pages 145


http://www.w3.org/Style/CSS/

Adding Components to a Page Using HTML Tags

146

<head>
<title>Add a title</title>
</head>
<body>
Add Content
</body>
</html>

The following is an example of an XHTML page using h: head and h: body tags:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
Add a title
</h:head>
<h:body>
Add Content
</h:body>
</html>

Both of the preceding example code segments render the same HTML elements. The head and
body tags are useful mainly for resource relocation. For more information on resource
relocation, see “Resource Relocation Using h:outputScript and h:outputStylesheet Tags”
on page 169.

Adding a Form Component

An h: formtag represents an input form, which includes child components that can contain
data that is either presented to the user or submitted with the form.

Figure 7-1 shows a typical login form in which a user enters a user name and password, then
submits the form by clicking the Login button.

FIGURE7-1 A Typical Form

User Name: | Duke

Password: Fokkkkkkkk

1

Login

V

The h: form tag represents the form on the page and encloses all the components that display or
collect data from the user, as shown here:

The Java EE 6 Tutorial « January 2013



Adding Components to a Page Using HTML Tags

<h:form>
. other JavaServer Faces tags and other content...
</h:form>

The h: form tag can also include HTML markup to lay out the components on the page. Note

that the h: form tag itself does not perform any layout; its purpose is to collect data and to
declare attributes that can be used by other components in the form.

A page can include multiple h: form tags, but only the values from the form submitted by the

user will be included in the postback request.

Using Text Components

Text components allow users to view and edit text in web applications. The basic types of text

components are as follows:
= Label, which displays read-only text
= Text field, which allows users to enter text, often to be submitted as part of a form

= Textarea, which is a type of text field that allows users to enter multiple lines of text

= Password field, which is a type of text field that displays a set of characters, such as asterisks,

instead of the password text that the user enters

Figure 7-2 shows examples of these text components.

FIGURE7-2 Example Text Components

Label User Name: | Duke Text Field

Password: | #x#xsxsxsx Password Field

e

Comments: | A user can enter text across Text Area
multiple lines.

.

Text components can be categorized as either input or output. A JavaServer Faces output
component is rendered as read-only text. An example is a label. A JavaServer Faces input
component is rendered as editable text. An example is a text field.

The input and output components can each be rendered in various ways to display more
specialized text.

Table 7-3 lists the tags that represent the input components.

Chapter7 - Using JavaServer Faces Technology in Web Pages

147



Adding Components to a Page Using HTML Tags

148

TABLE7-3 Input Tags

Tag Function
h:inputHidden Allows a page author to include a hidden variable in a page
h:inputSecret The standard password field: accepts one line of text with no spaces and displays it

as a set of asterisks as it is typed
h:inputText The standard text field: accepts a one-line text string

h:inputTextarea The standard text area: accepts multiple lines of text

The input tags support the tag attributes shown in Table 7-4 in addition to those described in
“Common Component Tag Attributes” on page 142. Note that this table does not include all the
attributes supported by the input tags but just those that are used most often. For the complete
list of attributes, refer to the documentation at http://docs.oracle.com/javaee/6/
javaserverfaces/2.1/docs/vdldocs/facelets/.

TABLE7-4 Input Tag Attributes

Attribute Description

converter Identifies a converter that will be used to convert the component’s local
data. See “Using the Standard Converters” on page 175 for more
information on how to use this attribute.

converterMessage Specifies an error message to display when the converter registered on
the component fails.

dir Specifies the direction of the text displayed by this component.
Acceptable values are LTR, meaning left-to-right, and RTL, meaning
right-to-left.

label Specifies a name that can be used to identify this component in error
messages.

lang Specifies the code for the language used in the rendered markup, such as
en_US.

required Takes a boolean value that indicates whether the user must enter a value

in this component.

requiredMessage Specifies an error message to display when the user does not enter a
value into the component.

validator Identifies a method expression pointing to a managed bean method that
performs validation on the component’s data. See “Referencing a
Method That Performs Validation” on page 187 for an example of using
the f:validator tag.

The Java EE 6 Tutorial « January 2013


http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/
http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/

Adding Components to a Page Using HTML Tags

TABLE7-4 Input Tag Attributes (Continued)
Attribute Description

validatorMessage Specifies an error message to display when the validator registered on
the component fails to validate the component’s local value.

valueChangeListener Identifies a method expression that points to a managed bean method
that handles the event of entering a value in this component. See
“Referencing a Method That Handles a Value-Change Event” on
page 188 for an example of using valueChangelListener.

Table 7-5 lists the tags that represent the output components.

TABLE7-5 Output Tags

Tag Function

h:outputFormat Displays a formatted message

h:outputLabel The standard read-only label: displays a component as a label for a specified input
field

h:outputLink Displays an <a href> tag that links to another page without generating an action
event

h:outputText Displays a one-line text string

The output tags support the converter tag attribute in addition to those listed in “Common
Component Tag Attributes” on page 142.

The rest of this section explains how to use some of the tags listed in Table 7-3 and Table 7-5.
The other tags are written in a similar way.

Rendering a Text Field with the h:inputText Tag

The h:inputText tagis used to display a text field. A similar tag, the h:outputText tag, displays
aread-only, single-line string. This section shows you how to use the h: inputText tag. The
h:outputText tagis written in a similar way.

Here is an example of an h: inputText tag:

<h:inputText id="name"
label="Customer Name"
size="30"
value="#{cashier.name}"
required="true"
requiredMessage="#{bundle.ReqCustomerName}">
<f:valueChangelListener
type="dukesbookstore.listeners.NameChanged" />
</h:inputText>

Chapter7 - Using JavaServer Faces Technology in Web Pages 149



Adding Components to a Page Using HTML Tags

150

The label attribute specifies a user-friendly name that will be used in the substitution
parameters of error messages displayed for this component.

The value attribute refers to the name property of a managed bean named CashierBean. This
property holds the data for the name component. After the user submits the form, the value of
the name property in CashierBean will be set to the text entered in the field corresponding to
this tag.

The required attribute causes the page to reload, displaying errors, if the user does not enter a
value in the name text field. The JavaServer Faces implementation checks whether the value of
the component is null or is an empty string.

If your component must have a non-null value or a String value at least one character in length,
you should add a required attribute to your tag and set its value to true. If your tag has a
required attribute that is set to true and the value is null or a zero-length string, no other
validators that are registered on the tag are called. If your tag does not have a required attribute
set to true, other validators that are registered on the tag are called, but those validators must
handle the possibility of a null or zero-length string. See “Validating Null and Empty Strings”
on page 207 for more information.

Rendering a Password Field with the h:inputSecret Tag

The h: inputSecret tag renders an <input type="password"> HTML tag. When the user types
a string into this field, a row of asterisks is displayed instead of the text typed by the user. Here is
an example:

<h:inputSecret redisplay="false"
value="#{LoginBean.password}" />

In this example, the redisplay attribute is set to false. This will prevent the password from
being displayed in a query string or in the source file of the resulting HTML page.

Rendering a Label with the h:outputLabel Tag

The h:outputLabel tagis used to attach a label to a specified input field for the purpose of
making it accessible. The following page uses an h: outputLabel tag to render the label of a
check box:

<h:selectBooleanCheckbox id="fanClub"
binding="#{cashier.specialOffer}" />
<h:outputLabel for="fanClub"
binding="#{cashier.specialOfferText}" >
<h:outputText id="fanClubLabel"
value="#{bundle.DukeFanClub}" />
</h:outputLabel>

The Java EE 6 Tutorial « January 2013



Adding Components to a Page Using HTML Tags

The for attribute of the h:outputLabel tag maps to the id of the input field to which the label is
attached. The h:outputText tag nested inside the h: outputLabel tag represents the label
component. The value attribute on the h: outputText tag indicates the text that is displayed
next to the input field.

Instead of using an h:outputText tag for the text displayed as a label, you can simply use the
h:outputLabel tag’s value attribute. The following code snippet shows what the previous code
snippet would look like if it used the value attribute of the h: outputLabel tag to specify the text
of the label:

<h:selectBooleanCheckbox id="fanClub"
binding="#{cashier.specialOffer}" />
<h:outputLabel for="fanClub"
binding="#{cashier.specialOfferText}"
value="#{bundle.DukeFanClub}" />

Rendering a Hyperlink with the h:outputLink Tag

The h:outputLink tagis used to render a hyperlink that, when clicked, loads another page but
does not generate an action event. You should use this tag instead of the h: commandLink tag if
you always want the URL specified by the h:outputLink tag’s value attribute to open and do
not want any processing to be performed when the user clicks the link. Here is an example:

<h:outputLink value="javadocs">
Documentation for this demo
</h:outputLink>

The text in the body of the h: outputLink tag identifies the text that the user clicks to get to the
next page.

Displaying a Formatted Message with the h:outputFormat Tag

The h:outputFormat tagallows display of concatenated messages as a MessageFormat pattern,
as described in the APT documentation for java. text.MessageFormat. Here is an example of
an h:outputFormat tag:

<h:outputFormat value="Hello, {0}!">
<f:param value="#{hello.name}"/>
</h:outputFormat>

The value attribute specifies the MessageFormat pattern. The f:param tag specifies the
substitution parameters for the message. The value of the parameter replaces the {0} in the
sentence. If the value of "#{hello.name}" is “Bill”, the message displayed in the page is as
follows:

Hello, Bill!

Chapter7 - Using JavaServer Faces Technology in Web Pages 151



Adding Components to a Page Using HTML Tags

152

An h:outputFormat tag can include more than one f: param tag for those messages that have
more than one parameter that must be concatenated into the message. If you have more than
one parameter for one message, make sure that you put the f: paramtags in the proper order so
that the data is inserted in the correct place in the message. Here is the preceding example
modified with an additional parameter:

<h:outputFormat value="Hello, {@}! You are visitor number {1} to the page.">
<f:param value="#{hello.name}" />
<f:param value="#{bean.numVisitor}"/>

</h:outputFormat>

The value of {1} is replaced by the second parameter. The parameter is an EL expression,
bean.numVisitor, where the property numvisitor of the managed bean bean keeps track of
visitors to the page. This is an example of a value-expression-enabled tag attribute accepting an
EL expression. The message displayed in the page is now as follows:

Hello, Bill! You are visitor number 10 to the page.

Using Command Component Tags for Performing
Actions and Navigation

In JavaServer Faces applications, the button and hyperlink component tags are used to perform
actions, such as submitting a form, and for navigating to another page. These tags are called
command component tags because they perform an action when activated.

The h: commandButton tagis rendered as a button. The h: commandLink tag is rendered as a
hyperlink.

In addition to the tag attributes listed in “Common Component Tag Attributes” on page 142,
the h: commandButton and h: commandLink tags can use the following attributes:

®  action, which is either a logical outcome String or a method expression pointing to a bean
method that returns a logical outcome String. In either case, the logical outcome String is
used to determine what page to access when the command component tag is activated.

= actionListener, which isa method expression pointing to a bean method that processes an
action event fired by the command component tag.

See “Referencing a Method That Performs Navigation” on page 187 for more information on
using the action attribute. See “Referencing a Method That Handles an Action Event” on
page 187 for details on using the actionListener attribute.

Rendering a Button with the h.commandButton Tag

If you are using an h: commandButton component tag, the data from the current page is
processed when a user clicks the button, and the next page is opened. Here is an example of the
h:commandButton tag:

The Java EE 6 Tutorial « January 2013



Adding Components to a Page Using HTML Tags

<h:commandButton value="Submit"

action="#{cashierBean.submit}"/>
Clicking the button will cause the submit method of CashierBean to be invoked because the
action attribute references this method. The submit method performs some processing and
returns a logical outcome.

The value attribute of the example h: commandButton tag references the button’s label. For
information on how to use the action attribute, see “Referencing a Method That Performs
Navigation” on page 187.

Rendering a Hyperlink with the h:commandLink Tag

The h: commandLink tag represents an HTML hyperlink and is rendered as an HTML <a>
element.

A h:commandLink tag must include a nested h: outputText tag, which represents the text that
the user clicks to generate the event. Here is an example:

<h:commandLink id="Duke" action="bookstore"s>
<f:actionListener
type="dukesbookstore.listeners.LinkBookChangeListener" />
<h:outputText value="#{bundle.Book201}"/>
/h:commandLink>

This tag will render the following HTML.:

<a id=" idt16:Duke" href="#"
onclick="mojarra.jsfcljs(document.getElementById(’'j idt1l6’),
{’j idt16:Duke’:’j idt16:Duke’},’’);
return false;">My Early Years: Growing Up on Star7, by Duke</a>

Note - The h: commandLink tag will render JavaScript scripting language. If you use this tag,
make sure that your browser is enabled for JavaScript technology.

Adding Graphics and Images with the h:graphicimage
Tag
In a JavaServer Faces application, use the h: graphicImage tag to render an image on a page:

<h:graphicImage id="mapImage" url="/resources/images/book all.jpg"/>

In this example, the url attribute specifies the path to the image. The URL of the example tag
begins with a slash (/), which adds the relative context path of the web application to the
beginning of the path to the image.

Alternatively, you can use the facility described in “Web Resources” on page 123 to point to the
image location. Here are two examples:

Chapter7 - Using JavaServer Faces Technology in Web Pages 153



Adding Components to a Page Using HTML Tags

154

<h:graphicImage id="mapImage"
name="book_all.jpg"
library="images"
alt="#{bundle.ChooseBook}"
usemap="#bookMap" />

<h:graphicImage value="#{resource[’images:wave.med.gif’']}"/>

You can use similar syntax to refer to an image in a style sheet. The following syntax in a style
sheet specifies that the image is to be found at resources/img/top-background. jpg:

header {
position: relative;
height: 150px;
background: #fff url(#{resource[’img:top-background.jpg’]l}) repeat-x;

Laying Out Components with the h:panelGrid and
h:panelGroup Tags

In a JavaServer Faces application, you use a panel as a layout container for a set of other
components. A panel is rendered as an HTML table. Table 7-6 lists the tags used to create
panels.

TABLE7-6 Panel Component Tags

Tag Attributes Function

h:panelGrid columns, columnClasses, footerClass, Displays a table
headerClass, panelClass, rowClasses

h:panelGroup layout Groups a set of components under one
parent

The h:panelGrid tagis used to represent an entire table. The h: panelGroup tag is used to
represent rows in a table. Other tags are used to represent individual cells in the rows.

The columns attribute defines how to group the data in the table and therefore is required if you
want your table to have more than one column. The h: panelGrid tag also has a set of optional
attributes that specify CSS classes: columnClasses, footerClass, headerClass, panelClass,
and rowClasses.

If the headerClass attribute value is specified, the h: panelGrid tag must have a header as its
first child. Similarly, if a footerClass attribute value is specified, the h: panelGrid tag must
have a footer as its last child.

Here is an example:

The Java EE 6 Tutorial « January 2013



Adding Components to a Page Using HTML Tags

<h:panelGrid columns="2"

headerClass="list-header"
styleClass="list-background"
rowClasses="list-row-even, list-row-odd"
summary="#{bundle.CustomerInfo}"
title="#{bundle.Checkout}">

<f:facet name="header">

<h:outputText value="#{bundle.Checkout}"/>
</f:facet>

<h:outputLabel for="name" value="#{bundle.Name}" />
<h:inputText id="name"
size="30"
value="#{cashier.name}"
required="true"
requiredMessage="#{bundle.ReqCustomerName}">
<f:valueChangelListener
type="dukesbookstore.listeners.NameChanged" />
</h:inputText>
<h:message styleClass="error-message" for="name"/>

<h:outputLabel for="ccno" value="#{bundle.CCNumber}"/>
<h:inputText id="ccno"
size="19"
value="#{cashier.creditCardNumber}"
required="true"
requiredMessage="#{bundle.ReqCreditCard}" >
<f:converter converterId="ccno"/>
<f:validateRegex
pattern="\d{16} |\d{4} \d{4} \d{4} \d{4}|\d{4}-\d{4}-\d{4}-\d{4}" />
</h:inputText>
<h:message styleClass="error-message" for="ccno"/>

</h:panelGrid>

The preceding h: panelGrid tag is rendered as a table that contains components in which a
customer inputs personal information. This h: panelGrid tag uses style sheet classes to format
the table. The following code shows the 1ist-header definition:

.list-header {
background-color: #ffffff;
color: #000000;
text-align: center;

}

Because the h:panelGrid tag specifies a headerClass, the h: panelGrid tag must contain a
header. The example h: panelGrid tag uses an f: facet tag for the header. Facets can have only
one child, so an h: panelGroup tag is needed if you want to group more than one component
within an f: facet. The example h:panelGrid tag has only one cell of data, so an h: panelGroup
tag is not needed. (For more information about facets, see “Using Data-Bound Table
Components” on page 161.)

The h:panelGroup tag has an attribute, layout, in addition to those listed in “Common
Component Tag Attributes” on page 142. If the layout attribute has the value block, an HTML
div element is rendered to enclose the row; otherwise, an HTML span element is rendered to

Chapter7 - Using JavaServer Faces Technology in Web Pages 155



Adding Components to a Page Using HTML Tags

156

enclose the row. If you are specifying styles for the h: panelGroup tag, you should set the layout
attribute to block in order for the styles to be applied to the components within the
h:panelGroup tag. You should do this because styles, such as those that set width and height,
are not applied to inline elements, which is how content enclosed by the span element is
defined.

An h:panelGroup tag can also be used to encapsulate a nested tree of components so that the
tree of components appears as a single component to the parent component.

Data, represented by the nested tags, is grouped into rows according to the value of the columns
attribute of the h:panelGrid tag. The columns attribute in the example is set to 2, and therefore
the table will have two columns. The column in which each component is displayed is
determined by the order in which the component is listed on the page modulo 2. So, ifa
component is the fifth one in the list of components, that component will be in the 5 modulo 2
column, or column 1.

Displaying Components for Selecting One Value

Another commonly used component is one that allows a user to select one value, whether it is
the only value available or one of a set of choices. The most common tags for this kind of
component are as follows:

= Anh:selectBooleanCheckbox tag, displayed as a check box, which represents a Boolean
state

®  Anh:selectOneRadio tag, displayed as a set of radio buttons
= Anh:selectOneMenu tag, displayed as a drop-down menu, with a scrollable list

= Anh:selectOnelListbox tag, displayed as a list box, with an unscrollable list

Figure 7-3 shows examples of these components.

The Java EE 6 Tutorial « January 2013



Adding Components to a Page Using HTML Tags

FIGURE 7-3 Example Components for Selecting One Item

Genre: O Fiction Language: | Chinese A Format: | Hardcover
o Dutch & Paperback
Radio @ Non-fiction English Large-print
Buttons O Reference French - Cassette
] German DVD
O Biography Spanish | lllustrated
Swahili v
Availability: In print \/ ‘
‘ ‘ List Box
Check Box Drop-Down Menu

Displaying a Check Box Using the h:selectBooleanCheckbox Tag

The h:selectBooleanCheckbox tag is the only tag that JavaServer Faces technology provides
for representing a Boolean state.

Here is an example that shows how to use the h: selectBooleanCheckbox tag:

<h:selectBooleanCheckbox id="fanClub"
binding="#{cashier.specialOffer}" />
<h:outputLabel for="fanClub"
binding="#{cashier.specialOfferText}"
value="#{bundle.DukeFanClub}" />

This example tag displays a check box to allow users to indicate whether they want to join the
Duke Fan Club. The label for the check box is rendered by the h: outputLabel tag. The text is
represented by the value attribute.

Displaying a Menu Using the h:selectOneMenu Tag

A component that allows the user to select one value from a set of values can be rendered as a list
box, a set of radio buttons, or a menu. This section describes the h: selectOneMenu tag. The
h:selectOneRadio and h:selectOneListbox tags are used in a similar way. The
h:selectOneListbox tagis similar to the h: selectOneMenu tag except that
h:selectOneListbox defines a size attribute that determines how many of the items are
displayed at once.

The h:selectOneMenu tag represents a component that contains a list of items from which a
user can choose one item. This menu component is also commonly known as a drop-down list
or a combo box. The following code snippet shows how the h: selectOneMenu tag is used to
allow the user to select a shipping method:

<h:selectOneMenu id="shippingOption"
required="true"
value="#{cashier.shippingOption}">
<f:selectItem itemValue="2"
itemLabel="#{bundle.QuickShip}"/>

Chapter7 - Using JavaServer Faces Technology in Web Pages 157



Adding Components to a Page Using HTML Tags

158

<f:selectItem itemValue="5
itemLabel="#{bundle.NormalShip}"/>
<f:selectItem itemValue="7"
itemLabel="#{bundle.SaverShip}"/>
</h:selectOneMenu>

The value attribute of the h: selectOneMenu tag maps to the property that holds the currently
selected item’s value. You are not required to provide a value for the currently selected item. If
you don’t provide a value, the first item in the list is selected by default.

Like the h: selectOneRadio tag, the h: selectOneMenu tag must contain either an
f:selectItems tagorasetof f:selectItemtags for representing the items in the list. “Using
the f:selectItemand f:selectItems Tags” on page 159 describes these tags.

Displaying Components for Selecting Multiple Values

In some cases, you need to allow your users to select multiple values rather than just one value
from a list of choices. You can do this using one of the following component tags:

= Anh:selectManyCheckbox tag, displayed as a set of check boxes
= Anh:selectManyMenu tag, displayed as a drop-down menu
= Anh:selectManyListbox tag, displayed as a list box

Figure 7-4 shows examples of these components.

FIGURE 7-4 Example Components for Selecting Multiple Values

Genre: Fiction Language: | Chinese 7} Format: | Hardcover
o Dutch ( Paperback
Check Non-fiction English Large-print
Boxes |:| Reference French ) Cassette
) German DVD
I:l Biography Spanish lllustrated
Swahili E}

‘ List Box
Drop-Down Menu

These tags allow the user to select zero or more values from a set of values. This section explains
the h:selectManyCheckbox tag. The h:selectManyListbox and h:selectManyMenu tags are
used in a similar way.

Unlike a menu, a list box displays a subset of items in a box; a menu displays only one item ata
time when the user is not selecting the menu. The size attribute of the h: selectManyListbox
tag determines the number of items displayed at one time. The list box includes a scroll bar for
scrolling through any remaining items in the list.

The Java EE 6 Tutorial « January 2013



Adding Components to a Page Using HTML Tags

The h:selectManyCheckbox tag renders a set of check boxes, with each check box representing
one value that can be selected:

<h:selectManyCheckbox id="newslettercheckbox"
layout="pageDirection"
value="#{cashier.newsletters}">
<f:selectItems value="#{cashier.newsletterItems}"/>
</h:selectManyCheckbox>

The value attribute of the h: selectManyCheckbox tag identifies the newsletters property of
the CashierBean managed bean. This property holds the values of the currently selected items
from the set of check boxes. You are not required to provide a value for the currently selected
items. If you don’t provide a value, the first item in the list is selected by default. In the
CashierBean managed bean, this value is instantiated to 0, so no items are selected by default.

The layout attribute indicates how the set of check boxes is arranged on the page. Because
layout is set to pageDirection, the check boxes are arranged vertically. The default is
lineDirection, which aligns the check boxes horizontally.

The h:selectManyCheckbox tag must also contain a tag or set of tags representing the set of
check boxes. To represent a set of items, you use the f:selectItems tag. To represent each item
individually, you use the f: selectItemtag. The following section explains these tags in more
detail.

Using the f:selectitem and f:selectitems Tags

The f:selectItemand f:selectItems tags represent components that can be nested inside a
component that allows you to select one or multiple items. An f:selectItemtag contains the
value, label, and description of a single item. An f: selectItems tag contains the values, labels,
and descriptions of the entire list of items.

You can use either a set of f:selectItem tags or asingle f:selectItems tag within your
component tag.

The advantages of using the f:selectItems tagare as follows.

= [tems can be represented by using different data structures, including Array, Map, and
Collection. The value of the f:selectItems tag can represent even a generic collection of
POJOs.

= Different lists can be concatenated into a single component, and the lists can be grouped
within the component.

= Values can be generated dynamically at runtime.

Chapter7 - Using JavaServer Faces Technology in Web Pages 159



Adding Components to a Page Using HTML Tags

160

The advantages of using f: selectItemare as follows:

= Jtems in the list can be defined from the page.
= Less codeis needed in the bean for the f:selectItem properties.

The rest of this section shows you how to use the f:selectItems and f:selectItem tags.

Using the f:selectltems Tag

The following example from “Displaying Components for Selecting Multiple Values” on
page 158 shows how to use the h: selectManyCheckbox tag:

<h:selectManyCheckbox id="newslettercheckbox"
layout="pageDirection"
value="#{cashier.newsletters}">
<f:selectItems value="#{cashier.newsletterItems}"/>
</h:selectManyCheckbox>

The value attribute of the f:selectItems tagis bound to the managed bean property
cashier.newsletterItems. Theindividual SelectItem objects are created programmatically
in the managed bean.

See “UISelectItems Properties” on page 198 for information on how to write a managed bean
property for one of these tags.

Using the f:selectitem Tag

The f:selectItem tag represents a single item in a list of items. Here is the example from
“Displaying a Menu Using the h: selectOneMenu Tag” on page 157 once again:

<h:selectOneMenu id="shippingOption"
required="true"
value="#{cashier.shippingOption}">
<f:selectItem itemValue="2"
itemLabel="#{bundle.QuickShip}"/>
<f:selectItem itemValue="5"
itemLabel="#{bundle.NormalShip}"/>
<f:selectItem itemValue="7"
itemLabel="#{bundle.SaverShip}"/>
</h:selectOneMenu>

The itemValue attribute represents the value for the f:selectItemtag. The itemLabel
attribute represents the String that appears in the drop-down menu component on the page.

The itemValue and itemLabel attributes are value-binding-enabled, meaning that they can use
value-binding expressions to refer to values in external objects. These attributes can also define
literal values, as shown in the example h: selectOneMenu tag.

The Java EE 6 Tutorial « January 2013



Adding Components to a Page Using HTML Tags

Displaying the Results from Selection Components

If you display components that allow a user to select values, you may also want to display the
result of the selection.

For example, you might want to thank a user who selected the checkbox to join the Duke Fan
Club, as described in “Displaying a Check Box Using the h: selectBooleanCheckbox Tag” on
page 157. Because the checkbox is bound to the specialOffer property of CashierBean, a
javax.faces.component.UISelectBoolean value, you can call the isSelected method of the
property to determine whether to render a thank-you message:

<h:outputText value="#{bundle.DukeFanClubThanks}"
rendered="#{cashier.specialOffer.isSelected()}"/>

Similarly, you might want to acknowledge that a user subscribed to newsletters using the
h:selectManyCheckbox tag, as described in “Displaying Components for Selecting Multiple
Values” on page 158. To do so, you can retrieve the value of the newsletters property, the
String array that holds the selected items:

<h:outputText value="#{bundle.NewsletterThanks}"
rendered="#{!empty cashier.newsletters}"/>
<ul>
<ui:repeat value="#{cashier.newsletters}" var="nli">
<li><h:outputText value="#{nli}" /></li>
</ui:repeat>
</ul>

An introductory thank-you message is displayed only if the newsletters array is not empty.
Then a ui:repeat tag, a simple way to show values in a loop, displays the contents of the
selected items in an itemized list. (This tag is listed in Table 5-2.)

Using Data-Bound Table Components

Data-bound table components display relational data in a tabular format. In a JavaServer Faces
application, the h: dataTable component tag supports binding to a collection of data objects
and displays the data as an HTML table. The h: column tag represents a column of data within
the table, iterating over each record in the data source, which is displayed as a row. Here is an
example:

<h:dataTable id="items"
captionStyle="font-weight:bold"
columnClasses="list-column-center, list-column-left,
list-column-right, list-column-center"
footerClass="list-footer"
headerClass="list-header"
rowClasses="list-row-even, list-row-odd"
styleClass="list-background"
summary="#{bundle.ShoppingCart}"

Chapter7 - Using JavaServer Faces Technology in Web Pages 161



Adding Components to a Page Using HTML Tags

162

value="#{cart.items}"

border="1"
var="item">
<h:column>

<f:facet name="header">
<h:outputText value="#{bundle.ItemQuantity}" />
</f:facet>
<h:inputText id="quantity"
size="4"
value="#{item.quantity}"
title="#{bundle.ItemQuantity}">
<f:validatelLongRange minimum="1"/>
</h:inputText>
<h:message for="quantity"/>
</h:column>
<h:column>
<f:facet name="header">
<h:outputText value="#{bundle.ItemTitle}"/>
</f:facet>
<h:commandLink action="#{showcart.details}">
<h:outputText value="#{item.item.title}"/>
</h:commandLink>
</h:column>

<f:facet name="footer"
<h:panelGroup>
<h:outputText value="#{bundle.Subtotal}"/>
<h:outputText value="#{cart.total}" />
<f:convertNumber currencySymbol="$" type="currency" />
</h:outputText>
</h:panelGroup>
</f:facet>
<f:facet name="caption">
<h:outputText value="#{bundle.Caption}"/>
</f:facet>
</h:dataTable>

The example h: dataTable tag displays the books in the shopping cart, as well as the quantity of
each book in the shopping cart, the prices, and a set of buttons the user can click to remove
books from the shopping cart.

The h: column tags represent columns of data in a data component. While the data component
is iterating over the rows of data, it processes the column component associated with each
h:column tag for each row in the table.

The h:dataTable tag shown in the preceding code example iterates through the list of books
(cart.items) in the shopping cart and displays their titles, authors, and prices. Each time the
h:dataTable tagiterates through the list of books, it renders one cell in each column.

The h:dataTable and h: column tags use facets to represent parts of the table that are not
repeated or updated. These parts include headers, footers, and captions.

In the preceding example, h: column tags include f: facet tags for representing column headers
or footers. The h: column tag allows you to control the styles of these headers and footers by

The Java EE 6 Tutorial « January 2013



Adding Components to a Page Using HTML Tags

supporting the headerClass and footerClass attributes. These attributes accept
space-separated lists of CSS classes, which will be applied to the header and footer cells of the
corresponding column in the rendered table.

Facets can have only one child, so an h: panelGroup tag is needed if you want to group more
than one component within an f: facet. Because the facet tag representing the footer includes
more than one tag, the h: panelGroup tag is needed to group those tags. Finally, this
h:dataTable tagincludes an f: facet tag with its name attribute set to caption, causing a table
caption to be rendered above the table.

This table is a classic use case for a data component because the number of books might not be
known to the application developer or the page author when that application is developed. The
data component can dynamically adjust the number of rows of the table to accommodate the
underlying data.

The value attribute of an h: dataTable tag references the data to be included in the table. This
data can take the form of any of the following:

Alist of beans

An array of beans

A single bean

A javax.faces.model.DataModel object

A java.sql.ResultSet object

A javax.servlet.jsp.jstl.sql.Result object
A javax.sql.RowSet object

All data sources for data components have a javax. faces.model.DataModel wrapper. Unless
you explicitly construct a DataModel wrapper, the JavaServer Faces implementation will create
one around data of any of the other acceptable types. See “Writing Bean Properties” on page 192
for more information on how to write properties for use with a data component.

The var attribute specifies a name that is used by the components within the h: dataTable tag
as an alias to the data referenced in the value attribute of h:dataTable.

In the example h:dataTable tag, the value attribute points to a list of books. The var attribute
points to a single book in that list. As the h:dataTable tag iterates through the list, each
reference to item points to the current book in the list.

The h:dataTable tag also has the ability to display only a subset of the underlying data. This
feature is not shown in the preceding example. To display a subset of the data, you use the
optional first and rows attributes.

The first attribute specifies the first row to be displayed. The rows attribute specifies the
number of rows, starting with the first row, to be displayed. For example, if you wanted to
display records 2 through 10 of the underlying data, you would set first to 2 and rows to 9.
When you display a subset of the data in your pages, you might want to consider including a
link or button that causes subsequent rows to display when clicked. By default, both first and
rows are set to zero, and this causes all the rows of the underlying data to display.

Chapter7 - Using JavaServer Faces Technology in Web Pages 163



Adding Components to a Page Using HTML Tags

164

Table 7-7 shows the optional attributes for the h: dataTable tag.

TABLE7-7 Optional Attributes for the h:dataTable Tag

Attribute Defines Styles for
captionClass Table caption
columnClasses All the columns
footerClass Footer
headerClass Header
rowClasses Rows
styleClass The entire table

Each of the attributes in Table 7-7 can specify more than one style. If columnClasses or
rowClasses specifies more than one style, the styles are applied to the columns or rows in the
order that the styles are listed in the attribute. For example, if columnClasses specifies styles
list-column-centerand list-column-right and if the table has two columns, the first
column will have style list-column-center, and the second column will have style
list-column-right.

If the style attribute specifies more styles than there are columns or rows, the remaining styles
will be assigned to columns or rows starting from the first column or row. Similarly, if the style
attribute specifies fewer styles than there are columns or rows, the remaining columns or rows
will be assigned styles starting from the first style.

Displaying Error Messages with the h:message and
h:messages Tags

The h:message and h:messages tags are used to display error messages when conversion or
validation fails. The h:message tag displays error messages related to a specific input
component, whereas the h:messages tag displays the error messages for the entire page.

Here is an example h:message tag from the guessnumber application:

<p>
<h:inputText id="userNo"
title="Type a number from 0 to 10:"
value="#{userNumberBean.userNumber}">
<f:validateLongRange minimum="#{userNumberBean.minimum}"
maximum="#{userNumberBean.maximum}"/>
</h:inputText>
<h:commandButton id="submit" value="Submit"
action="response"/>

The Java EE 6 Tutorial « January 2013



Adding Components to a Page Using HTML Tags

</p>

<h:message showSummary="true" showDetail="false"
style="color: #d20005;
font-family: ’'New Century Schoolbook’, serif;
font-style: oblique;
text-decoration: overline"
id="errorsl"
for="userNo"/>

The for attribute refers to the ID of the component that generated the error message. The error
message is displayed at the same location that the h:message tag appears in the page. In this
case, the error message will appear after the Submit button.

The style attribute allows you to specify the style of the text of the message. In the example in
this section, the text will be a shade of red, New Century Schoolbook, serif font family, and
oblique style, and a line will appear over the text. The message and messages tags support many
other attributes for defining styles. For more information on these attributes, refer to the
documentation at http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/
vdldocs/facelets/.

Another attribute supported by the h:messages tag is the layout attribute. Its default value is
list, which indicates that the messages are displayed in a bullet list using the HTML ul and 1i
elements. If you set the attribute value to table, the messages will be rendered in a table using
the HTML tab'le element.

The preceding example shows a standard validator that is registered on the input component.
The message tag displays the error message that is associated with this validator when the
validator cannot validate the input component’s value. In general, when you register a converter
or validator on a component, you are queueing the error messages associated with the converter
or validator on the component. The h:message and h:messages tags display the appropriate
error messages that are queued on the component when the validators or converters registered
on that component fail to convert or validate the component’s value.

Standard error messages are provided with standard converters and standard validators. An
application architect can override these standard messages and supply error messages for
custom converters and validators by registering custom error messages with the application.

Creating Bookmarkable URLs with the h:button and
h:link Tags

The ability to create bookmarkable URLs refers to the ability to generate hyperlinks based on a
specified navigation outcome and on component parameters.

In HTTP, most browsers by default send GET requests for URL retrieval and POST requests for
data processing. The GET requests can have query parameters and can be cached, which is not
advised for POST requests, which send data to servers for processing. The other JavaServer

Chapter7 - Using JavaServer Faces Technology in Web Pages 165


http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/
http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/

Adding Components to a Page Using HTML Tags

166

Faces tags capable of generating hyperlinks use either simple GET requests, as in the case of
h:outputLink, or POST requests, as in the case of h: commandLink or h: commandButton tags.
GET requests with query parameters provide finer granularity to URL strings. These URLs are
created with one or more name=value parameters appended to the simple URL aftera ?
character and separated by either &; or &amp; strings.

To create a bookmarkable URL, use an h: link or h:button tag. Both of these tags can generate
a hyperlink based on the outcome attribute of the component. For example:

<h:link outcome="somepage" value="Message" />

The h: link tag will generate a URL link that points to the somepage. xhtml file on the same
server. The following sample HTML is generated from the preceding tag, assuming that the
application name is simplebookmark:

<a href="/simplebookmark/faces/somepage.xhtml">Message</a>

This is a simple GET request that cannot pass any data from page to page. To create more
complex GET requests and utilize the complete functionality of the h: link tag, use view
parameters.

Using View Parameters to Configure Bookmarkable
URLs

To pass a parameter from one page to another, use the includeViewParams attribute in your
h:link tag and, in addition, use an f : param tag to specify the name and value to be passed. Here
the h: link tag specifies the outcome page as personal.xhtml and provides a parameter named
Result whose value is a managed bean property:

<h:body>
<h:form>
<h:graphicImage url="duke.waving.gif" alt="Duke waving his hand"/>
<h2>Hello, #{hello.name}!'!</h2>
<p>I've made your
<h:link outcome="personal" value="personal greeting page!"
includeViewParams="true">
<f:param name="Result" value="#{hello.name}"/>
</h:1link>
</p>
<h:commandButton id="back" value="Back" action="index" />
</h:form>
</h:body>

If the includeViewParanms attribute is set on the component, the view parameters are added to
the hyperlink. Therefore, the resulting URL will look something like this if the value of
hello.name is Timmy:

http://localhost:8080/bookmarks/faces/personal.xhtml?Result=Timmy

The Java EE 6 Tutorial « January 2013



Adding Components to a Page Using HTML Tags

On the outcome page, specify the core tags f:metadata and f:viewparamas the source of
parameters for configuring the URLs. View parameters are declared as part of f :metadata fora
page, as shown in the following example:

<f:metadata>
<f:viewParam name="Result" value="#{hello.name}" />
</f:metadata>

This allows you to specify the bean property value on the page:

<h:outputText value="Howdy, #{hello.name}!" />

As a view parameter, the name also appears in the page’s URL. If you edit the URL, you change
the output on the page.

Because the URL can be the result of various parameter values, the order of the URL creation
has been predefined. The order in which the various parameter values are read is as follows:

1. Component
2. Navigation-case parameters
3. View parameters

The bookmarks Example Application

The bookmarks example application modifies the hellol application described in “Web
Modules: The hellol Example” on page 84 to use a bookmarkable URL that uses view
parameters.

Like hellol, the application includes the Hello. java managed bean, an index.xhtml page,
and a response.xhtml page. In addition, it includes a personal.xhtml page, to which a
bookmarkable URL and view parameters are passed from the response.xhtml page, as
described in “Using View Parameters to Configure Bookmarkable URLs” on page 166.

Building, Packaging, Deploying, and Running the bookmarks Example

You can use either NetBeans IDE or Ant to build, package, deploy, and run the bookmarks
example. The source code for this example is available in the
tut-install/examples/web/bookmarks/ directory.

To Build, Package, and Deploy the bookmarks Example Using NetBeans
IDE

From the File menu, choose Open Project.

In the Open Project dialog, navigate to:

tut-install/examples/web/

Chapter7 - Using JavaServer Faces Technology in Web Pages 167



Adding Components to a Page Using HTML Tags

168

Select the bookmarks folder.
Select the Open as Main Project check box.
Click Open Project.

In the Projects tab, right-click the bookmarks project and select Deploy.

This option builds and deploys the example application to your GlassFish Server instance.

To Build, Package, and Deploy the bookmarks Example Using Ant

In a terminal window, go to:

tut-install/examples/web/bookmarks/

Type the following command:

ant

This command calls the default target, which builds and packages the application into a WAR
file, bookmarks .war, that is located in the dist directory.

Make sure that the GlassFish Server is started.

To deploy the application, type the following command:
ant deploy

To Run the bookmarks Example

Open aweb browser.

Type the following URL in your web browser:
http://localhost:8080/bookmarks

In the text field, type a name and click Submit.

On the response page, move your mouse over the “personal greeting page” link to view the URL
with the view parameter, then click the link.

The personal.xhtml page opens, displaying a greeting to the name you typed.

In the URL field, modify the Result parameter value and press Enter.

The name in the greeting changes to what you typed.

The Java EE 6 Tutorial « January 2013



Adding Components to a Page Using HTML Tags

Resource Relocation Using h:outputScript and
h:outputStylesheet Tags

Resource relocation refers to the ability of a JavaServer Faces application to specify the location
where a resource can be rendered. Resource relocation can be defined with the following HTML
tags:

= h:outputScript
®  h:outputStylesheet

These tags have name and target attributes, which can be used to define the render location. For
a complete list of attributes for these tags, see the documentation at http://docs.oracle.com/
javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/.

For the h:outputScript tag, the name and target attributes define where the output of a
resource may appear. Here is an example:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">
<h:head id="head">
<title>Resource Relocation</title>
</h:head>
<h:body id="body">
<h:form id="form">
<h:outputScript name="hello.js"/>
<h:outputStylesheet name="hello.css"/>
</h:form>
</h:body>
</html>

Since the target attribute is not defined in the tags, the style sheet hello. css is rendered in the
head element of the page, and the hello. js script is rendered in the body of the page.

Here is the HTML generated by the preceding code:

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Resource Relocation</title>
<link type="text/css" rel="stylesheet"
href="/context-root/faces/javax.faces.resource/hello.css"/>
</head>
<body>
<form id="form" name="form" method="post" action="...
<script type="text/javascript"
src="/context-root/faces/javax.faces.resource/hello.js">
</script>
</form>
</body>
</html>

enctype="...">

Chapter7 - Using JavaServer Faces Technology in Web Pages 169


http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/
http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/

Adding Components to a Page Using HTML Tags

170

If you set the target attribute for the h:outputScript tag, the incoming GET request provides
the location parameter. Here is an example:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">
<h:head id="head">
<title>Resource Relocation</title>
</h:head>
<h:body id="body">
<h:form id="form">
<h:outputScript name="hello.js" target="#{param.location}"/>
<h:outputStylesheet name="hello.css"/>
</h:form>
</h:body>
</html>

In this case, if the incoming request does not provide a location parameter, the default locations
will still apply: The style sheet is rendered in the head, and the script is rendered inline.
However, if the incoming request specifies the location parameter as the head, both the style
sheet and the script will be rendered in the head element.

The HTML generated by the preceding code is as follows:

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Resource Relocation</title>
<link type="text/css" rel="stylesheet"
href="/context-root/faces/javax.faces.resource/hello.css"/>
<script type="text/javascript"
src="/context-root/faces/javax.faces.resource/hello.js">
</script>
</head>
<body>
<form id="form" name="form" method="post" action="..." enctype="...">
</form>
</body>
</html>

Similarly, if the incoming request provides the location parameter as the body, the script will be
rendered in the body element.

The preceding section describes simple uses for resource relocation. That feature can add even
more functionality for the components and pages. A page author does not have to know the
location of a resource or its placement.

By using a @ResourceDependency annotation for the components, component authors can
define the resources for the component, such as a style sheet and script. This allows the page
authors freedom from defining resource locations.

The Java EE 6 Tutorial « January 2013



Using Core Tags

Using Core Tags

The tags included in the JavaServer Faces core tag library are used to perform core actions that

are not performed by HTML tags.

Table 7-8 lists the event handling core tags.

TABLE7-8 Event Handling Core Tags

Tag

Function

f:actionListener
f:phaseListener

f:setPropertyActionListener

f:valueChangelListener

Adds an action listener to a parent component
Adds aPhaseListener toapage

Registers a special action listener whose sole purpose
is to push a value into a managed bean when a form is
submitted

Adds a value-change listener to a parent component

Table 7-9 lists the data conversion core tags.

TABLE7-9 Data Conversion Core Tags

Tag

Function

f:converter

f:convertDateTime

f:convertNumber

Adds an arbitrary converter to the parent component

AddsaDateTimeConverter instance to the parent
component

Adds a NumberConverter instance to the parent
component

Table 7-10 lists the facet core tags.

TABLE7-10 Facet Core Tags

Tag Function

f:facet Adds a nested component that has a special
relationship to its enclosing tag

f:metadata Registers a facet on a parent component

Table 7-11 lists the core tags that represent items in a list.

Chapter7 - Using JavaServer Faces Technology in Web Pages

171



Using Core Tags

TABLE7-11 Core Tags that Represent Items in a List

Tag

Function

f:selectItem

f:selectItems

Represents one item in a list of items

Represents a set of items

Table 7-12 lists the validator core tags.

TABLE7-12  Validator Core Tags

Tag

Function

f:validateDoubleRange
f:validatelLength
f:validateLongRange
f:validator
f:validateRegEx

f:validateBean

f:validateRequired

AddsaDoubleRangeValidator to a component
AddsaLengthValidator to a component

Adds a LongRangeValidator to a component
Adds a custom validator to a component

Adds aRegExValidator to acomponent

Delegates the validation of a local value to a
BeanValidator

Enforces the presence of a value in a component

Table 7-13 lists the core tags that fall into other categories.

TABLE7-13  Miscellaneous Core Tags

Tag Category Tag Function

Attribute configuration f:attribute Adds configurable attributes to a
parent component

Localization f:loadBundle Specifies a ResourceBundle that is
exposed as a Map

Parameter substitution f:param Substitutes parameters into a
MessageFormat instance and adds
query string name-value pairs to a
URL

Ajax frajax Associates an Ajax action with a

single component or a group of
components based on placement

172 The Java EE 6 Tutorial « January 2013



Using Core Tags

TABLE7-13 Miscellaneous Core Tags (Continued)
Tag Category Tag Function
Event frevent Allows installing a

ComponentSystemEventListener
on a component

These tags, which are used in conjunction with component tags, are explained in other sections
of this tutorial. Table 7-14 lists the sections that explain how to use specific core tags.

TABLE7-14 Where the Core Tags Are Explained

Tags

Where Explained

Event handling tags
Data conversion tags

f:facet

f:loadBundle
f:metadata
f:param

f:selectItemand
f:selectItems

Validator tags

f:ajax

“Registering Listeners on Components” on page 180
“Using the Standard Converters” on page 175

“Using Data-Bound Table Components” on page 161 and “Laying Out Components
with the h:panelGrid and h:panelGroup Tags” on page 154

“Setting the Resource Bundle” on page 357
“Using View Parameters to Configure Bookmarkable URLs” on page 166
“Displaying a Formatted Message with the h:outputFormat Tag” on page 151

“Using the f:selectItemand f:selectItems Tags” on page 159

“Using the Standard Validators” on page 183

Chapter 11, “Using Ajax with JavaServer Faces Technology”

Chapter7 - Using JavaServer Faces Technology in Web Pages 173



174



L K R 4 CHAPTER 8

Using Converters, Listeners, and Validators

The previous chapter described components and explained how to add them to a web page.
This chapter provides information on adding more functionality to the components through
converters, listeners, and validators.

= Converters are used to convert data that is received from the input components.

= Listeners are used to listen to the events happening in the page and perform actions as
defined.

= Validators are used to validate the data that is received from the input components.

The following topics are addressed here:

“Using the Standard Converters” on page 175
“Registering Listeners on Components” on page 180
“Using the Standard Validators” on page 183
“Referencing a Managed Bean Method” on page 186

Using the Standard Converters

The JavaServer Faces implementation provides a set of Converter implementations that you
can use to convert component data. For more information on the conceptual details of the
conversion model, see “Conversion Model” on page 220. The standard Converter
implementations, located in the javax. faces.convert package, are as follows:

BigDecimalConverter
BigIntegerConverter
BooleanConverter
ByteConverter
CharacterConverter
DateTimeConverter
DoubleConverter
EnumConverter

175



Using the Standard Converters

176

FloatConverter
IntegerConverter
LongConverter
NumberConverter
ShortConverter

A standard error message is associated with each of these converters. If you have registered one
of these converters onto a component on your page, and the converter is not able to convert the
component’s value, the converter’s error message will display on the page. For example, the
following error message appears if BigIntegerConverter fails to convert a value:

{0} must be a number consisting of one or more digits

In this case, the {0} substitution parameter will be replaced with the name of the input
component on which the converter is registered.

Two of the standard converters (DateTimeConverter and NumberConverter) have their own
tags, which allow you to configure the format of the component data using the tag attributes.
For more information about using DateTimeConverter, see “Using DateTimeConverter” on
page 177. For more information about using NumberConverter, see “Using NumberConverter”
on page 179. The following section explains how to convert a component’s value, including how
to register other standard converters with a component.

Converting a Component’s Value

To use a particular converter to convert a component’s value, you need to register the converter
onto the component. You can register any of the standard converters in one of the following
ways:

= Nest one of the standard converter tags inside the component’s tag. These tags are
convertDateTime and convertNumber, which are described in “Using DateTimeConverter”
on page 177 and “Using NumberConverter” on page 179, respectively.

= Bind the value of the component to a managed bean property of the same type as the
converter.

= Refer to the converter from the component tag’s converter attribute.
= Nesta converter tag inside of the component tag, and use either the converter tag’s

converterId attribute or its binding attribute to refer to the converter.

As an example of the second technique, if you want a component’s data to be converted to an
Integer, you can simply bind the component’s value to a managed bean property. Here is an
example:

Integer age = 0;
public Integer getAge(){ return age;}
public void setAge(Integer age) {this.age = age;}

The Java EE 6 Tutorial « January 2013



Using the Standard Converters

If the component is not bound to a bean property, you can use the third technique by using the
converter attribute directly on the component tag:

<h:inputText
converter="javax.faces.convert.IntegerConverter" />

This example shows the converter attribute referring to the fully qualified class name of the
converter. The converter attribute can also take the ID of the component.

The data from the inputText tag in the this example will be converted to a java.lang.Integer
value. The Integer type is a supported type of NumberConverter. If you don’t need to specify
any formatting instructions using the convertNumber tag attributes, and if one of the standard
converters will suffice, you can simply reference that converter by using the component tag’s
converter attribute.

Finally, you can nesta converter tag within the component tag and use either the converter
tag’s converterId attribute or its binding attribute to reference the converter.

The converterId attribute must reference the converter’s ID. Here is an example:

<h:inputText value="#{loginBean.age}" />
<f:converter converterId="Integer" />
</h:inputText>

Instead of using the converterId attribute, the converter tag can use the binding attribute.
The binding attribute must resolve to a bean property that accepts and returns an appropriate
Converter instance.

Using DateTimeConverter

You can convert a component’s data to a java.util.Date by nesting the convertDateTime tag
inside the component tag. The convertDateTime tag has several attributes that allow you to
specify the format and type of the data. Table 8-1 lists the attributes.

Here is a simple example of a convertDateTime tag:

<h:outputText value="#{cashier.shipDate}">
<f:convertDateTime type="date" dateStyle="full" />
</h:outputText>

When binding the DateTimeConverter to a component, ensure that the managed bean
property to which the component is bound is of type java.util.Date. In the preceding
example, cashier.shipDate must be of type java.util.Date.

The example tag can display the following output:

Saturday, September 25, 2011

Chapter8 - Using Converters, Listeners, and Validators 177



Using the Standard Converters

You can also display the same date and time by using the following tag where the date format is
specified:

<h:outputText value="#{cashier.shipDate}">
<f:convertDateTime
pattern="EEEEEEEE, MMM dd, yyyy" />
</h:outputText>

If you want to display the example date in Spanish, you can use the locale attribute:

<h:outputText value="#{cashier.shipDate}">
<f:convertDateTime dateStyle="full"
locale="es"
timeStyle="long" type="both" />
</h:outputText>

This tag would display the following output:

jueves 27 de octubre de 2011 15:07:04 GMT

Refer to the “Customizing Formats” lesson of the Java Tutorial at http://docs.oracle.com/
javase/tutorial/il8n/format/simpleDateFormat.html for more information on how to
format the output using the pattern attribute of the convertDateTime tag.

TABLE8-1 Attributes for the convertDateTime Tag

Attribute Type Description
binding DateTimeConverter Used to bind a converter to a managed bean property.
dateStyle String Defines the format, as specified by java. text.DateFormat, of a date

or the date part of a date string. Applied only if type is date or both
and if pattern is not defined. Valid values: default, short, medium,
long, and full. If no value is specified, default is used.

for String Used with composite components. Refers to one of the objects within
the composite component inside which this tag is nested.

locale StringorLocale Locale whose predefined styles for dates and times are used during
formatting or parsing. If not specified, the Locale returned by
javax.faces.context.FacesContext.getLocale will be used.

pattern String Custom formatting pattern that determines how the date/time string
should be formatted and parsed. If this attribute is specified,
dateStyle, timeStyle, and type attributes are ignored.

timeStyle String Defines the format, as specified by java.text.DateFormat, of a time
or the time part of a date string. Applied only if type is time and
patternis not defined. Valid values: default, short, medium, long,
and full.If no value is specified, default is used.

178 The Java EE 6 Tutorial « January 2013


http://docs.oracle.com/javase/tutorial/i18n/format/simpleDateFormat.html
http://docs.oracle.com/javase/tutorial/i18n/format/simpleDateFormat.html

Using the Standard Converters

TABLE8-1 Attributes for the convertDateTime Tag (Continued)
Attribute Type Description
timeZone  Stringor TimeZone Time zone in which to interpret any time information in the date
string.
type String Specifies whether the string value will contain a date, a time, or both.
Valid values are date, time, or both. If no value is specified, date is
used.

Using NumberConverter

You can convert a component’s data to a java. lang.Number by nesting the convertNumber tag
inside the component tag. The convertNumber tag has several attributes that allow you to
specify the format and type of the data. Table 8-2 lists the attributes.

The following example uses a convertNumber tag to display the total prices of the contents of a
shopping cart:

<h:outputText value="#{cart.total}" >
<f:convertNumber currencySymbol="$" type="currency"/>
</h:outputText>

When binding the NumberConverter to a component, ensure that the managed bean property
to which the component is bound is of a primitive type or has a type of java. lang.Number. In
the preceding example, cart.total is of type double.

Here is an example of a number that this tag can display:

$934

This result can also be displayed by using the following tag, where the currency pattern is
specified:

<h:outputText id="cartTotal"
value="#{cart.Total}" >
<f:convertNumber pattern="¢$####" />
</h:outputText>

See the “Customizing Formats” lesson of the Java Tutorial athttp://docs.oracle. com/
javase/tutorial/il8n/format/decimalFormat.html for more information on how to
format the output by using the pattern attribute of the convertNumber tag.

TABLE8-2 Attributes for the convertNumber Tag

Attribute Type Description

binding NumberConverter Used to bind a converter to a managed bean property.

Chapter8 - Using Converters, Listeners, and Validators 179


http://docs.oracle.com/javase/tutorial/i18n/format/decimalFormat.html
http://docs.oracle.com/javase/tutorial/i18n/format/decimalFormat.html

Registering Listeners on Components

TABLE8-2 Attributes for the convertNumber Tag (Continued)

Attribute Type Description

currencyCode String ISO 4217 currency code, used only when formatting
currencies.

currencySymbol String Currency symbol, applied only when formatting currencies.

for String Used with composite components. Refers to one of the
objects within the composite component inside which this
tag is nested.

groupingUsed Boolean Specifies whether formatted output contains grouping
separators.

integerOnly Boolean Specifies whether only the integer part of the value will be
parsed.

locale StringorLocale Locale whose number styles are used to format or parse data.

maxFractionDigits  int Maximum number of digits formatted in the fractional part
of the output.

maxIntegerDigits int Maximum number of digits formatted in the integer part of
the output.

minFractionDigits  int Minimum number of digits formatted in the fractional part
of the output.

minIntegerDigits int Minimum number of digits formatted in the integer part of
the output.

pattern String Custom formatting pattern that determines how the number
string is formatted and parsed.

type String Specifies whether the string value is parsed and formatted as

anumber, currency, or percentage. If not specified, number
isused.

Registering Listeners on Components

180

An application developer can implement listeners as classes or as managed bean methods. Ifa
listener is a managed bean method, the page author references the method from either the
component’s valueChangeListener attribute or its actionListener attribute. If the listener is
a class, the page author can reference the listener from either an f:valueChangeListener tagor
an f:actionListener tag and nest the tag inside the component tag to register the listener on

the component.

The Java EE 6 Tutorial « January 2013



Registering Listeners on Components

“Referencing a Method That Handles an Action Event” on page 187 and “Referencing a Method
That Handles a Value-Change Event” on page 188 explain how a page author uses the
valueChangelListener and actionListener attributes to reference managed bean methods
that handle events.

This section explains how to register a NameChanged value-change listener and a BookChange
action listener implementation on components. The Duke’s Bookstore case study includes both
of these listeners.

Registering a Value-Change Listener on a Component

A page author can register a ValueChangelListener implementation on a component that
implements EditableValueHolder by nesting an f:valueChangelListener tag within the
component’s tag on the page. The f:valueChangeListener tag supports the attributes shown
in Table 8-3, one of which must be used.

TABLE8-3 Attributes for the fivalueChangeListener Tag

Attribute Description

type References the fully qualified class name of a ValueChangeListener implementation.
Can accept a literal or a value expression.

binding References an object that implements ValueChangeListener. Can accept only a value
expression, which must point to a managed bean property that accepts and returns a
ValueChangelListener implementation.

The following example shows a value-change listener registered on a component:

<h:inputText id="name"
size="30"
value="#{cashier.name}"
required="true"
requiredMessage="#{bundle.ReqCustomerName}" >
<f:valueChangelListener
type="dukesbookstore.listeners.NameChanged" />
</h:inputText>

In the example, the core tag type attribute specifies the custom NameChanged listener as the
javax.faces.event.ValueChangeListener implementation registered on the name
component.

After this component tag is processed and local values have been validated, its corresponding
component instance will queue the javax. faces.event.ValueChangeEvent associated with
the specified ValueChangeListener to the component.

Chapter8 - Using Converters, Listeners, and Validators 181



Registering Listeners on Components

182

The binding attribute is used to bind a ValueChangeListener implementation to a managed
bean property. This attribute works in a similar way to the binding attribute supported by the
standard converter tags. See “Binding Component Values and Instances to Managed Bean
Properties” on page 288 for more information.

Registering an Action Listener on a Component

A page author can register an javax.faces.event.ActionListener implementation ona
command component by nesting an f:actionListener tag within the component’s tag on the
page. Similarly to the f:valueChangeListener tag, the f:actionListener tag supports both
the type and binding attributes. One of these attributes must be used to reference the action
listener.

Here is an example of an h: commandLink tag that references an ActionListener
implementation:

<h:commandLink id="Duke" action="bookstore">
<f:actionListener
type="dukesbookstore.listeners.LinkBookChangelListener" />
<h:outputText value="#{bundle.Book201}"/>
</h:commandLink>

The type attribute of the f:actionListener tag specifies the fully qualified class name of the
ActionListener implementation. Similarly to the f:valueChangeListener tag, the
f:actionListener tagalso supports the binding attribute. See “Binding Converters, Listeners,
and Validators to Managed Bean Properties” on page 293 for more information about binding
listeners to managed bean properties.

In addition to the actionListener tag that allows you register a custom listener onto a
component, the core tag library includes the f: setPropertyActionListener tag. You use this
tag to register a special action listener onto the ActionSource instance associated with a
component. When the component is activated, the listener will store the object referenced by
the tag’s value attribute into the object referenced by the tag’s target attribute.

The bookcatalog.xhtml page of the Duke’s Bookstore application uses
f:setPropertyActionListener with two components: the h: commandLink component used to
link to the bookdetails.xhtml page and the h: commandButton component used to add a book
to the cart:

<h:dataTable id="books"
value="#{bookRequestBean.books}"
var="book"
headerClass="list-header"
styleClass="list-background"
rowClasses="list-row-even, list-row-odd"
border="1"
summary="#{bundle.BookCatalog}" >

The Java EE 6 Tutorial « January 2013



Using the Standard Validators

<h:column>
<f:facet name="header">
<h:outputText value="#{bundle.ItemTitle}"/>
</f:facet>
<h:commandLink action="#{catalog.details}"
value="#{book.title}">
<f:setPropertyActionListener target="#{requestScope.book}"
value="#{book}"/>
</h:commandLink>
</h:column>

<h:column>
<f:facet name="header">
<h:outputText value="#{bundle.CartAdd}"/>
</f:facet>
<h:commandButton id="add"
action="#{catalog.add}"
value="#{bundle.CartAdd}">
<f:setPropertyActionListener target="#{requestScope.book}"
value="#{book}"/>
</h:commandButton>
</h:column>

The h: commandLink and h: commandButton tags are within an h: dataTable tag, which iterates
over the list of books. The var attribute refers to a single book in the list of books.

The object referenced by the var attribute of an h: dataTable tag is in page scope. However, in
this case, you need to put this object into request scope so that when the user activates the
commandLink component to go to bookdetails.xhtml or activates the commandButton
component to go to bookcatalog. xhtml, the book data is available to those pages. Therefore,
the f:setPropertyActionListener tagis used to set the current book object into request scope
when the commandLink or commandButton component is activated.

In the preceding example, the f: setPropertyActionListener tag’s value attribute references
the book object. The f:setPropertyActionListener tag’s target attribute references the value
expression requestScope.book, which is where the book object referenced by the value
attribute is stored when the commandLink or the commandButton component is activated.

Using the Standard Validators

JavaServer Faces technology provides a set of standard classes and associated tags that page
authors and application developers can use to validate a component’s data. Table 8-4 lists all the
standard javax.faces.validator classes and the tags that allow you to use the validators from
the page.

Chapter8 - Using Converters, Listeners, and Validators 183



Using the Standard Validators

184

TABLE8-4 The Validator Classes

Validator Class Tag Function
BeanValidator validateBean Registers a bean validator for the component.
DoubleRangeValidator validateDoubleRange Checks whether the local value of a

component is within a certain range. The
value must be floating-point or convertible to
floating-point.

LengthValidator validatelLength Checks whether the length of a component’s
local value is within a certain range. The value
mustbea java.lang.String.

LongRangeValidator validatelLongRange Checks whether the local value of a
component is within a certain range. The
value must be any numeric type or String
that can be converted to a long.

RegexValidator validateRegEx Checks whether the local value of a
component is a match against a regular
expression from the java.util.regex
package.

RequiredValidator validateRequired Ensures that the local value is not empty on an
javax.faces.component.EditableValueHolder
component.

All these validator classes implement the javax. faces.validator.Validator interface.
Component writers and application developers can also implement this interface to define their
own set of constraints for a component’s value.

Similar to the standard converters, each of these validators has one or more standard error
messages associated with it. If you have registered one of these validators onto a component on
your page, and the validator is unable to validate the component’s value, the validator’s error
message will display on the page. For example, the error message that displays when the
component’s value exceeds the maximum value allowed by LongRangeValidator is as follows:

{1}: validation Error: Value is greater than allowable maximum of "{@}"

In this case, the {1} substitution parameter is replaced by the component’s label or id, and the
{0} substitution parameter is replaced with the maximum value allowed by the validator.

See “Displaying Error Messages with the h:message and h:messages Tags” on page 164 for
information on how to display validation error messages on the page when validation fails.

Instead of using the standard validators, you can use Bean Validation to validate data. See
“Using Bean Validation” on page 204 for more information.

The Java EE 6 Tutorial « January 2013



Using the Standard Validators

Validating a Component’s Value

To validate a component’s value using a particular validator, you need to register that validator
on the component. You can do this in one of the following ways:

= Nest the validator’s corresponding tag (shown in Table 8-4) inside the component’s tag.
“Using LongRangeValidator” on page 185 explains how to use the validateLongRange tag.
You can use the other standard tags in the same way.

= Refer to a method that performs the validation from the component tag’s validator
attribute.

= Nesta validator tag inside the component tag, and use either the validator tag’s validatorId
attribute or its binding attribute to refer to the validator.

See “Referencing a Method That Performs Validation” on page 187 for more information on
using the validator attribute.

The validatorId attribute works similarly to the converterId attribute of the converter tag,
as described in “Converting a Component’s Value” on page 176.

Keep in mind that validation can be performed only on components that implement
EditableValueHolder, because these components accept values that can be validated.

Using LongRangeValidator

The following example shows how to use the validateLongRange validator on an input
component named quantity:

<h:inputText id="quantity" size="4"
value="#{item.quantity}" >
<f:validateLongRange minimum="1"/>
</h:inputText>
<h:message for="quantity"/>

This tag requires the user to enter a number that is at least 1. The validateLongRange tag also
has a maximum attribute, which sets a maximum value for the input.

The attributes of all the standard validator tags accept EL value expressions. This means that the
attributes can reference managed bean properties rather than specify literal values. For
example, the validateLongRange tag in the preceding example can reference managed bean
properties called minimum and maximum to get the minimum and maximum values acceptable to
the validator implementation, as shown in this snippet from the guessnumber example:

<h:inputText
id="userNo"
title="Type a number from @ to 10:"
value="#{userNumberBean.userNumber}">

Chapter8 - Using Converters, Listeners, and Validators 185



Referencing a Managed Bean Method

<f:validatelLongRange
minimum="#{userNumberBean.minimum}"
maximum="#{userNumberBean.maximum}"/>
</h:inputText>

Referencing a Managed Bean Method

186

A component tag has a set of attributes for referencing managed bean methods that can
perform certain functions for the component associated with the tag. These attributes are
summarized in Table 8-5.

TABLE8-5 Component Tag Attributes That Reference Managed Bean Methods

Attribute Function

action Refers to a managed bean method that performs navigation processing for the
component and returns a logical outcome String

actionListener Refers to a managed bean method that handles action events
validator Refers to a managed bean method that performs validation on the component’s
value

valueChangeListener  Refersto a managed bean method that handles value-change events

Only components that implement javax.faces.component.ActionSource can use theaction
and actionListener attributes. Only components that implement
javax.faces.component.EditableValueHolder can use the validator or
valueChangeListener attributes.

The component tag refers to a managed bean method using a method expression as a value of
one of the attributes. The method referenced by an attribute must follow a particular signature,
which is defined by the tag attribute’s definition in the documentation at
http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/. For
example, the definition of the validator attribute of the inputText tagis the following:

void validate(javax.faces.context.FacesContext,
javax.faces.component.UIComponent, java.lang.Object)

The following sections give examples of how to use the attributes.

The Java EE 6 Tutorial « January 2013


http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/

Referencing a Managed Bean Method

Referencing a Method That Performs Navigation

If your page includes a component, such as a button or a hyperlink, that causes the application
to navigate to another page when the component is activated, the tag corresponding to this
component must include an action attribute. This attribute does one of the following:

= Specifies alogical outcome String that tells the application which page to access next
= References a managed bean method that performs some processing and returns a logical
outcome String

The following example shows how to reference a navigation method:

<h:commandButton
value="#{bundle.Submit}"
action="#{cashier.submit}" />

See “Writing a Method to Handle Navigation” on page 201 for information on how to write such
amethod.

Referencing a Method That Handles an Action Event

If a component on your page generates an action event, and if that event is handled by a
managed bean method, you refer to the method by using the component’s actionListener
attribute.

The following example shows how such a method could be referenced:

<h:commandLink id="Duke" action="bookstore"
actionListener="#{actionBean.chooseBookFromLink}">

The